Методы исследования ультразвуковой диагностики. УЗИ (ультразвуковое исследование)

01.05.2019

Ультразвуковое исследование основано на способности ультразвука с разной скоростью распространяться в средах, разных по плотности, а также изменять направление движения на границе таких сред. Самое главное:

  • УЗИ не имеет никакого отношения к радиационным методам обследования;
  • УЗИ не оказывает повреждающего влияния на органы и ткани любого обследуемого, вне зависимости от возраста и предполагаемого диагноза;
  • УЗИ может использоваться многократно в течение короткого отрезка времени.

Преимущества и недостатки ультразвуковой диагностики

Принципиальная и очень положительная особенность УЗИ состоит в том, что диагностическую информацию получают в режиме реального времени - всё быстро, конкретно, видно именно то, что происходит в организме сейчас, на момент осмотра. На возможности УЗИ огромное влияние оказывают два момента. Распространение ультразвука в костной ткани очень затруднено из-за ее высокой плотности. В связи с этим УЗИ весьма ограниченно используется для диагностики заболеваний костей.

С какой целью проводится ультразвуковое исследование организма?

Ультразвук не распространятся в вакууме и очень медленно распространяется в воздухе. В этой связи органы, физиологически заполненные газом (дыхательные пути, легкие, желудок и кишечник), обследуются преимущественно другими методами. Тем не менее в обоих упомянутых моментах есть исключения, подтверждающие правило. Ультразвуковое исследование организма ребенка с успехом используется для диагностики заболеваний суставов, поскольку имеется возможность увидеть полость сустава, связки и суставные поверхности. Наличие плотных образований в воздухосодержащих органах (воспаление, опухоль, инородное тело, утолщение стенок) вполне позволяет использовать УЗИ для результативной и достоверной диагностики.

Итак, метод исследования ультразвуковой диагностики - чрезвычайно эффективный метод обследования, позволяющий быстро и безопасно оценить состояние (и структурное, и функциональное) многих органов и систем: сердца и сосудов, печени и желчевыводящих путей, селезенки и поджелудочной железы, глаз, щитовидной железы, надпочечников, слюнных и молочных желез, всех органов мочеполовой системы, всех мягких тканей и всех групп лимфоузлов.

Нейросоноскопия - что это?

Принципиальная анатомическая особенность детей грудного возраста - наличие проницаемых для ультразвука родничков и швов черепа. Это позволяет проводить УЗИ анатомических структур головного мозга. Метод ультразвукового исследования головного мозга через родничок получил название нейросоноскопия. Нейросоноскопия позволяет оценить размеры и структуру большинства анатомических образований головного мозга - полушарий, мозжечка, желудочков мозга, сосудов, мозговых оболочек и т. д.

Безопасность нейросоноскопии и ее способность обнаруживать врожденные аномалии, поврежденные ткани, кровоизлияния, кисты, опухоли логично привела к тому, что в настоящее время нейросоноскопия используется очень широко - практически всегда, когда у детского врача есть малейшие сомнения в неврологическом здоровье пациента.

Преимущества метода нейросоноскопии

Массовое применение нейросоноскопии имеет огромный плюс: своевременно выявляются врожденные аномалии головного мозга. Массовое применение нейросоноскопии в исследовании организма ребенка имеет огромный минус: УЗИ в большинстве случаев проводит один врач, а последующее наблюдение за пациентом и его лечение - другой. Таким образом, заключение специалиста по УЗИ рассматривается как повод для лечения ребенка, без сопоставления с реальными симптомами.

В частности, почти у 50% детей при нейросоноскопии обнаруживаются так называемые псевдокисты - небольшие округлые образования разной формы и размеров. Медицинская наука еще не установила до конца причину появления псевдокист, но одно выяснено точно: к 8-12 месяцам они сами по себе рассасываются у абсолютного большинства детей.

До активного внедрения в медицинскую практику нейросоноскопии ни врачи, ни родители про псевдокисты и слыхом не слыхивали. Сейчас же их массовое обнаружение приводит к тому, что, во-первых, у половины мам и пап, чьи дети прошли процедуру нейросоноскопии, имеется выраженный эмоциональный стресс и, во-вторых, нейросоноскопические находки нередко рассматриваются как повод для необоснованного лечения. Обратите внимание!

Заключение врача - специалиста по ультразвуковой диагностике - это не диагноз и не повод к леченйию детей. Это дополнительная информация к размышлению. Для диагноза и лечения ребенка необходимы реальные жалобы и реальные симптомы.

Эхо-ЭГ - метод исследования ультразвуковой диагностики

К методам ультразвуковой диагностики состояния центральной нервной системы относится также эхоэнцефалография (Эхо-ЭГ).

Преимущества и недостатки метода Эхо-ЭГ

Главное достоинство Эхо-ЭГ состоит в том, что она возможна в любом возрасте, поскольку кости черепа не являются препятствием для проведения исследования. Основной недостаток Эхо-ЭГ - ограниченные возможности, связанные с тем, что используется узкий луч, формирующий одномерное изображение. Тем не менее Эхо-ЭГ способна дать информацию об анатомических размерах определенных участков головного мозга, о плотности мозговой ткани, пульсации сосудов и многом другом. Информация эта может быть получена даже амбулаторно и с помощью относительно недорогого оборудования.

Томографические методы исследования

Эхо-ЭГ практически не используется в ситуациях, когда имеются возможности (прежде всего материальные) для применения на порядок более информативных современных томографических методов исследования. Классический метод рентгеновской томографии получил свое развитие во второй половине XX в.: лежащие в его основе принципы стали основой для создания:

  • компьютерной рентгеновской томографии (КТ или РКТ);
  • ядерной магнитно-резонансной томографии (МРТ или ЯМРТ).

Оба упомянутых метода построены на просвечивании организма лучами с последующим компьютерным анализом полученной информации. Излучатель с огромной скоростью движется вокруг тела обследуемого ребенка, при этом непрерывно делается множество снимков. В итоге формируется четкое изображение продольных или поперечных срезов организма.

Вариант КТ, при котором срезы делаются не продольно или поперечно, а по спирали, получил название спиральная компьютерная томография. Очень важное и очень существенное отличие КТ от МРТ состоит в том, что при КТ используются рентгеновские лучи, а при МРТ - радиоволны. В основе метода МРТ лежит принцип магнитного резонанса: ядра водорода, имеющиеся во всех органах и тканях, резонируют в магнитном поле под действием радиоволн.

Метод МРТ многократно более точный и безопасный, хотя и требующий большего времени на процедуру исследования. Точность и информативность МРТ особенно проявляются при исследовании головного мозга, безопасность - в возможности обследования беременных.

Самое главное практическое отличие КТ от МРТ состоит в стоимости рентгеновского и магнитно-резонансного томографов. Последний многократно дороже (речь идет о миллионах долларов). Цена MP-томографа определяется мощностью создаваемого им магнитного поля: чем поле сильнее, тем выше качество снимков и цена устройства.

Трудно поверить, что столь широкое применение ультразвука в медицине началось с обнаружения его травмирующего действия на живые организмы. Впоследствии было определено, что физическое воздействие ультразвука на биологические ткани, полностью зависит от его интенсивности, и может быть стимулирующим или разрушающим. Особенности же распространения ультразвука в тканях, легли в основу ультразвуковой диагностики.

Сегодня, благодаря развитию компьютерных технологий, стали доступны принципиально новые методики обработки информации, получаемой с помощью лучевых диагностических методов. Медицинские изображения, являющиеся результатом компьютерной обработки искажений различных видов излучения (рентгеновского, магнитно-резонансного или ультразвукового), возникающих в результате взаимодействия с тканями организма, позволили поднять диагностику на новый уровень. Ультразвуковое исследование (УЗИ), обладая массой преимуществ, таких как небольшая стоимость, отсутствие вредного воздействия ионизации и распространенность, выгодно выделяющих его среди других диагностических методик, однако, очень незначительно уступает им в информативности.

Физические основы

Стоит отметить, что очень маленький процент пациентов, прибегающих к ультразвуковой диагностике, задается вопросом, что такое УЗИ, на каких принципах основано получение диагностической информации и какова ее достоверность. Отсутствие такого рода сведений, нередко приводит к недооценке опасности поставленного диагноза или, напротив, к отказу от обследования, в связи с ошибочно бытующим мнением о вредности ультразвука.

По сути, ультразвук представляет собой звуковую волну, частота которой находится выше порога, который способен воспринять человеческий слух. В основе УЗИ лежат следующие свойства ультразвука – способность распространяться в одном направлении и одновременно переносить определенный объем энергии. Воздействие упругих колебаний ультразвуковой волны на структурные элементы тканей, приводит к их возбуждению и дальнейшей передаче колебаний.

Таким образом, происходит формирование и распространение ультразвуковой волны, скорость распространения которой, полностью зависит от плотности и структуры исследуемой среды. Каждый вид ткани человеческого организма обладает акустическим сопротивлением различной интенсивности. Жидкость, оказывая наименьшее сопротивление, является оптимальной средой, обеспечивающей распространение ультразвуковых волн. Например, при частоте ультразвуковой волны, равной 1 MГц, ее распространение в костной ткани составит всего 2 мм, а в жидкой среде – 35 см.

При формировании УЗ-изображения используют еще одно свойство ультразвука – отражаться от сред, обладающих различным акустическим сопротивлением. То есть, если в однородной среде волны ультразвука распространяются исключительно прямолинейно, то при появлении на пути объекта с другим порогом сопротивления происходит частичное их отражение. Например, при переходе границы, разделяющей мягкую ткань от кости, происходит отражение 30% ультразвуковой энергии, а при переходе от мягких тканей к газовой среде, отражается практически 90%. Именно этот эффект обусловливает невозможность исследования полых органов.

Важно! Эффект полного отражения ультразвуковой волны от воздушных сред обусловливает необходимость применения при УЗИ-исследовании, контактного геля, устраняющего воздушную прослойку между сканером и поверхностью тела пациента.

В основе УЗИ лежит эффект эхолокации. Желтым цветом изображен генерируемый ультразвук, а голубым отраженный

Виды УЗИ-датчиков

Существуют различные виды УЗИ, суть которых заключаются в использовании УЗ-датчиков (преобразователей или трансдюссеров), имеющих различные конструктивные особенности, обусловливающие некоторые различия в форме получаемого среза. Ультразвуковой датчик представляет собой прибор, осуществляющий излучение и прием УЗ-волн. Форма луча, испускаемого преобразователем, а также его разрешающая способность, является определяющими при последующем получении качественного компьютерного изображения. Какие бывают УЗ-датчики?

Различают следующие их виды:

  • линейные . Форма среза, получаемая в результате применения такого датчика, выглядит в виде прямоугольника. В связи с высокой разрешающей способностью, но недостаточной глубиной сканирования, предпочтение таким датчикам отдают при проведении акушерских исследований, изучении состояния сосудов, молочной и щитовидной желез;
  • секторные . Картинка на мониторе имеет форму треугольника. Такие датчики имеют преимущества при необходимости исследования большого пространства из небольшой доступной площади, например, при исследовании через межреберное пространство. Применяются, преимущественно, в кардиологии;
  • конвексные . Срез, получаемый при применении такого датчика, имеет форму сходную с первым и вторым типом. Глубина сканирования, составляющая около 25 см, позволяет применять его для исследования глубоко расположенных органов, например, органов малого таза, брюшной полости, тазобедренных суставов.

В зависимости от целей и области исследования могут применяться следующие УЗ-датчики:

  • трансабдоминальный. Датчик, осуществляющий сканирование, непосредственно с поверхности тела;
  • трансвагинальный. Предназначен для исследования женских репродуктивных органов, непосредственно, через влагалище;
  • трансвезикальные. Применяется для исследования полости мочевого пузыря через мочевыводящий канал;
  • транректальный. Используется для исследования предстательной железы, путем введения преобразователя в прямую кишку.

Важно! Как правило, ультразвуковое исследование с помощью трансвагинального, трансректального или трансвезикального датчика, осуществляется с целью уточнения данных, полученных с помощью трансабдоминального сканирования.


Виды УЗ-датчиков, используемых для диагностики

Режимы сканирования

Способ отображения, полученной в результате сканирования информации, зависит от используемого режима сканирования. Различают следующие режимы работы ультразвуковых сканеров.

A-режим

Самый простой режим, позволяющий получить одномерное изображение эхо-сигналов, в виде обычной амплитуды колебаний. Каждое повышение пика амплитуды соответствует повышению степени отражения УЗ-сигнала. В связи ограниченной информативностью, УЗИ обследование в A-режиме, используется только в офтальмологии, для получения биометрических показателей глазных структур, а также для выполнения эхоэнцефалограмм в неврологии.

M-режим

В определенной степени, M-режим, представляет собой модифицированный A-режим. Где глубина исследуемой области отражена на вертикальной оси, а изменения импульсов, произошедшие в определенном временном промежутке – на горизонтальной оси. Метод применяется в кардиологии, для оценки изменений в сосудах и сердце.

B-режим

Наиболее используемый на сегодняшний день режим. Компьютерная обработка эхо-сигнала, позволяет получить серошкальное изображение анатомических структур внутренних органов, строение и структура которых позволяет судить о наличии или отсутствии патологических состояний или образований.

D-режим

Спектральная доплерография. Основывается на оценке сдвига частоты отражения УЗ-сигнала от движущихся объектов. Поскольку допплерография применяется для исследования сосудов, сущность эффекта Доплера заключается в изменении частоты отражения ультразвука от эритроцитов, движущихся от или к датчику. При этом движение крови в направлении датчика усиливает эхо-сигнал, а в противоположном направлении – уменьшает. Результатом такого исследования является спекрограмма, на которой по горизонтальной оси отражается время, а по вертикальной – скорость движения крови. Графическое изображение, расположенное выше оси, отражает поток, движущийся к датчику, а ниже оси –в направлении от датчика.

СDК-режим

Цветовое доплеровское картирование. Отражает зарегистрированный частотный сдвиг в виде цветного изображения, где красным цветом отображается поток, направленный в сторону датчика, а синим – в противоположную сторону. Сегодня изучение состояния сосудов выполняют в дуплексном режиме, сочетающим B- и СDК-режим.

3D-режим

Режим получения объемного изображения. Для осуществления сканирования в этом режиме, применяют возможность фиксирования в памяти сразу нескольких кадров, полученных во время исследования. Основываясь на данные серии снимков, выполненных с небольшим шагом, система воспроизводит трехмерное изображение. УЗИ 3D широко применяется в кардиологии, особенно в сочетании с доплеровским режимом, а также в акушерской практике.

4D-режим

4D УЗИ представляет собой 3D-изображение, выполненное в режиме реального времени. То есть, в отличие от 3D-режима, получают нестатическое изображение, которое можно повернуть и осмотреть со всех сторон, а двигающийся объемный объект. Применяется 4D-режим, преимущественно в кардиологии и акушерстве для осуществления скрининга.

Важно! К сожалению, в последнее время наблюдается тенденция использования возможностей четырехмерного ультразвукового исследования в акушерстве без медицинских показаний, что, несмотря на относительную безопасность процедуры, категорически не рекомендуется.

Области применения

Области применения ультразвуковой диагностики практически безграничны. Постоянное совершенствование оборудование позволяет исследовать ранее недоступные для ультразвука структуры.

Акушерство

Акушерство является той областью, где ультразвуковые методы исследования применяются наиболее широко. Основной целью, для чего делают УЗИ, при беременности являются:

  • определение наличия плодного яйца на начальных сроках беременности;
  • выявление патологических состояний, связанных с неправильным развитием беременности (пузырный занос, мертвый плод, внематочная беременность);
  • определение надлежащего развития и положения плаценты;
  • фитометрия плода – оценка его развития путем измерения его анатомических частей (головки, трубчатых костей, окружности живота);
  • общая оценка состояния плода;
  • выявление аномалий развития плода (гидроцефалия, анэнцифалия, синдром Дауна и т. д.).


УЗ-снимок глаза, при помощи которого диагностируется состояние всех элементов анализатора

Офтальмология

Офтальмология, является одной из областей, где ультразвуковая диагностика занимает несколько обособленные позиции. В определенной степени это связано с небольшим размером исследуемой области и довольно большим количеством альтернативных методов исследования. Применение ультразвука целесообразно при выявлении патологий структур глаза, особенно при потере прозрачности, когда обычное оптическое исследование абсолютно неинформативно. Хорошо доступна для исследования орбита глаза, однако, процедура требует применения высокочастотного оборудования с высоким разрешением.

Внутренние органы

Исследование состояния внутренних органов. При исследовании внутренних органов УЗИ делают с двумя целями:

  • профилактическое обследование, с целью выявления скрытых патологических процессов;
  • целенаправленное исследование при подозрении на наличие заболеваний воспалительного или иного характера.

Что показывает УЗИ при исследовании внутренних органов? В первую очередь, показателем, позволяющим оценить состояние внутренних органов, является соответствие внешнего контура исследуемого объекта его нормальным анатомическим характеристикам. Увеличение, уменьшение или утрата четкости контуров свидетельствует о различных стадиях патологических процессов. Например, увеличение размеров поджелудочной железы, свидетельствует об остром воспалительном процессе, а уменьшение размеров с одновременной потерей четкости контуров – о хроническом.

Оценка состояния каждого органа производится исходя из его функционального назначения и анатомических особенностей. Так, при исследовании почек, анализируют не только их размер, расположение, внутреннюю структуру паренхимы, но и размер чашечно-лоханочной системы, а также наличие конкрементов в полости. При исследовании паренхиматозных органов, смотрят на однородность паренхимы и ее соответствие плотности здорового органа. Любые изменения эхо-сигнала, не соответствующие структуре, расцениваются как посторонние образования (кисты, новообразования, конкременты).

Кардиология

Широкое применение, УЗИ диагностика, нашла в области кардиологии. Исследование сердечно-сосудистой системы позволяет определить ряд параметров, характеризующих наличие или отсутствие аномалий:

  • размер сердца;
  • толщина стенок сердечных камер;
  • размер полостей сердца;
  • строение и движение сердечных клапанов;
  • сократительная активность сердечной мышцы;
  • интенсивность движения крови в сосудах;
  • кровоснабжение миокарда.

Неврология

Исследование головного мозга взрослого человека, с помощью ультразвука достаточно затруднительно, вследствие физических свойств черепной коробки, имеющей многослойную структуру, разнообразной толщины. Однако, у новорожденных детей таких ограничений можно избежать, выполняя сканирование через незакрытый родничок. Благодаря отсутствию вредного воздействия и неинвазивности, УЗИ является методом выбора в детской пренатальной диагностике.


Исследование проводится как детям, так и взрослым

Подготовка

Ультразвуковое исследование (УЗИ), как правило, не требует длительной подготовки. Одним из требований при исследовании органов брюшной полости и малого таза, является максимальное снижение количества газов в кишечнике. Для этого, за сутки до процедуры, следует исключить из рациона продукты, вызывающие газообразование. При хроническом нарушении пищеварения, рекомендуется принять ферментативные препараты (Фестал, Мезим) или препараты, устраняющие вздутие живота (Эспумизан).

Исследование органов малого таза (матки, придатков, мочевого пузыря, предстательной железы) требуется максимальное наполнение мочевого пузыря, который, увеличиваясь не только отодвигает кишечник, но и служит своеобразным акустическим окном, позволяя четко визуализировать, расположенные позади него анатомические структуры. Органы пищеварения (печень, поджелудочную железу, желчный пузырь) исследуют на голодный желудок.

Отдельной подготовки требует трансректальное обследование предстательной железы у мужчин. Так как введение УЗ-датчика осуществляется через анус, непосредственно перед диагностикой, необходимо сделать очистительную клизму. Проведение трансвагинального обследования у женщин не требует наполнения мочевого пузыря.

Техника выполнения

Как делают УЗИ? Вопреки первому впечатлению, создающемуся у пациента, лежащего на кушетке, движения датчика по поверхности живота далеко не хаотичны. Все перемещения датчика направлены на получение изображения исследуемого органа в двух плоскостях (сагиттальной и аксиальной). Положение датчика в сагиттальной плоскости, позволяет получить продольное сечение, а в аксиальной – поперечное.

В зависимости от анатомической формы органа, его изображение на мониторе может существенно меняться. Так, форма матки при поперечном сечении имеет форму овала, а при продольном – грушевидную форму. Для обеспечения полного контакта датчика с поверхностью тела, на кожу периодически наносят гель.

Исследование органов брюшной полости и малого таза надо делать в положении лежа на спине. Исключением являются почки, которые исследуют сначала лежа, попросив пациента повернуться сначала на один бок, а затем на другой, после чего сканирование продолжают при вертикальном положении пациента. Таким образом, можно оценить их подвижность и степень смещения.


Трансректальное исследование простаты может проводиться в любых удобных для пациента и врача положениях (на спине или на боку)

Зачем делать УЗИ? Совокупность положительных сторон ультразвуковой диагностики, позволяет выполнять исследование не только при подозрении на наличие какого-либо патологического состояния, но и с целью осуществления планового профилактического обследования. Не вызовет затруднений и вопрос где сделать обследование, так как таким оборудованием сегодня располагает любая клиника. Однако, при выборе медицинского учреждения следует опираться в первую очередь не техническую оснащенность, а на наличие профессиональных врачей, так как качество результатов УЗИ в большей мере, нежели других диагностических методов, зависят от врачебного опыта.

Введение

Возрастающее значение визуализирующих диагностических методик в клинической практике следует объяснять сту­дентам-медикам уже на ранних этапах образования. Ши­рокое распространение и неинвазивный характер сонографии требуют уже сегодня знакомить завтрашних врачей с этой сравнительно безопасной методикой. Не секрет, что подавляющее число специалистов ультразву­ковой диагностики проходили и проходят первичную специа­лизацию на рабочем месте, т.е. за спиной врача, проводящего обычный прием больных. Если везет - удается увидеть дос­таточно широкий спектр патологии, нет — только наиболее распространенные заболевания. В результате подготовка врача, вер­нувшегося после такого обучения, страдает большими пробе­лами в специальном образовании. В практической работе пе­ред ним возникает огромное количество вопросов, которые тре­буют немедленного ответа.

В то же время следует подчеркнуть, что каждый сонографический диагноз хорош настолько, насколько хорош специ­алист по ультразвуковой диагностике. Неправильных диаг­нозов можно избежать за счет глубокого знания анатомии и ультразвуковой морфологии, неослабевающей скрупулез­ности и, когда это необходимо, сопоставления с результа­тами других визуализирующих исследований. Начальный успех («Я уже вижу все паренхиматозные органы») не дол­жен порождать самоуверенности во время обучения. Дей­ствительно глубокие знания могут быть получены только путем длительной самостоятельной работы в клинике, на­копления практического опыта, изучения анатомических особенностей нормы и патологии.

При этом, тщательно подготовленный дидактический ма­териал, отражающий многолетний клинический опыт будет, стимулировать и возмож­но даже вдохновит многих обучающихся.

Теоретические основы метода

Звук - это механическая продольная волна, в которой колебания частиц находится в той же плос­кости, что и направление распространения энер­гии. Волна переносит энергию, но не ма­терию. Верхняя граница слышимого звука - 20000 Гц. Звук с частотой, превышающей эту величину, называется ультразвуком. Частота - эго число полных колебаний (циклов) за период вре­мени в 1 секунду. Единицами измерения частоты являются герц (Гц) и мегагерц (МГц). Один герц - это одно колебание в секунду. Один мега­герц = 1000000 герц. В современных ультразвуковых при­борах для получения изображения используется ультразвук частотой от 2 МГц и выше.

Для получения ультразвука используются специ­альные преобразователи или трансдьюсеры, кото­рые превращают электрическую энергию в энергию ультразвука. Получение ультразвука базируется на обратном пьезоэлектрическом эффекте, упражнения . Суть эф­фекта состоит в том, что если к определенным ма­териалам (пьезоэлектрикам) приложить электриче­ское напряжение, то произойдет изменение их формы. С этой целью в ультразвуковых приборах чаще всего применяются искусственные пьезоэлектрики, такие, как цирконат или титанат свинца. При отсутствии электрического тока пье­зоэлемент возвращается к исходной форме, а при изменении полярности вновь произойдет измене­ние формы, но уже в обратном направлении. Если к пьезоэлементу приложить быстропеременный ток, то элемент начнет с высокой частотой сжимать­ся и расширяться (т.е. колебаться), генерируя ульт­развуковое поле. Рабочая частота трансдьюсера (резонансная частота) определяется отношением скорости распространения ультразвука в пьезоэлементе к удвоенной толщине этого пьезоэлемента. Детектирование отраженных сигналов базируется на прямом пьезоэлектрическом эффекте. Возвращающиеся сигналы вызывают коле­бания пьезоэлемента и появление на его гранях переменного электрического тока. В этом случае пьезоэлемент функционирует как ультразвуковой датчик. Обычно в ультразвуковых приборах для из­лучения и приема ультразвука используются одни и те же элементы. Поэтому термины "преобразо­ватель", "трансдьюсер", "датчик" являются синони­мами.

В отличие от электромагнитных волн (свет, радиоволны и т.д.) для распространения звука не­обходима среда - он не может распространяться в вакууме. Как и все волны, звук можно описать ря­дом параметров. Кроме частоты это, длина волны, скорость распространения в среде, период, амплиту­да и интенсивность. Частота, период, амплитуда и интенсивность определяются источником звука, скорость распространения - средой, а длина вол­ны - и источником звука, и средой.

Период - это время, необходимое для получения одного полно­го цикла колебаний. Единицами измере­ния периода являются секунда (с) и микросекунда (мкс). Одна микросекунда является одной милли­онной долей секунды. Период (мкс) = 1/частота (МГц).

Длина волны - это длина, которую занима­ет в пространстве одно колебание. Еди­ницы измерения - метр (м) и миллиметр (мм). Ско­рость распространения ультразвука - это ско­рость, с которой волна перемещается в среде. Еди­ницами скорости распространения ультразвука яв­ляются метр в секунду (м/с) и миллиметр в микро­секунду (мм/мкс). Скорость распространения ульт­развука определяется плотностью и упругостью среды. Скорость распространения ультразвука уве­личивается при увеличении упругости и уменьшении плотности среды.

Усредненная скорость распространения ультразвука в тканях тела чело­века составляет 1540 м/с - на эту скорость запро­граммировано большинство ультразвуковых диаг­ностических приборов.

Эта величина, введенная в программу компьютера, основана на допущении, что скорость рас­пространения звука в тканях постоянна. Однако звук проходит через печень со скоростью около 1570 м/с, в то время как через жировую ткань идет с меньшей скорос­тью - около 1476 м/с. Предполагаемое среднее значение скорости, которое хранится в компьютере, приводит к некоторым отклонениям, но не вызывает больших иска­жений.

Скорость распространения ультразвука (С), частота (f) и длина волны () свя­заны между собой следующим уравнением: С= f х .

Так как в нашем случае скорость считается по­стоянной (1540 м/с), то оставшиеся две перемен­ные f и связаны между собой обратно пропор­циональной зависимостью. Чем выше частота, тем меньше длина волны и тем меньше размеры объ­ектов, которые мы можем увидеть.

Для получения изображения в ультразвуковой диагностике используется не ультразвук, который излучается трансдьюсером непрерывно (посто­янной волной), а ультразвук, излучаемый в виде коротких импульсов (импульсный).

Эти колебания испускаются кристаллом (пьезоэлектрический эф­фект) как звуковая волна точно так же, как звуковые волны испускаются мембраной громкоговорителя, хотя частоты, используемые в сонографии, не слышны челове­ческим ухом.

В зависимости от цели применения, монографическая частота может быть от 2.0 до 15.0 МГц.

Для характеристики импульсного ультразвука используются дополни­тельные параметры. Частота повторения импуль­сов - это число импульсов, излучаемых в едини­цу времени (секунду). Частота повторения им­пульсов измеряется в герцах (Гц) и килогерцах (кГц).

Продолжительность импульса - это вре­менная протяженность одного импульса.

Измеряется в секундах (с) и микросекундах (мкс).

Фактор занятости - это часть времени, в которое происходит излучение (в форме импуль­сов) ультразвука.

Пространственная протяжен­ность импульса (ППИ) - это длина пространст­ва, в котором размещается один ультразвуковой импульс.

Для мягких тканей простран­ственная протяженность импульса (мм) равна произведению 1.54 (скорость распространения ультразвука в мм/мкс) и числа колебаний (циклов) в импульсе (n), отнесенному к частоте в МГц. Или, ППИ = 1,54хn/f.

Уменьшения пространственной протяженности импульса можно достичь (а это очень важно для улучшения осевой разрешающей способности) за счет уменьшения числа колеба­ний в импульсе или увеличения частоты.

Ампли­туда ультразвуковой волны - это максимальное отклонение наблюдаемой физической перемен­ной от среднего значения

Интенсив­ность ультразвука - эго отношение мощности волны к площади, по которой распределяется ультразвуковой поток. Измеряется в ваттах на квадратный сантиметр (Вт/кв.см).

При равной мощности излучения, чем меньше площадь пото­ка, тем выше интенсивность. Интенсивность так­же пропорциональна квадрату амплитуды. Так, если амплитуда удваивается, то интенсивность учетверяется. Интенсивность неоднородна как по площади потока, так и, в случае импульсного ульт­развука, во времени.

При прохождении через любую среду будет на­блюдаться уменьшение амплитуды и интенсивно­сти ультразвукового сигнала, которое называется затуханием. Затухание ультразвукового сигнала вы­зывается поглощением, отражением и рассеивани­ем. Единицей затухания является децибел (дБ). Ко­эффициент затухания - это ослабление ультразву­кового сигнала на единицу длины пути этого сиг­нала (дБ/см). Коэффициент затухания возрастает с увеличением частоты.

Звуковые волны от датчика, состоящего из множества кристаллов, проникают через ткани, отражаются и возвращаются как эхо к датчику. Вернувшиеся эхосигналы в обратном порядке преобразуются кристаллами в электрические импульсы и используются затем компьюте­ром для построения сонографического изображения.

Преломление - это изменение направления распространения ультразвукового луча при пересечении им грани­цы сред с различными скоростями приведения ультразвука. Синус угла преломления равен про­изведению синуса угла падения на величину, по­лученную от деления скорости распространения ультразвука во второй среде на скорость в первой. Синус угла преломления, а, следовательно, и сам угол преломления тем больше, чем больше раз­ность скоростей распространения ультразвука в двух средах. Преломление не наблюдается, если скорости распространения ультразвука в двух сре­дах равны или угол падения равен 0. Говоря об от­ражении, следует иметь в виду, что в том случае, когда длина волны много больше размеров неров­ностей отражающей поверхности, имеет место зер­кальное отражение.

Еще одним важ­ным параметром среды является акустическое со­противление.

Акустическое сопротивление - это произведение значения плотности среды и ско­рости распространения ультразвука. Сопротивле­ние (Z) = плотность () х скорость распростране­ния (С).

При прохождении ультразвука через ткани на границе сред с различным акустическим сопро­тивлением и скоростью проведения ультразву­ка возникают явления отражения, преломления, рассеивания и поглощения. В зависимости от угла говорят о перпендикулярном и наклонном (под уг­лом) падения ультразвукового луча. При наклонном паде­нии ультразвукового луча определяют угол паде­ния, угол отражения и угол преломления. Угол падения равен углу отражения. При перпенди­кулярном падении ультразвукового луча он может быть полностью отражен или частично отражен, частично проведен через границу двух сред; при этом направление ультразвука, перешедшего из одной среды в другую среду, не изменяется. Интенсивность отраженного ультразвука и ультразвука, прошедшего границу сред, зави­сит от исходной интенсивности и разности аку­стических сопротивлений сред. Отношение ин­тенсивности отраженной волны к интенсивности падающей волны называется коэффициентом от­ражения. Отношение интенсивности ультразвуко­вой волны, прошедшей через границу сред, к ин­тенсивности падающей волны называется коэффи­циентом проведения ультразвука. Таким образом, если ткани имеют различные плотности, но одина­ковое акустическое сопротивление - отражения ультразвука не будет. С другой стороны, при боль­шой разнице акустических сопротивлении интен­сивность отражения стремится к 100%. Примером этого служит страница воздух/мягкие ткани. На гра­нице этих сред происходит практически полное от­ражение ультразвука. Чтобы улучшить проведение ультразвука в ткани тела человека, используют соединительные среды (гель). Звуковые волны отражаются от границы раздела между средами с различной акустической плотностью (т.е. различным распространением звука). Отражение зву­ковых волн пропорционально разнице акустической плот­ности: умеренная разница будет отражать, и возвращать часть звукового луча к датчику, ос­тавшиеся звуковые волны будут передаваться и проникать дальше в слои тканей, лежащие глубже. Если разница в акустической плотности больше, интенсивность отраженного звука также увеличивается, а интенсивность проникающего дальше зву­ка пропорционально уменьшается. Если акустическая плот­ность существенно различается, зву­ковой луч полностью отражается, и в результате образуется тотальная акустическая тень (полное отражение). Аку­стическая тень наблюдается позади костей (ребра), камней (в почках или желчном пузыре) и газа (газ в кишечнике).

Эхосигналы не появляются, если нет различий в акустической плотности граничащих сред: гомогенные жидкости (кровь, желчь, моча и содержимое кист, а также асцитическая жидкость и плев­ральный выпот) выглядят как эхонегативные (черные) структуры, например, желчный пузырь и печеночные сосуды.

Процессор УЗ аппарата рассчитывает глубину, на которой возникло эхо, путем регистрации разницы времени между момента­ми излучения акустической волны и получения эхосигнала. Эхосигналы от тканей, лежащих рядом с датчиком, возвращаются раньше, чем от тканей, лежащих на глу­бине.

В случае если длина волны сопоставима с неровностями от­ражающей поверхности или имеется неоднород­ность самой среды, происходит рассеивание ульт­развука. При обратном рассеивании ультразвук отражается в том направлении, откуда пришел исходный луч. Интенсивность рассеянных сигналов увеличивается с увеличением неоднород­ности среды и увеличением частоты (т.е. уменьше­нием длины волны) ультразвука. Рассеивание от­носительно мало зависит от направления падающе­го луча и, следовательно, позволяет лучше визуа­лизировать отражающие поверхности, не говоря уже о паренхиме органов. Для того, чтобы отражен­ный сигнал был правильно расположен на экране, необходимо знать не только направление излучен­ного сигнала, но и расстояние до отражателя. Это расстояние равно 1/2 произведения скорость и ультразвука в среде на время между излучением и прие­мом отраженного сигнала. Произведе­ние скорости на время делится пополам, так как ультразвук проходит двойной путь (от излучателя до отражателя и назад), а нас интересует только расстояние от излучателя до отражателя.

В то же время, перед тем как вернуться к датчику, эхо может отражаться не­сколько раз назад и вперед, что занимает время движения, не соответствующее расстоянию до места его возникновения. Процессор УЗ аппарата ошибочно располагает эти реверберационные сигналы в более глубоком слое.

Применение в общемедицинской практике

Известно, что прохождение ультразвука через биологические объекты вызывает два вида эффектов: механические и тепловые. Поглощение энергии звуковой волны приводит к её затуханию, а высвободившаяся энергия трансформируется в тепловую. Причём выраженность разогрева взаимосвязана с интенсивностью УЗ - излучения. Частным случаем биологических эффектов ультразвука является кавитация. При этом в озвученной жидкости формируется множество пульсирующих пузырьков, заполненных газом, паром или их смесью.

Рис. 1. Тест-объект Американского института ультразвука в медицине

Американ­ский институт ультразвука в медицине на основании анализа результатов исследований воздействия ультразвука, на клетки растений и животных в 1993 году сделал следую­щее заявления: “Никогда не сообщалось о подтвержденных био­логических эффектах у пациентов или лиц, рабо­тающих на приборе, вызванных облучением (ульт­развуком), интенсивность которого типична для со­временных ультразвуковых диагностических уста­новок. Хотя существует возможность, что такие биологические эффекты могут быть выявлены в будущем, современные данные указывают, что польза для больного при благоразумном использо­вании диагностического ультразвука перевешива­ет потенциальный риск, если таковой вообще су­ществует"’.

Происходит постоянное совершенствование ультра­звуковых диагностических приборов и бурное развитие ультразвуковой ди­агностики,.

Представляется перспективным дальнейшее совершенствование доп­плеровских методик, особенно таких, как энерге­тический допплер, допплеровская цветовая визуа­лизация тканей.

Вариант цветового допплеровского картирования получил название "энергетического допплера" (Power Doppler). При энергетическом допплере определяется не значение допплеровско­го сдвига в отраженном сигнале, а его энергия. Та­кой подход позволяет повысить чувствительность ме­тода к низким скоростям, сделать её почти угол независимой, правда, ценой потери возможности оп­ределения абсолютного значения скорости, и направ­ления потока.

В будущем может стать весьма важным направлением ультразвуковой ди­агностики трехмерная эхография. На сегодняшний день существуют не­сколько коммерчески доступных ультразвуковых диагностических установок, позволяющих прово­дить трехмерную реконструкцию изображений, од­нако, вопрос о клиническом значении этого направле­ние остается открытым.

В конце шестидесятых годов прошлого тысячелетия были впервые применены ультразвуковые контра­сты. Для визуализации правых отделов сердца в настоящее время существует ком­мерчески доступный контраст “Эховист" (Шеринг). Препарат следующего поколения, полученный путём умень­шения размеров частиц контраста, может рецир­кулировать в кровеносной системе человека (“Левовист”, Шеринг). Этот контраст существенно улуч­шает допплеровский сигнал, как спектральный, так и цветовой, что может оказаться существенным для оценки опухолевого кровотока.

Использование ультратонких датчиков при внутриполостной эхографии открывает новые возможно­сти для исследования полых органов и структур. В то же время, широкое применение этой методики ограничивается высокой стоимо­стью специализированных датчиков, которые к тому же могут применяться для исследования ог­раниченное число раз.

Весьма перспективным направлением объективизации получаемой информации при УЗИ является компьютерная обработка изображений. В этом случае появляется возможность улучшить точность диагностики незначи­тельных структурных изменений в паренхиматоз­ных органах. Однако, полученные к настояще­му времени результаты существенного клиническо­го значения не имеют.

Основные сведения об используемом оборудовании

В качестве типичного примера сонографического оборудования рассмотрим устройство аппарата среднего класса (рис. 2).

Рис. 2. Панель управления УЗ аппарата (Toshiba)

Прежде всего, необходимо правильно ввести имя пациента (А, В), чтобы в дальнейшем правильно идентифицировать изображение. Клавиши для изменения программы обработки изображе­ния (С) или Lsugopa датчика (D) находятся в верхней поло­вине панели управления. На большинстве панелей клавиша остановки изображе­ния (FREEZE) (Е) находится в правом нижнем углу. После ее нажатия ультразвуковое изображение в реальном масшта­бе времени застывает. Мы рекомендуем всегда держать палец левой руки наготове. Это сокращает какую-либо задержку при остановке желаемого изображения с целью измерения, изу­чения или вывода на принтер. Для общего усиления получа­емых эхосигналов используется регулятор GAIN (F). Для избирательно­го управления эхосигналами на разной глубине усиление можно выборочно изменять с помощью ползунковых ре­гуляторов (G), компенсируя потери сигнала, связанные с глубиной. С помощью «колобка» (I) изображение можно смещать вверх или вниз, увеличивать или уменьшать раз­мер поля зрения, а также размещать метки или маркеры для измерения в любом месте экрана. Режим работы «ко­лобка» (измерение или ввод комментариев) устанавлива­ется соответствующими клавишами. Чтобы облегчить пос­ледующее изучение сонограммы, рекомендуется до выведения изображения на принтер (М) выбрать соответ­ствующий маркер тела (L) и с помощью «колобка» (I) от­метить позицию датчика. Остальные функции не столь важ­ны и могут быть изучены позже в процессе работы с аппаратом.

Сердцем современных сонографических комплексов являет­ся главный генератор импульсов (в современных аппаратах - мощный процессор), который управ­ляет всеми системами ультразвукового прибора. Генератор импульсов посылает электри­ческие импульсы на трансдьюсер, который генери­рует ультразвуковой импульс и направляет его в ткани, принимает отраженные сигналы, преобразо­вывая их в электрические колебания. Эти электри­ческие колебания далее направляются на радио­частотный усилитель, к которому обычно подклю­чается временно-амплитудный peгулятop усиления (ВАРУ, регулятор компенсации тканевого поглоще­ния по глубине) Ввиду того, что затухание ультразвукового сигнала в тканях происходит по экспо­ненциальному закону, яркость объектов на экране с увеличением глубины прогрессивно падает. Использование линейного усилителя, т.е. усилителя, пропорционально усиливающего все сигналы, привело бы к переусилению сигналов в непосредственной близости от датчика при попытке улучшения визуализации глубоко расположенных объектов. Использование логарифмических усили­телей позволяет решить эту проблему. Ультразву­ковой сигнал усиливается пропорционально време­ни задержки его возвращения - чем позже вернул­ся, тем сильнее усиление. Таким образом, приме­нение ВАРУ позволяет получить на экране изобра­жение одинаковой яркости по глубине. Усиленный таким образом радиочастотный электрический сиг­нал подается затем на демодулятор, где он выпрям­ляется и фильтруется и еще раз усиленный на видеоусилителе подается на экран монитора.

Для сохранения изображения на экране мони­тора необходима видеопамять. Она может быть разделена на аналоговую и цифровую. Первые мо­ниторы позволяли представлять информацию в аналоговой бистабильной форме. Устройство, на­зываемое дискриминатором, позволяло изменять порог дискриминации - сигналы, интенсивность которых была ниже порога дискриминации, не про­ходили через него и соответствующие участки эк­рана оставались темными. Сигналы, интенсивность которых превышала порог дискриминации, пред­ставлялись на экране в виде белых точек. При этом яркость точек не зависела от абсолютного значе­ния интенсивности отраженного сигнала - все бе­лые точки имели одинаковую яркость. При таком способе представления изображения - он получил название "бистабильный" хорошо были видны границы органов и структуры с высокой отражаю­щей способностью (например, почечный синус), однако, оценить структуру паренхиматозных орга­нов не представлялось возможным. Появление в 70-х годах приборов, которые позволяли переда­вать на экране монитора оттенки серого цвета, зна­меновало начало эры серошкальных приборов. Эти приборы давали возможность получать информа­цию, которая была недостижима при использова­нии приборов с бистабильным изображением. Раз­витие компьютерной техники и микроэлектроники позволило вскоре перейти от аналоговых изобра­жений к цифровым. Цифровые изображения в ульт­развуковых установках формируются на больших матрицах (обычно 512x512 пикселей) с числом гра­даций серого 16-32-64-128-256 (4-5-6-7-8 бит). При визуализации на глубину 20 см на матрице 512x512 пикселей один пиксель будет соответствовать линейным размерам в 0.4 мм. На современ­ных приборах имеется тенденция к увеличению раз­меров дисплеев без потери качества изображения и на приборах среднего класса (12 дюймовый <30 см по диагонали) экран становится обычным явле­нием.

Электронно-лучевая трубка ультразвукового при­бора (дисплей, монитор) использует остро сфоку­сированный пучок электронов для получения ярко­го пятна на экране, покрытом специальным фосфо­ром. С помощью отклоняющих пластин это пятно можно перемещать по экрану. При А-типе разверт­ки (А - вместо английского слова “амплитуда” (Аmplitude)) по одной оси откладывается расстояние от датчика, по другой - интенсивность отраженного сигнала. В современных приборах А-тип развертки практически не используется. В-тип раз­вертки (В - вместо английского слова “яркость" (Brightness)) позволяет вдоль линии сканирования получить информацию об интенсивности отражен­ных сигналов в виде различия яркости отдельных точек, составляющих эту линию. М-тип (иногда ТМ) развертки (М - вместо английского слова ‘"движе­ние" (Motion)) позволяет регистрировать движение (перемещение) отражающих структур во времени. При этом по вертикали регистрируются перемеще­ния отражающих структур в виде точек различной яркости, а по горизонтали - смещение положения этих точек во времени. Для получения двумерного томографического изображения необ­ходимо тем или иным образом произвести переме­щение линии сканирования вдоль плоскости скани­рования. В приборах медленного сканирования это достигалось перемещением датчика вдоль поверх­ности тела пациента вручную.

Используемые в настоящее время сонографические аппа­раты могут работать с различными типами датчиков, что позволяет их использовать как в кабинете ультразвуковой диагностики, так и в отделениях интенсивной терапии и неотложной помощи. Датчики обычно хранятся на удерживающей стойке с правой стороны аппарата.

Ультразвуковые датчики представляют собой сложные устройства и, в зависимости от способа развертки изображения, делятся на датчики для приборов медленного сканирования (одноэлемент­ные) и быстрого сканирования (сканирования в ре­альном времени) - механические и электронные. Механические датчики могут быть одно- и много­элементными (анулярные). Развертка ультразвуково­го луча может достигаться за счет качания элемента, вращения элемента или качания акустического зеркала. Изображение на экране в этом случае имеет форму сектора (секторные датчики) или окружности (круговые датчики). Электронные датчики являются многоэлементными и в зависи­мости от формы получаемого изображения могут быть секторными, линейными, конвексными (вы­пуклыми). Развертка изображения в сек­торном датчике достигается за счет качания ульт­развукового луча с его одновременной фокусировкой. Секторальные датчики дают веерообразное изображе­ние, узкое вблизи датчика и расширяющееся по мере уве­личения глубины. Такое расходящееся распространение звука может быть получено за счет механического движения пьезоэлементов. Датчики, исполь­зующие такой принцип, дешевле, но имеют слабую изно­состойкость. Электронный вариант (фазовое управление) более дорогой и используются преимущественно в кар­диологии. Их рабочая частота 2.5-3.0 МГц. Помех, связан­ных с отражением звука ребрами, можно избежать, при­кладывая датчик в межреберные промежутки и выбирая оптимальное расхождение луча в диапазоне 60-90° для уве­личения глубины проникновения. Недостатками этих типов датчиков являются низкая разрешающая спо­собность в ближнем поле, уменьшение количества линий сканирования с увеличением глубины (пространственная разрешающая способность), сложность обращения.

В линейных и конвексных датчиках развертка изображения достигается путем возбуждения группы элементов с пошаговым их переме­щением вдоль антенной решетки с одновременной фокусировкой.

Одноэлементный трансдьюсер в форме диска в режиме непрерывного излучения образует ультра­звуковое поле, форма которого меняется в зави­симости от расстояния. В ряде случаев могут на­блюдаться дополнительные ультразвуковые "пото­ки", получившие названия боковых лепестков. Рас­стояние от диска на длину протяженности ближне­го поля (зоны) называется ближней зоной. Зона за границей ближней называется дальней. Прожженность ближней зоны равна отношению квадрата диаметра трансдьюсера к 4 длинам волны. В даль­ней зоне диаметр ультразвукового поля увеличи­вается. Место наибольшего сужения ультразвуко­вого луча называется зоной фокуса, а расстояние между трансдьюсером и зоной фокуса - фокусным расстоянием. Существуют различные способы фокусировки ультразвукового луча. Наиболее про­стым способом фокусировки является акустиче­ская линза. С ее помощью можно сфо­кусировать ультразвуковой луч на определенной глубине, которая зависит от кривизны линзы. Дан­ный способ фокусировки не позволяет оперативно изменять фокусные расстояние, что неудобно в практической работе.

Другим способом фокусировки является использование акустического зер­кала. В этом случае, изменяя расстоя­ние между зеркалом и трансдьюсером, мы будем менять фокусное расстояние. В современных при­борах с многоэлементными электронными датчи­ками основой фокусировки является электронная фокусировка. Имея систему электрон­ной фокусировки, мы можем с панели прибора изменять фокусное расстояние, однако, для каждого изображения мы будем иметь только одну зону фо­куса.

Так как для получения изображения исполь­зуются очень короткие ультразвуковые импульсы, излучаемые 1000 раз в секунду (частота повторе­ния импульсов 1 кГц), то 99,9% времени прибор работает как приемник отраженных сигналов. Имея такой запас времени, возможно, запрограммировать прибор таким образом, чтобы при первом по­лучении изображения была выбрана ближняя зона фокуса и информация, полученная с этой зоны, была сохранена. Далее - выбор следующей зоны фокуса, получение информации, сохранение. И так далее. В результате получается комбиниро­ванное изображение, сфокусированное по всей глубине. Следует, правда, отметить, что такой спо­соб фокусировки требует значительных временных затрат на получение одного изображения (кадра), что вызывает уменьшение частоты кадров и мер­цание изображения. Почему же столько усилий при­кладывается для фокусировки ультразвукового луча? Дело в том, что чем уже луч, тем лучше боко­вая (латеральная) разрешающая способность. Боковая разрешающая способность - это минимальное расстояние между двумя объек­тами, расположенными перпендикулярно направ­лению распространения энергии, которые пред­ставляются на экране монитора в виде раздельных структур. Боковая разрешающая спо­собность равна диаметру ультразвукового луча. Осевая разрешающая способность - это мини­мальное расстояние между двумя объектами, рас­положенными вдоль направления распространения энергии, которые представляются на экране мони­тора в виде раздельных структур. Осе­вая разрешающая способность зависит от пространственной протяженности ультразвукового им­пульса - чем короче импульс, тем лучше разреше­ние. Для укорочения импульса используется как ме­ханическое, так и электронное гашение ультразву­ковых колебаний. Как правило, осевая разрешаю­щая способность лучше боковой.

В настоящее время приборы медленного (руч­ного, сложного) сканирования представляют лишь исторический интерес. Морально они умерли с по­явлением приборов быстрого сканирования (при­боров, работающих в реальном времени). Однако их основные компоненты сохраняются и в совре­менных приборах (естественно, с использованием современной элементной базы).

Приборы быстрого сканирования, или как их чаще называют, приборы, работающие в реальном времени, в настоящее время полностью заменили приборы медленного, или ручного, сканирования. Это связано с целым рядом преимуществ, которы­ми обладают эти приборы: возможность оценивать движение органов и структур в реальном времени (т.е. практически в тот же момент времени); резкое уменьшение затрат времени на исследование; воз­можность проводить исследования через неболь­шие акустические окна. Если приборы медленного сканирования можно сравнить с фотоаппаратом (получение неподвижных изображений), то прибо­ры, работающие в реальном времени, с кино, где неподвижные изображения (кадры) с большой частотой сменяют друг друга, создавая впечатление движения. В приборах быстрого сканирования ис­пользуются, как уже говорилось выше, механиче­ские и электронные секторные датчики, электрон­ные линейные датчики, электронные конвексные (выпуклые) датчики, механические радиальные датчики. Некоторое время назад на ряде приборов появились трапециевидные датчики, поле зрения которых имело трапециевидную форму, однако, они не показали преимуществ относительно конвексных датчиков, но сами имели целый ряд недостат­ков.

В настоящее время наилучшим датчиком для исследования органов брюшной полости, забрюшинного пространства и малого таза является конвексный. Он обладает относительно небольшой контактной поверхностью и очень большим полем зрения в средней и дальней зонах, что упрощает и ускоряет проведение исследования.

Рабочие частоты таких датчиков от 2.5 МГц (у пациентов с ожирением) до 5 МГц (у худощавых пациентов), в среднем - 3.5-3.75 МГц. Такую конструкцию можно рассматривать как компромисс между линейными и секторальными датчиками. Конвексный датчик дает широкую ближнюю и дальнюю зоны изоб­ражения и легче в обращении, чем секторальный датчик. Однако плотность линий сканирования с увеличением рас­стояния от датчика уменьшается. При сканировании органов верхней части живота необходимо аккуратно управлять датчиком, чтобы избежать появления акустической тени от нижних ребер.

При сканировании ультразвуковым лучом ре­зультат каждого полного прохода луча называется кадром. Кадр формируется из большого количест­ва вертикальных линий. Каждая пиния - это как минимум один ультразвуковой импульс.

Частота повторения импульсов для получения се­рошкального изображения в современных прибо­рах составляет 1 кГц (1000 импульсов в секунду). Существует взаимосвязь между частотой повторе­ния импульсов (ЧПИ), числом линий, формирующих кадр, и количеством кадров в единицу времени: ЧПИ = число линий х частота кадров. На экране мо­нитора качество получаемого изображения будет определяться, в частности, плотностью линий. Для линейного датчика плотность линий (линий/см) яв­ляется отношением числа линий, формирующих кадр, к ширине части монитора, на котором фор­мируется изображение. Линейные датчики испускают звуковые волны парал­лельно друг другу и создают прямоугольное изображение. Ширина изображения и количество линий сканирования постоянны по всей глубине. Достоинством линейных датчиков является хорошая разрешающая спо­собность в ближнем поле. Эти датчики используются преимущественно с высокой частотой (5.0-7.5 МГц и выше) для исследования мягких тканей и щитовидной железы. Недостатком их является большая площадь рабочей по­верхности, что ведет к появлению артефактов при прикла­дывании к искривленной поверхности тела из-за попадаю­щих между датчиком и кожей пузырьков газа. Кроме того, акустическая тень, которая образуется от ребер, мо­жет портить изображение. Как правило, линей­ные датчики не годятся для визуализации органов грудной клетки или верхней части живота. Для датчика секторного типа плотность линий (линий/градус) - отношение числа линий, формирующих кадр, к углу сектора. Чем выше частота кадров, установленная в прибо­ре, тем (при заданной частоте повторения импуль­сов) меньше число линий, формирующих кадр, тем меньше плотность линий на экране монитора, тем ниже качество получаемою изображения. Правда, при высокой частоте кадров мы имеем хорошее временное разрешение, что очень важно при эхокардиографических исследованиях.

Ультразвуковой метод исследования позволяет получать не только информацию о структурном со­стоянии органов и тканей, но и характеризовать потоки в сосудах. В основе этой способности ле­жит эффект Допплера - изменение частоты при­нимаемого звука при движении относительно сре­ды источника или приемника звука или тела, рас­сеивающего звук. Он наблюдается из-за того, что скорость распространения ультразвука в любой однородной среде является постоянной. Следова­тельно, если источник звука движется с постоян­ной скоростью, звуковые волны, излучаемые, в на­правлении движения как бы сжимаются, увеличи­вая частоту звука Волны, излучаемые в обратном направлении, как бы растягиваются, вызывая сни­жение частоты звука. Путем сопостав­ления исходной частоты ультразвука с измененной возможно определить допплеровский сдвиги рас­считать скорость. Не имеет значения, излучается ли звук движущимся объектом или этот объект отражает звуковые волны. Во втором случае источ­ник ультразвука может быть неподвижным (ультра­звуковой датчик), а в качестве отражателя ультра­звуковых волн могут выступать движущиеся эрит­роциты. Допплеровский сдвиг может быть как по­ложительным (если отражатель движется к источ­нику звука), так и отрицательным (если отражатель движется от источника звука) в том случае, если направление падения ультразвукового луча не па­раллельно направлению движения отражателя, необходимо скорректировать допплеровский сдвиг на косинус угла и между падающим лучом и направлением движения отражателя. Для получения допплеровской информации применяются два типа устройств - постоянноволновые и импульсные. В постоянноволновом доп­плеровском приборе датчик состоит из двух трансдьюсеров: один из них постоянно излучает ультразвук, другой постоянно принимает отражен­ные сигналы. Приемник определяет допплеров­ский сдвиг, который обычно составляет -1/1000 частоты источника ультразвука (слышимый диапа­зон) и передает сигнал на громкоговорители и. параллельно на монитор для качественной и количественной оценки кривой. Постоянноволновые приборы детектируют кровоток почти по всему ходу ультразвукового луча или. другими словами, имеют большой контрольный объем. Это может вызвать получение неадекватной информации при попадании в контрольный объем нескольких сосудов. Однако большой контрольный объем бывает, полезен при расчете падения давления при cтeнозе клапанов сердца. Для того чтобы оценить кровоток в какой-либо конкретной области, необходимо разместить кон­трольный объем в исследуемой области (например, внутри определенного сосуда) под визуальным кон­тролем на экране монитора. Это может быть дос­тигнуто при использовании импульсного прибора. Существует верхний предел допплеровского сдви­га, который может быть детектирован импульсны­ми приборами (иногда его называют пределом Найквиста). Он составляет примерно 1/2 частоты повто­рения импульсов. При его превышении происходит искажение допплеровского спектра (aliasing) Чем выше частота повторения импульсов, тем больший допплеровский сдвиг может быть определен без искажений, однако, тем ниже чувствительность прибора к низкоскоростным потокам.

Ввиду того, что ультразвуковые импульсы, на­правляемые в ткани, содержат большое количест­во частот помимо основной, а также из-за того, что скорости отдельных участков потока неодинаковы, отраженный импульс состоит из большого количе­ства различных частот. С помощью бы­строго преобразования Фурье частотный состав импульса может быть представлен в виде спектра, который может быть изображен на экране монито­ра в виде кривой, где по горизонтали откладыва­ются частоты допплеровскою сдвига, а по вертикали - амплитуда каждой составляющей. По доп­плеровскому спектру, возможно, определять боль­шое количество скоростных параметров кровото­ка (максимальная скорость, скорость в конце диа­столы, средняя скорость и т.д.), однако, эти показатели являются углозависимыми и их точность крайне зависит от точности коррекции угла. И если в крупных неизвитых сосудах коррекция угла не вы­зывает проблем, то в мелких извитых сосудах (со­суды опухоли) определить направление потока дос­таточно сложно. Для решения этой проблемы был предложен ряд почти уголнезависимым индексом наиболее распространенными из которых являют­ся индекс резистентности и пульсаторный индекс. Индекс резистентности является отношением раз­ности максимальной и минимальной скоростей к максимальной скорости потока. Пульсаторный индекс является отношением разности максимальной и минимальной скоростей к средней скорости потока.

Получение допплеровского спектра с одною кон­трольного объема позволяет оценивать кровоток в очень небольшом участке. Цветовая визуализация потоков (цветовое допплеровское картирование) по­зволяет получать двумерную информацию о крово­токах в реальном времени в дополнение к обычной серошкальной двумерной визуализации. Цветовая допплеровская визуализация расширяет возможно­сти импульсного принципа получения изображения Сигналы, отраженные от неподвижных структур, рас­познаются и представляются е серошкальном виде. Если отраженный сигнал имеет частоту, отличную от излученного, то это означает, что он отразился от дви­жущегося объекта. В этом случае производится оп­ределение допплеровского сдвига, его знак и вели­чина средней скорости. Эти параметры используют­ся для определения цвета, его насыщенности и яр­кости. Обычно направление потока к датчику кодиру­ется красным, а отдатчика - синим цветом. Яркость цвета определяется скоростью потока.

Для правильной интерпретации ультразвукового изображе­ния обязательно знание физических свойств звука, лежа­щих в основе образования артефактов.

Артефакт в ультразвуковой диагностике - это появ­ление на изображении несуществующих структур, отсут­ствие существующих структур, неправильное располо­жение структур неправильная яркость структур, непра­вильные очертания структур, неправильные размеры структур.

Реверберацию, один из наиболее часто встре­чающихся артефактов, наблюдается в том случае, если ультразвуковой импульс попадает между двумя или бо­лее отражающими поверхностями. При этом часть энергии ультразвукового импульса многократно отражается от этих поверхностей, каждый раз, частично возвраща­ясь к датчику через равные промежутки времени. Результатом этого будет появление на экране мо­нитора несуществующих отражающих поверхностей, ко­торые будут располагаться за вторым отражателем на расстоянии равном расстоянию между первым и вторым отражателями. Уменьшить реверберации иногда удает­ся изменением положения датчика.

Не менее важный артефакт - это так называемая дистальная акустическая тень. Артефакт акустической тени возникает за сильно отражающими или сильно поглощающими ультразвук структурами. Меха­низм образования акустической тени аналогичен фор­мированию оптической.

Акустическая тень проявляется как зона сниже­ния эхогенности (гипоэхогенная или анэхогеная = черная) и обнаруживается позади сильно отражающих структур, таких как содержащая кальций кость. Так, исследованию органов верхней части живота препятствуют нижние реб­ра, а нижней части таза - лонное сочленение. Этот эф­фект, однако, может быть использован для выявления кальцифицированных камней желчного пузыря, камней почек и атеросклеротических бляшек. Похожая тень может вызываться газом в легких или в кишечнике.

Артефакт эхогенного «хвоста кометы», ряд авторов рассматривают как проявление акустической тени. В свою очередь другие источники указывают, что данный артефакт наблюдается в том случае, когда ультразвук вызывает собственные колебания объекта и является вариантом реверберации. Он часто наблюдается позади мелких пузырьков газа или мелких металлических предметов. Артефакт эхогенного «хвоста кометы» может препят­ствовать выявлению структур, расположенных позади пе­тель кишечника, содержащих газ. Воздушный артефакт служит препятствием преимуще­ственно при выявлении органов, расположенных ретроперитонеально (поджелудочная железа, почки, лимфатичес­кие узлы), позади желудка или петель кишечника, содержащих газ.

Ввиду того, что далеко не всегда весь отраженный сигнал возвращает­ся к датчику, возникает артефакт эффектив­ной отражательной поверхности, которая меньше реаль­ной отражательной поверхности. Из-за этого артефакта определяемые с помощью ультразвука размеры конкрементов обычно немного меньше, чем истинные. Прелом­ление может вызывать неправильное положение объек­та на полученном изображении. В том случае, если путь ультразвука отдатчика к отражающей структу­ре и назад не является одним и тем же, возникает неправильное положение объекта на полученном изображе­нии.

Следующим характерным проявлением является так называемая краевая тень позади кист. Наблюда­ется, главным образом, позади всех округлых полостей, скрывающих звуковые волны по ходу касательной. Краевая тень вызывается рассеянием и преломлением зву­ковой волны, может наблюдаться позади желчного пузыря. Это требует тщательного анализа, чтобы объяс­нить происхождение акустической тени эффектом краевой тени, вызванной желчным пузырем, а не очагом жировой инфильтрации печени.

Артефакт боковых теней свя­зан с преломлением и, иногда, интерференцией ультра­звуковых волн при падении ультразвукового луча по ка­сательной на выпуклую поверхность (киста, шеечный отдел желчного пузыря) структуры, скорость прохожде­ния ультразвука в которой существенно отличается от ок­ружающих тканей.

Артефакты, связанные с неправильным определением скорости ультразвука возникают из-за того, что реальная скорость распростра­нения ультразвука в той или иной ткани больше или мень­ше усредненной (1,54 м/с) скорости, на которую запро­граммирован прибор.

Артефакты толщины ультразвукового луча - это появление, главным обра­зом в жидкость содержащих органах, пристеночных от­ражений, обусловленных тем, что ультразвуковой луч имеет конкретную толщину и часть этого луча может од­новременно формировать изображение органа и изо­бражение рядом расположенных структур.

Артефакт дистального псевдоусиления сигнала возникает позади слабо по­глощающих ультразвук структур (жидкостные, жидкость содержащие образования). Относительное дистальное акустическое усиление обнаруживается, когда часть звуковых волн проходит ка­кое-то расстояние через гомогенную жидкость. Из-за сни­женного уровня отражения в жидкости звуковые волны ос­лабляются меньше, по сравнению с проходящими через соседние ткани, и имеют большую амплитуду. Это дает в дистальных отделах повышенную эхогенность, которая проявляется как полоска повышенной яркости поза­ди желчного пузыря, мочевого пузыря или даже позади крупных сосудов, таких как аорта. Такое повышение эхогенности является физическим феноменом, не связанным с истин­ными свойствами нижележащих тканей. Акустическое усиление, тем не менее, может быть использовано для того, чтобы отличить почечные или печеночные кисты от гипоэхогенных опухолей.

Контроль качества ультразвукового оборудова­ния включает в себя определение относительной чувствительности системы, осевой и боковой раз­решающей способностей, мертвой зоны, правиль­ности работы измерителя расстояния, точности ре­гистрации, правильности работы ВАРУ, определе­ние динамическою диапазона серой шкалы и т.д. Для контроля качества работы ультразвуковых при­боров используются специальные тест-объекты или тканево-эквивалентные фантомы. Они являются коммерчески доступными, однако в нашей стране пока мало распространены, что делает практически невозможным провести поверку ультразвукового диагностического оборудовании на местах.

Достигнув границы двух сред с различным акустическим сопротивлением, пучок ультразвуковых волн претерпевает существенные изменения: одна его часть продолжает распространяться в новой среде, в той или иной степени поглощаясь ею, другая - отражается . Коэффициент отражения зависит от разности величин акустического сопротивления граничащих друг с другом тканей: чем это различие больше, тем больше отражение и, естественно, больше амплитуда зарегистрированного сигнала, а значит, тем светлее и ярче он будет выглядеть на экране аппарата. Полным отражателем является граница между тканями и воздухом.

В простейшем варианте реализации метод позволяет оценить расстояние до границы разделения плотностей двух тел, основываясь на времени прохождения волны, отраженной от границы раздела. Более сложные методы исследования (например, основанные на эффекте Допплера) позволяют определить скорость движения границы раздела плотностей , а также разницу в плотностях, образующих границу.

Ультразвуковые колебания при распространении подчиняются законам геометрической оптики . В однородной среде они распространяются прямолинейно и с постоянной скоростью. На границе различных сред с неодинаковой акустической плотностью часть лучей отражается, а часть преломляется, продолжая прямолинейное распространение. Чем выше градиент перепада акустической плотности граничных сред, тем большая часть ультразвуковых колебаний отражается. Так как на границе перехода ультразвука из воздуха на кожу происходит отражение 99,99 % колебаний, то при ультразвуковом сканировании пациента необходимо смазывание поверхности кожи водным желе, которое выполняет роль переходной среды. Отражение зависит от угла падения луча (наибольшее при перпендикулярном направлении) и частоты ультразвуковых колебаний (при более высокой частоте большая часть отражается).

Для исследования органов брюшной полости и забрюшинного пространства, а также полости малого таза используется частота 2,5 - 3,5 МГц, для исследования щитовидной железы используется частота 7,5 МГц.

Особый интерес в диагностике вызывает использование эффекта Допплера . Суть эффекта заключается в изменении частоты звука вследствие относительного движения источника и приемника звука. Когда звук отражается от движущегося объекта, частота отраженного сигнала изменяется (происходит сдвиг частоты).

При наложении первичных и отраженных сигналов возникают биения , которые прослушиваются с помощью наушников или громкоговорителя.

Составляющие системы ультразвуковой диагностики

Генератор ультразвуковых волн

Генератором ультразвуковых волн является передатчик, который одновременно играет роль приемника отраженных эхосигналов. Генератор работает в импульсном режиме, посылая около 1000 импульсов в секунду. В промежутках между генерированием ультразвуковых волн пьезодатчик фиксирует отраженные сигналы.

Ультразвуковой датчик

В качестве детектора или трансдюсора применяется сложный датчик, состоящий из нескольких сотен мелких пьезокристаллических преобразователей, работающих в одинаковом режиме. В датчик вмонтирована фокусирующая линза, что дает возможность создать фокус на определенной глубине.

Виды датчиков

Все ультразвуковые датчики делятся на механические и электронные. В механических сканирование осуществляется за счет движения излучателя (он или вращается или качается). В электронных развертка производится электронным путем. Недостатками механических датчиков являются шум, вибрация, производимые при движении излучателя, а также низкое разрешение. Механические датчики морально устарели и в современных сканерах не используются. Используются три типа ультразвукового сканирования: линейное (параллельное), конвексное и секторное. Соответственно датчики или трансдюсоры ультразвуковых аппаратов называются линейные, конвексные и секторные. Выбор датчика для каждого исследования проводится с учетом глубины и характера положения органа.

Линейные датчики

Линейные датчики используют частоту 5-15 Мгц. Преимуществом линейного датчика является полное соответствие исследуемого органа положению самого трансдюсора на поверхности тела. Недостатком линейных датчиков является сложность обеспечения во всех случаях равномерного прилегания поверхности трансдюсора к коже пациента, что приводит к искажениям получаемого изображения по краям. Также линейные датчики за счет большей частоты позволяют получать изображение исследуемой зоны с высокой разрешающей способностью, однако глубина сканирования достаточно мала (не более 11 см). Используются в основном для исследования поверхностно расположенных структур - щитовидной железы, молочных желез, небольших суставов и мышц, а также для исследования сосудов.

Конвексные датчики

Конвексный датчик использует частоту 1,8-7,5 МГц. Имеет меньшую длину, поэтому добиться равномерности его прилегания к коже пациента более просто. Однако при использовании конвексных датчиков получаемое изображение по ширине на несколько сантиметров больше размеров самого датчика. Для уточнения анатомических ориентиров врач обязан учитывать это несоответствие. За счет меньшей частоты глубина сканирования достигает 20-25 см. Обычно используется для исследования глубоко расположенных органов - органы брюшной полости и забрюшинного пространства, мочеполовой системы, тазобедренные суставы.

Секторные датчики

Секторный датчик работает на частоте 1,5-5 Мгц. Имеет ещё большее несоответствие между размерами трансдюсора и получаемым изображением, поэтому используется преимущественно в тех случаях, когда необходимо с маленького участка тела получить большой обзор на глубине. Наиболее целесообразно использование секторного сканирования при исследовании, например, через межреберные промежутки. Типичным применением секторного датчика является эхокардиография - исследование сердца.

Методики ультразвукового исследования

Отраженные эхосигналы поступают в усилитель и специальные системы реконструкции, после чего появляются на экране телевизионного монитора в виде изображения срезов тела, имеющие различные оттенки черно-белого цвета. Оптимальным является наличие не менее 64 градиентов цвета черно-белой шкалы. При позитивной регистрации максимальная интенсивность эхосигналов проявляется на экране белым цветом (эхопозитивные участки), а минимальная - чёрным (эхонегативные участки). При негативной регистрации наблюдается обратное положение. Выбор позитивной или негативной регистрации не имеет значения. Изображение, получаемое при исследовании, может быть разным в зависимости от режимов работы сканера. Выделяют следующие режимы:

  • A-режим . Методика даёт информацию в виде одномерного изображения, где первая координата, это амплитуда отраженного сигнала от границы сред с разным акустическим сопротивлением, а вторая расстояние до этой границы. Зная скорость распространения ультразвуковой волны в тканях тела человека, можно определить расстояние до этой зоны, разделив пополам (так как ультразвуковой луч проходит этот путь дважды) произведение времени возврата импульса на скорость ультразвука.
  • B-режим . Методика даёт информацию в виде двухмерных серошкальных томографических изображений анатомических структур в масштабе реального времени, что позволяет оценивать их морфологическое состояние.
  • M-режим . Методика даёт информацию в виде одномерного изображения, вторая координата заменена временной. По вертикальной оси откладывается расстояние от датчика до лоцируемой структуры, а по горизонтальной - время. Используется режим в основном для исследования сердца. Дает информацию о виде кривых, отражающих амплитуду и скорость движения кардиальных структур.

Допплерография

Спектральный Допплер Общей Каротидной Артерии

Методика основана на использовании эффекта Допплера . Сущность эффекта состоит в том, что от движущихся объектов ультразвуковые волны отражаются с измененной частотой. Этот сдвиг частоты пропорционален скорости движения лоцируемых структур - если движение направлено в сторону датчика, то частота увеличивается, если от датчика - уменьшается.

Потоковая спектральная допплерография (ПСД)

Предназначена для оценки кровотока в относительно крупных сосудах и камерах сердца. Основным видом диагностической информации является спектрографическая запись, представляющая собой развертку скорости кровотока во времени. На таком графике по вертикальной оси откладывается скорость, а по горизонтальной - время. Сигналы, отображающиеся выше горизонтальной оси, идут от потока крови, направленного к датчику, ниже этой оси - от датчика. Помимо скорости и направления кровотока, по виду допплеровской спектрограммы можно определить характер потока крови: ламинарный поток отображается в виде узкой кривой с четкими контурами, турбулентный - широкой неоднородной кривой.

Непрерывная (постоянноволновая) ПСД

Методика основана на постоянном излучении и постоянном приеме отраженных ультразвуковых волн. При этом величина сдвига частоты отраженного сигнала определяется движением всех структур на пути ультразвукового луча в пределах глубины его проникновения. Недостаток: невозможность изолированного анализа потоков в строго определенном месте. Достоинства: допускает измерение больших скоростей потоков крови.

Импульсная ПСД

Методика базируется на периодическом излучении серий импульсов ультразвуковых волн, которые, отразившись от эритроцитов, последовательно воспринимаются тем же датчиком. В этом режиме фиксируются сигналы, отраженные только с определенного расстояния от датчика, которые устанавливаются по усмотрению врача. Место исследования кровотока называют контрольным объёмом. Достоинства: возможность оценки кровотока в любой заданной точке.

Цветовое допплеровское картирование (ЦДК)

Основано на кодировании в цвете значения допплеровского сдвига излучаемой частоты. Методика обеспечивает прямую визуализацию потоков крови в сердце и в относительно крупных сосудах. Красный цвет соответствует потоку, идущему в сторону датчика, синий - от датчика. Темные оттенки этих цветов соответствуют низким скоростям, светлые оттенки - высоким. Недостаток: невозможность получения изображения мелких кровеносных сосудов с маленькой скоростью кровотока. Достоинства: позволяет оценивать как морфологическое состояние сосудов, так и состояние кровотока по ним.

Энергетическая допплерография (ЭД)

Методика основана на анализе амплитуд всех эхосигналов допплеровского спектра, отражающих плотность эритроцитов в заданном объёме. Оттенки цвета (от темно-оранжевого к жёлтому) несут сведения об интенсивности эхосигнала. Диагностическое значение энергетической допплерографии заключается в возможности оценки васкуляризации органов и патологических участков. Недостаток: невозможно судить о направлении, характере и скорости кровотока. Достоинства: отображение получают все сосуды, независимо от их хода относительно ультразвукового луча, в том числе кровеносные сосуды очень небольшого диаметра и с незначительной скоростью кровотока.

Комбинированные варианты

Применяются также и комбинированные варианты, в частности:

  • ЦДК+ЭД - конвергентная цветовая допплерография
  • B-режим УЗИ + ПСД (или ЭД) - дуплексное исследование

Трёхмерное допплеровское картирование и трёхмерная ЭД

Методики, дающие возможность наблюдать объемную картину пространственного расположения кровеносных сосудов в режиме реального времени в любом ракурсе, что позволяет с высокой точностью оценивать их соотношение с различными анатомическими структурами и патологическими процессами, в том числе со злокачественными опухолями. В этом режиме используется возможность запоминания нескольких кадров изображения. После включения режима исследователь перемещает датчик или изменяет его угловое положение, не нарушая контакта датчика с телом пациента. При этом записываются серии двухмерных эхограмм с небольшим шагом (малое расстояние между плоскостями сечения). На основе полученных кадров система реконструирует псевдотрёхмерное [неизвестный термин ] изображение только цветной части изображения, характеризующее кровоток в сосудах. Поскольку при этом не строится реальная трехмерная модель объекта, при попытке изменения угла обзора появляются значительные геометрические искажения из-за того, что трудно обеспечить равномерное перемещение датчика вручную с нужной скоростью при регистрации информации. Метод позволяющий получать трёхмерные изображения без искажений, называется методом трёхмерной эхографии (3D).

Эхоконтрастирование

Методика основана на внутривенном введении особых контрастирующих веществ, содержащих свободные микропузырьки газа (диаметром менее 5 мкм при их циркуляции не менее 5 минут). Полученное изображение фиксируется на экране монитора, а затем регистрируется с помощью принтера .

В клинической практике методика используется в двух направлениях.

Динамическая эхоконтрастная ангиография

Существенно улучшается визуализация кровотока, особенно в мелких глубоко расположенных сосудах с низкой скоростью кровотока; значительно повышается чувствительность ЦДК и ЭД; обеспечивается возможность наблюдения всех фаз контрастирования сосудов в режиме реального времени; возрастает точность оценки стенотических поражений кровеносных сосудов.

Тканевое эхоконтрастирование

Обеспечивается избирательностью включения эхоконтрастных веществ в структуру определенных органов. Степень, скорость и накопление эхоконтраста в неизменённых и патологических тканях различны. Появляется возможность оценки перфузии органов, улучшается контрастное разрешение между нормальной и пораженной тканью, что способствует повышению точности диагностики различных заболеваний, особенно злокачественных опухолей.

Применение в медицине

Терапевтическое применение ультразвука в медицине

Помимо широкого использования в диагностических целях, ультразвук применяется в медицине как лечебное средство.

Ультразвук обладает действием:

  • противовоспалительным, рассасывающим
  • анальгезирующим, спазмолитическим
  • кавитационным усилением проницаемости кожи

Фонофорез - сочетанный метод, при котором на ткани действуют ультразвуком и вводимыми с его помощью лечебными веществами (как медикаментами, так и природного происхождения). Проведение веществ под действием ультразвука обусловлено повышением проницаемости эпидермиса и кожных желез, клеточных мембран и стенок сосудов для веществ небольшой молекулярной массы, особенно - ионов минералов бишофита . Удобство ультрафонофореза медикаментов и природных веществ:

  • лечебное вещество при введении ультразвуком не разрушается
  • синергизм действия ультразвука и лечебного вещества

Показания к ультрафонофорезу бишофита: остеоартроз, остеохондроз, артриты, бурситы, эпикондилиты, пяточная шпора, состояния после травм опорно-двигательного аппарата; невриты, нейропатии, радикулиты, невралгии, травмы нервов.

Наносится бишофит-гель и рабочей поверхностью излучателя проводится микро-массаж зоны воздействия. Методика лабильная, обычная для ультрафонофореза (при УФФ суставов, позвоночника интенсивность в области шейного отдела - 0,2-0,4 Вт/см 2 , в области грудного и поясничного отдела - 0,4-0,6 Вт/см 2).

Опасность и побочные эффекты

Ультразвуковое исследование в целом считается безопасным способом получения информации.

Диагностическое ультразвуковое исследование плода так же в целом рассматривается как безопасный метод для применения в течение беременности. Эта диагностическая процедура должна применяться, только если есть веские медицинские показания, с таким наименьшим возможным сроком воздействия ультразвука, который позволит получить необходимую диагностическую информацию, то есть по принципу минимального допустимого или АЛАРА -принципу.

Отчёт 875 Всемирной организации здравоохранения за 1998 г. поддерживает мнение, что ультразвук безвреден: «Диагностическое ультразвуковое исследование плода признаётся безопасным, эффективным и в высокой степени гибким способом получением изображения, позволяющим выявить клинически существенную информацию о большинстве частей тела быстрым и рентабельным способом». Несмотря на отсутствие данных о вреде ультразвука для плода, Управление по контролю качества продуктов и лекарств (США) рассматривает рекламу, продажу или аренду ультразвукового оборудования для создания «видео плода на память», как нецелевое, несанкционированное использование медицинского оборудования.

Эхоэнцефалография

Основная статья: Эхоэнцефалография

Применение ультразвука для диагноза при серьёзных повреждениях головы позволяет хирургу определить места кровоизлияний. При использовании переносного зонда можно установить положение срединной линии головного мозга примерно в течение одной минуты. Принцип работы такого зонда основывается на регистрации ультразвукового эха от границы раздела полушарий.

Офтальмология

Ультразвуковые зонды применяются для измерения размеров глаза и определения положения хрусталика.

Внутренние болезни

Ультразвуковое исследование играет важную роль в постановке диагноза заболеваний внутренних органов, таких как:

  • брюшная полость и забрюшинное пространство
  • органы малого таза

Ввиду относительно невысокой стоимости и высокой доступности ультразвуковое исследование является широко используемым методом обследования пациента и позволяет диагностировать достаточно большое количество заболеваний, таких как онкологические заболевания, хронические диффузные изменения в органах (диффузные изменения в печени и поджелудочной железе, почках и паренхиме почек, предстательной железе, наличие конкрементов в желчном пузыре, почках, наличие аномалий внутренних органов, жидкостных образований в органах и т. д.

В силу физических особенностей не все органы можно достоверно исследовать ультразвуковым методом, например, полые органы желудочно-кишечного тракта труднодоступны для исследования из-за содержания в них газа. Тем не менее, ультразвуковая диагностика может применяться для определения признаков кишечной непроходимости и косвенных признаков спаечного процесса. При помощи ультразвукового исследования можно обнаружить наличие свободной жидкости в брюшной полости, если её достаточно много, что может играть решающую роль в лечебной тактике ряда терапевтических и хирургических заболеваний и травм.

Печень

Ультразвуковое исследование печени является достаточно высокоинформативным. Врачом оцениваются размеры печени, её структура и однородность, наличие очаговых изменений, а также состояние кровотока. УЗИ позволяет с достаточно высокой чувствительностью и специфичностью выявить как диффузные изменения печени (жировой гепатоз, хронический гепатит и цирроз), так и очаговые (жидкостные и опухолевые образования). Обязательно следует добавить, что любые ультразвуковые заключения исследования как печени, так и других органов, необходимо оценивать только вместе с клиническими, анамнестическими данными, а также данными дополнительных обследований.

Жёлчный пузырь и желчные протоки

Кроме самой печени оценивается состояние желчного пузыря и желчных протоков - исследуются их размеры, толщина стенок, проходимость, наличие конкрементов, состояние окружающих тканей. УЗИ позволяет в большинстве случаев определить наличие конкрементов в полости желчного пузыря.

Поджелудочная железа

При исследовании поджелудочной железы оцениваются её размеры, форма, контуры, однородность паренхимы, наличие образований. Качественное УЗИ поджелудочной железы часто довольно затруднительно, так как она может частично или полностью перекрываться газами, находящимися в желудке, тонком и толстом кишечнике. Наиболее часто выносимое врачами ультразвуковой диагностики заключение «диффузные изменения в поджелудочной железе» может отражать как возрастные изменения (склеротические, жировая инфильтрация), так и возможные изменения вследствие хронических воспалительных процессов.

Почки и надпочечники , забрюшинное пространство

Исследование забрюшинного пространства, почек и надпочечников является достаточно трудным для врача ввиду особенностей их расположения, сложности строения и многогранности и неоднозначности трактовки ультразвуковой картины этих органов. При исследовании почек оценивается их количество, расположение, размер, форма, контуры, структура паренхимы и чашечно-лоханочной системы. УЗИ позволяет выявить аномалии почек, наличие конкрементов, жидкостных и опухолевых образований, также изменения вследствие хронических и острых патологических процессов почек.

Щитовидная железа

В исследовании щитовидной железы ультразвуковое исследование является ведущим и позволяет определить наличие узлов, кист, изменения размера и структуры железы.

Кардиология, сосудистая и кардиохирургия

Эхокардиография (ЭхоКГ) - это ультразвуковая диагностика заболеваний сердца. В этом исследовании оцениваются размеры сердца и его отдельных структур (желудочки, предсердия, межжелудочковая перегородка, толщина миокарда желудочков, предсердий и т. д.), наличие и объём жидкости в перикарде - «сердечной сорочке», состояние клапанов сердца. С помощью специальных расчетов и измерений Эхокардиография позволяет определить массу сердца, сократительную способность сердца - фракцию выброса и т. д. Существуют зонды, которые помогают во время операций на сердце следить за работой митрального клапана, расположенного между желудочком и предсердием.

Акушерство, гинекология и пренатальная диагностика

Ультразвуковое исследование используется для изучения внутренних половых органов женщины, состояния беременной матки, анатомии и мониторинга внутриутробного развития плода.

Трёхмерное ультразвуковое исследование 29-недельного плода.

Этот эффект широко применяется в акушерстве, так как звуки, идущие от матки, легко регистрируются. На ранней стадии беременности звук проходит через мочевой пузырь. Когда матка наполняется жидкостью, она сама начинает проводить звук. Положение плаценты определяется по звукам протекающей через неё крови, а через 9 - 10 недель с момента образования плода прослушивается биение его сердца. С помощью ультразвукового исследования можно также определять количество зародышей или констатировать смерть плода.

Аппарат ультразвуковой диагностики

Аппарат ультразвуковой диагностики (УЗИ сканер) - прибор, предназначенный для получения информации о расположении, форме и структуре органов и тканей и измерения линейных размеров биологических объектов методом ультразвуковой локации.

Классификация аппаратов УЗИ

В зависимости от функционального назначения приборы подразделяются на следующие основные типы:

  • ЭТС - эхотомоскопы (приборы, предназначенные, в основном, для исследования плода, органов брюшной полости и малого таза);
  • ЭКС - эхокардиоскопы (приборы, предназначенные для исследования сердца);
  • ЭЭС - эхоэнцелоскопы (приборы, предназначенные для исследования головного мозга);
  • ЭОС - эхоофтальмоскопы (приборы, предназначенные для исследования глаза).

В зависимости от времени получения диагностической информации приборы подразделяют на следующие группы:

  • С - статические;
  • Д - динамические;
  • К - комбинированные.

Термины, понятия, сокращения

  • Advanced 3D - расширенная программа трёхмерной реконструкции.
  • ATO - автоматическая оптимизация изображения, оптимизирует качество изображения нажатием одной кнопки.
  • B-Flow - визуализация кровотока непосредственно в В-режиме без использования допплеровских методов.
  • Coded Contrast Imaging Option - режим кодированного контрастного изображения, используется при исследовании с контрастными веществами.
  • CodeScan - технология усиления слабых эхосигналов и подавления нежелательных частот (шумов, артефактов) путем создания кодированной последовательности импульсов на передаче с возможностью их декодирования на приеме при помощи программируемого цифрового декодера. Эта технология позволяет добиться непревзойденного качества изображения и повышения качества диагностики за счет новых режимов сканирования.
  • Color doppler (CFM или CFA) - цветовой допплер (Color Doppler) - выделение на эхограмме цветом (цветное картирование) характера кровотока в области интереса. Кровоток к датчику принято картировать красным цветом, от датчика - синим цветом. Турбулентный кровоток картируется сине-зелено-желтым цветом. Цветовой допплер применяется для исследования кровотока в сосудах, в эхокардиографии. Другие названия технологии - цветное допплеровское картирование (ЦДК), color flow mapping (CFM) и color flow angiography (CFA). Обычно с помощью цветового допплера, меняя положение датчика, находят область интереса (сосуд), затем для количественной оценки используют импульсный допплер. Цветовой и энергетический допплер помогают в дифференциации кист и опухолей, поскольку внутреннее содержимое кисты лишено сосудов и, следовательно, никогда не может иметь цветовых локусов.
  • DICOM - возможность передачи «сырых» данных по сети для хранения на серверах и рабочих станциях, распечатки и дальнейшего анализа.
  • Easy 3D - режим поверхностной трёхмерной реконструкции с возможностью задания уровня прозрачности.
  • M-mode (M-режим) - одномерный режим ультразвукового сканирования (исторически первый ультразвуковой режим), при котором исследуются анатомические структуры в развертке по оси времени, в настоящий момент применяется в эхокардиографии. M-режим используется для оценки размеров и сократительной функции сердца, работы клапанного аппарата. С помощью этого режима можно рассчитать сократительную способность левого и правого желудочков, оценить кинетику их стенок.
  • MPEGvue - быстрый доступ к сохранённым цифровым данным и упрощенная процедура переноса изображений и видеоклипов на CD в стандартном формате для последующего просмотра и анализа на компьютере.
  • Power doppler - энергетический допплер - качественная оценка низкоскоростного кровотока, применяется при исследовании сети мелких сосудов (щитовидная железа, почки, яичник), вен (печень, яички) и др. Более чувствителен к наличию кровотока, чем цветовой допплер. На эхограмме обычно отображается в оранжевой палитре, более яркие оттенки свидетельствуют о большей скорости кровотока. Главный недостаток - отсутствие информации о направлении кровотока. Использование энергетического допплера в трёхмерном режиме позволяет судить о пространственной структуре кровотока в области сканирования. В эхокардиографии энергетический допплер применяется редко, иногда используется в сочетании с контрастными веществами для изучения перфузии миокарда. Цветовой и энергетический допплер помогают в дифференциации кист и опухолей, поскольку внутреннее содержимое кисты лишено сосудов и, следовательно, никогда не может иметь цветовых локусов.
  • Smart Stress - расширенные возможности стресс-эхо исследований. Количественный анализ и возможность сохранения всех настроек сканирования для каждого этапа исследования при визуализации различных сегментов сердца.
  • Tissue Harmonic Imaging (THI) - технология выделения гармонической составляющей колебаний внутренних органов, вызванных прохождением сквозь тело базового ультразвукового импульса. Полезным считается сигнал, полученный при вычитании базовой составляющей из отраженного сигнала. Применение 2-й гармоники целесообразно при ультразвуковом сканировании сквозь ткани, интенсивно поглощающие 1-ю (базовую) гармонику. Технология предполагает использование широкополосных датчиков и приемного тракта повышенной чувствительности, улучшается качество изображения, линейное и контрастное разрешение у пациентов с повышенным весом. * Tissue Synchronization Imaging (TSI) - специализированный инструмент для диагностики и оценки сердечных дисфункций.
  • Tissue Velocity Imaging" - тканевой допплер (Tissue Velocity Imaging или тканевая цветовая допплерография) - цветовое картирование движения тканей, применяется совместно с импульсным допплером в эхокардиографии для оценки сократительной способности миокарда. Изучая направления движения стенок левого и правого желудочков в систолу и диастолу тканевого допплера, можно обнаружить скрытые зоны нарушения локальной сократимости.
  • TruAccess - подход к получению изображений, основанный на возможности доступа к «сырым» ультразвуковым данным.
  • TruSpeed - уникальный набор программных и аппаратных компонентов для обработки ультразвуковых данных, обеспечивающий идеальное качество изображения и высочайшую скорость обработки данных во всех режимах сканирования.
  • Virtual Convex - расширенное конвексное изображение при использовании линейных и секторных датчиков.
  • VScan - визуализация и квантификация движения миокарда.
  • Импульсный допплер (PW, HFPW) - импульсный допплер (Pulsed Wave или PW) применяется для количественной оценки кровотока в сосудах. На временной развертке по вертикали отображается скорость потока в исследуемой точке. Потоки, которые двигаются к датчику, отображаются выше базовой линии, обратный кровоток (от датчика) - ниже. Максимальная скорость потока зависит от глубины сканирования, частоты импульсов и имеет ограничение (около 2,5 м/с при диагностике сердца). Высокочастотный импульсный допплер (HFPW - high frequency pulsed wave) позволяет регистрировать скорости потока большей скорости, однако тоже имеет ограничение, связанное с искажением допплеровского спектра.
  • Постоянно-волновой допплер - постоянно-волновой допплер (Continuous Wave Doppler или CW) применяется для количественной оценки кровотока в сосудах c высокоскоростными потоками. Недостаток метода состоит в том, что регистрируются потоки по всей глубине сканирования. В эхокардиографии с помощью постоянно-волнового допплера можно произвести расчеты давления в полостях сердца и магистральных сосудах в ту или иную фазу сердечного цикла, рассчитать степень значимости стеноза и т. д. Основным уравнением CW является уравнение Бернулли, позволяющее рассчитать разницу давления или градиент давления. С помощью уравнения можно измерить разницу давления между камерами в норме и при наличии патологического, высокоскоростного кровотока.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Физическая природа и лечебные действия ультразвука. Основные направления его медико-биологического приложения. Опасность и побочные эффекты ультразвукового исследования. Сущность эхокардиографии. Постановка диагноза заболеваний внутренних органов.

    презентация , добавлен 10.02.2016

    Изучение физических основ ультразвуковой диагностики. Метрологические прослеживаемые акустические параметры, характеризующие ультразвуковое излучение медицинского оборудования. Государственная поверочная схема для средств измерений мощности излучения.

    курсовая работа , добавлен 20.12.2015

    История, принципы выполнения, преимущества и недостатки рентгенологического, ультразвукового и эндоскопического методов исследования пациентов. Применение аспирационной и операционной биопсии в клинической практике. Особенности компьютерной томографии.

    курсовая работа , добавлен 16.06.2015

    Методы диагностики патологии поджелудочной железы и двенадцатиперстной кишки. Показания к назначению ультразвукового исследования. Подготовка пациента к процедуре магнитно-резонансной томографии. Эндоскопическая ретроградная панкреатохолангиография.

    презентация , добавлен 02.03.2013

    Сущность и значение эхокардиографии как широко распространенной современной ультразвуковой методики, применяемой для диагностики многообразной сердечной патологии. Принципы работы ультразвукового датчика. Показаниями для чреспищеводной эхокардиографии.

    презентация , добавлен 16.05.2016

    Формы вирусного гепатита. Диагностические возможности ультразвукового метода. Радиоизотопные методы исследования. Диагностика желтухи при желчнокаменной болезни и новообразованиях гепатопанкреатодуоденальной зоны (рак головки поджелудочной железы).

    презентация , добавлен 13.05.2014

    Сущность ультразвукового метода как принципиально нового способа получения медицинского изображения, его разработка и внедрение в практику. Физические свойства и биологическое действие ультразвука. Преимущества эхографии, ее безопасность, виды датчиков.

    курсовая работа , добавлен 15.06.2013

    Значение определения опухолевых маркеров. Компьютерная томография грудной клетки. Преимущества виртуальной колоноскопии. Применение эндоскопических методов исследования в диагностике и профилактике ЗНО. Достоинства метода ультразвуковой диагностики.



© dagexpo.ru, 2024
Стоматологический сайт