Биологическая роль углеводов кратко. Углеводы и инсулин. Что это такое

22.02.2019

III. ПО КОНФИГУРАЦИИ ПОСЛЕДНЕГО ХИРАЛЬНОГО АТОМА УГЛЕРОДА

· углеводы D-ряда

· углеводы L-ряда

Разнообразие моносахаридов связано главным образом со стереохимическими различиями. Например, в молекулах пентоз или гексоз содержится от 2-х до 4-х хиральных (асимметрических) атомов углерода, поэтому одной и той же структурной формуле соответствует несколько изомеров.

ОПРЕДЕЛЕНИЕ

Хиральный (или асимметрический ) атом углерода - атом углерода в sp3sp3-гибридизации, который имеет четыре разных заместителя . Соединения с хиральным атомом углерода (хиральным центром) обладают оптической активностью, т.е. способностью вещества в растворе вращать плоскость поляризованного света.

Для обозначения пространственного строения моносахаридов исторически используется D,L-система.

Положение гидроксильной группы у последнего центра хиральности справа свидетельствует от принадлежности моносахарида к D-ряду, слева - к L-ряду, наприме

Структура углеводов

Моносахариды могут существовать как в открытой форме, в этом случае их рассматривают как полигидроксикарбонильные соединения (HOCH2(CHOH)nCH=OHOCH2(CHOH)nCH=O), так и в циклической форме, т.е. в виде циклических полуацеталейполигидроксикарбонильных соединений. Причем, все моносахариды, как в кристаллическом состоянии, так и в растворе, не менее чем на 99,9% представляют собой циклическую структуру.

Ациклическую форму углеводов принято изображать с помощью проекционных формул Фишера , а циклические структуры можно как с помощью формул Фишера, так и с помощью формулХеуорса . Последняя формула более предпочтительна для циклических структур:

Возможность циклизации обусловлена двумя факторами. Во-первых, углеродная цепь может принимать клешневиднуюконформацию, в результате чего сближенными в пространстве окажутся карбонильная группа и гидроксильные группы при C-4 или С-5. Во-вторых, атака гидроксильной группой атома углерода карбонильной группы протекает самопроизвольно и приводит к циклическим полуацеталям. Так для рибозы возможно образование двух циклов: пиранозного (шестичленного) или фуранозного (пятичленного):

При этом, как в фуранозном, так и в пиранозном циклах появляются новые хиральные центры (выделены красной звездочкой) и, соответственно для каждого цикла возможны два изомера. В данном случае такие изомеры называют аномерами . В зависимости от расположения гидроксильной группы относительно цикла различают αα- и ββ -аномеры:

Если гидроксильная группа в полуацетальном фрагменте находится под плоскостью цикла (как в фуранозной форме на рисунке), то это αα-аномер.

Если гидроксильная группа в полуацетальном фрагменте находится над плоскостью цикла (как в пиранозной форме на рисунке), то это ββ-аномер.

Согласно положениям биохимии углеводы подразделяются на 3 основные группы:

I. Полисахариды (сложные углеводы)

1. Гетерополисахариды – состоящие из различных моносахаров.

2. Гомополисахариды – состоящие из одинаковых моносахаров.
Примером полисахаридов являются: крахмал, инулин, гликоген, пектины, клетчатка.

II. Олигосахариды

Делятся по числу моносахаридов в молекуле на дисахариды, трисахариды, тетрасахариды и т.п.
Примером дисахаридов служат сахароза, лактоза, мальтоза.

III. Моносахариды (простые углеводы).

1. Альдозы

В зависимости от числа атомов углерода в молекуле альдозы и кетозы делятся на триозы, тетрозы, пентозы, гексозы и т.п.

Моносахаридами являются глюкоза, фруктоза, галактоза.

Биологическая роль углеводов

1. Энергетическая.

Углеводы, например глюкоза, способны окисляться как в аэробных так и анаэробных условиях. Окисление углеводов обеспечивает организм 60% всей легко используемой энергии.

2. Структурная.

Примером являются гликозаминогликаны в составе протеогликанов, допустим, хондроитинсульфат, входящий в состав соединительной ткани.

3. Защитная.

Гиалуроновая кислота и другие гликозаминогликаны являются основным компонентом трущихся поверхностей суставов, входят в состав слизистых оболочек, находятся в сосудистой стенке.

4. Кофакторная.

Например, гепарин входит в состав липопротеинлипазы плазмы крови и ферментов свёртывания крови.

5. Гидроосмотическая.

Гетерополисахариды обладают отрицательным зарядом и высокой гидрофильностью. Это позволяет им удерживать молекулы воды, ионы кальция, магния и натрия в межклеточном веществе, обеспечивая необходимую упругость тканей.

6. Пластическая.

В комплексе с белками углеводы образуют гормоны, ферменты, секреты слюнных и слизистых желёз.

Все простые углеводы (глюкоза, фруктоза) быстро всасываются в желудочно-кишечном тракте и хорошо усваиваются. Сахароза, мальтоза и лактоза могут усваиваться после расщепления их соответствующими ферментами желудочно-кишечного тракта до моносахаридов. Всех медленнее усваивается полисахарид крахмал – предварительно через несколько стадий он должен расщепиться до глюкозы. Пищевые волокна (клетчатка, пектины), частично перевариваясь, в основном транзитом проходят через ЖКТ.

Поговорим о нормах потребления углеводов.

Согласно принятым нормам питания углеводы должны обеспечивать 50-60% суточной потребности в энергии.

Физиологическая потребность в углеводах детей до 1 года составляет 13 г/кг массы тела.
Для здоровых мужчин и женщин в возрасте от 18 до 29 лет, занимающихся преимущественно умственным трудом, суточная норма потребления всех разновидностей углеводов составляет 5 г на кг нормальной массы тела, что равняется примерно 350-360 г в сутки для мужчин и 290-300 г/сутки для женщин.

При тяжёлом физическом труде, активных занятиях спортом потребность в углеводах равна 8г/кг нормальной массы тела.

Пищевой сахар в чистом виде представляет собой сахарозу, состоящую из молекул глюкозы и фруктозы. При этом нужно помнить, что потребление сахара здоровым взрослым человеком не должно превышать 10% общей калорийности суточного рациона питания. Примерно, для женщин и мужчин старшей возрастной группы, занимающихся умственным трудом эта цифра составляет 45-50 г сахара в день, а для молодых женщин и мужчин с очень высокой физической активностью – 75-105 г сахара в день. Все остальные группы, соответственно, находятся посерединке.

Пищевых волокон нужно употреблять не менее 20 г в сутки.

Количество моно- и дисахаридов уменьшают:

1) при нарушениях жирового обмена с повышением в крови уровня триглицеридов и липопротеидов очень низкой плотности (о роли липопротеидов очень низкой плотности можно прочитать в статьеБиологическая роль холестерина)

2) при сахарном диабете;

3) при ожирении;

4) при метаболическом синдроме;

5) при хроническом панкреатите;

6) при демпинг-синдроме после резекции желудка.

Но нужно помнить, что резкое ограничение углеводов при ожирении и других болезнях может приводить к повышенному распаду белков и жиров для обеспечения энергетической функции организма. Это ведёт за собой образование в организме большого количества кислых продуктовметаболизма, что очень неблагоприятно скажется на общем самочувствии. Поэтому считается, что количество употребляемых углеводов должно быть не меньше 100 г в сутки.

Если появилась потребность в уменьшении количества углеводов в питании, то это нужно делать постепенно, чтобы организм смог спокойно приспособиться к предложенному варианту обмена веществ. Для начала их количество уменьшают до 200-250 г/сутки и через 7 дней можно уже переводить на ещё меньший объём потребления.

Пищевые волокна, например клетчатку, ограничивают:

1) при заболеваниях желудочно-кишечного тракта, когда требуется механически щадящая диета;

2) предоперационный и послеоперационный периоды;

3) острые инфекции;

4) недостаточность кровообращения.

Потребление углеводов увеличивают:

1) при повышении функции щитовидной железы (при тиреотоксикозе);

2) при туберкулёзе, когда отсутствует сопутствующее ожирение;

3) при хронической почечной недостаточности;

4) при тяжёлой печёночной недостаточности. В этом случае резко сниженную энергетическую потребность организма в основном полностью обеспечивают за счёт моно- и дисахаридов.

1) при атеросклерозе и ишемической болезни сердца;

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Ежедневно сталкиваясь с множеством бытовых предметов, продуктов питания, природных объектов, продуктов промышленного производства, мы не задумываемся о том, что все вокруг есть и индивидуальные химические вещества или совокупность этих веществ. Любое вещество обладает собственной структурой и свойствами. Человек с момента своего появления на Земле употреблял растительную пищу, содержащую крахмал, фрукты и овощи, содержащие глюкозу, сахарозу и другие углеводы, использовал для своих нужд древесину и другие растительные объекты, состоящие главным образом из другого природного полисахарида -- целлюлозы. И только в начале XIX в. стало возможным изучение химического состава природных высокомолекулярных веществ, строения их молекул. В этой области были сделаны важнейшие открытия.

В бескрайнем мире органических веществ есть соединения, о которых можно сказать, что они состоят из углерода и воды. Они так и называются - углеводы. Впервые термин “углеводы” предложил русский химик из Дерпта (ныне Тарту) К. Шмидт в 1844 году. В 1811 году русский химик Константин Готлиб Сигизмунд (1764-1833) впервые получил глюкозу гидролизом крахмала. Углеводы широко распространены в природе и играют большую роль в биологических процессах живых организмов и человека.

1. История развития углеводов

У самых истоков цивилизации лежит первое практическое знакомство человека с углеводами. Обработка древесины, изготовление бумаги и хлопчатобумажных и льняных тканей, хлебопечение, брожение - все эти процессы, известные еще с глубокой древности, непосредственно связаны с переработкой углеводсодержащего сырья. Тростниковый сахар был, по-видимому, первым органическим веществом, полученным человеком в химически чистом виде. Становление химии как науки во второй половине XVIII века неразрывно связано и с первыми работами в области химии углеводов.

Вслед за тростниковым сахаром были выделены первые индивидуальные моносахариды - фруктоза (Ловиц, 1792 г.) и глюкоза (Пру, 1832 г.). В 1811 г. Кирхгоф, работавший в то время в Петербурге, получил глюкозу при обработке крахмала кислотой, проведя таким образом первый химический гидролиз полисахарида, а в 1814 г. провел первый ферментолиз того же полисахарида. Наконец, А.М. Бутлеров в 1861 г. осуществил свой исторический синтез, получив при обработке водного раствора формальдегида известковой водой смесь сахаров (метиленэтан), содержащую и некоторые природные моносахариды.

Однако химия углеводов в современном смысле этого слова возникла, естественно, лишь с развитием основ органической химии, одним из разделов которой она является. Структурная теория дала ключ к пониманию строения углеводов, и уже через 10-15 лет после ее провозглашения Килиани и Эмиль Фишер начинают свои фундаментальные исследования, завершившиеся в 90-х годах прошлого столетия установлением строения простейших углеводов. Решающее влияние на развитие химии углеводов оказали стереохимические представления Вант-Гоффа, причем развитие стереохимии также было неразрывно связано с химией углеводов; экспериментальный материал, почерпнутый из химии углеводов, сыграл очень важную роль в развитии основных положений стереохимической теории.

В первый период развития химии углеводов были заложены основные понятия и принципы этого раздела органической химии, созданы классические аналитические приемы и разработаны генеральные синтетические методы. Характерной особенностью этого периода является тесное и плодотворное взаимодействие химии углеводов с другими разделами бурно развивавшейся органической химии. Химия углеводов заимствует из арсенала органической химии различные реакции деградации, необходимые для установления строения углеводов, и многочисленные синтетические приемы. В свою очередь, достижения химии углеводов стимулировали развитие многих общих разделов органической химии; кроме уже отмеченного выше влияния на развитие стереохимии, можно упомянуть учение о таутомерии, первые шаги химии полимеров и многое другое.

Одним из поворотных моментов в химии сахаров была разработка Хеуорсом в 20-х годах ХХ столетия подходов к изучению структуры полисахаридов, которые были созданы на основе метода метилирования и впервые открыли путь к экспериментальному решению вопроса о строении полисахаридных цепей. Следствием этого было быстрое развитие химии полисахаридов.

Три обстоятельства вызвали в послевоенные годы подлинный переворот в области химии углеводов и обеспечили ее последующий прогресс.

Прежде всего, была осознана исключительная роль биополимеров в жизненных процессах, что, естественно, поставило перед химией углеводов - важнейших компонентов живой ткани - новые задачи. Изучение структуры и ее связи с биологической функцией в ряду углеводов вызвало к жизни новые представления и заложило основу новых направлений. Одновременно бурное развитие промышленности полимеров и их использование в технике и повседневной жизни было непосредственно связано с широким изучением практически важных природных полимеров и, прежде всего, с развитием химии и технологии целлюлозы, ее спутников и продуктов ее переработки. Это открыло широкую дорогу исследованиям по химии полисахаридов и потребовало развития многих новых областей химии сахаров.

С другой стороны, развитие теории органической химии и в особенности создание основ конформационного анализа впервые позволило обсуждать реакционную способность молекулы углевода, исходя из строго обоснованных предпосылок. Использование конформационных представлений в химии углеводов совершило подлинную революцию во взглядах на реакционную способность сложной полифункциональной молекулы сахара, и современная химия сахаров обязана этому своими лучшим: достижениями.

Наконец, последнее, столь же важное обстоятельство, оказавшее решающее влияние на развитие современной химии углеводов, состоит во внедрении новой техники эксперимента. Введение аналитической и препаративной хроматографии, электрофоретических методов позволил по-новому поставить работу по разделению и индивидуализации углеводов и решить задачи, которые требовали Раньше поистине титанического труда. Внедрение инфракрасной спектроскопии, а позднее ЯМР-спектроскопии и масс-спектрометрии предоставило в распоряжение исследователя орудия, которые в корне изменили всю работу по установлению строения сложнейших производных углеводов.

2. Строение углеводов

Углеводы в зависимости от строения можно подразделить на моносахариды, дисахариды и полисахариды: (см. приложение 1)

1. Моносахариды:

Глюкоза С6Н12О6

Фруктоза С6Н12О6

Рибоза С5Н10О5

Из шестиуглеродных моносахаридов - гексоз - наиболее важное значение имеют глюкоза, фруктоза и галактоза.

Если в одной молекуле объединяются два моносахарида, такое соединение называется дисахаридом.

2. Дисахариды:

Сахароза С12Н22О11

Сложные углеводы, образованные многими моносахаридами, называются полисахаридами.

3. Полисахариды:

Крахмал (С6Н10О5)n

Целлюлоза (С6Н10О5)n

В молекулах моносахоридов может содержаться от 4-х до 10-ти атомов углерода. Названия всех групп моносахаридов, а также названия отдельных представителей оканчиваются на -оза. Поэтому в зависимости о числа атомов углерода в молекуле моносахариды подразделяют на тетрозы, пентозы, гексозы и т.д. наибольшее значение имеют гексозы и пентозы.

3. Моносахариды

Из шестиуглеродных моносахаридов - гексоз - важное значение имеют глюкоза, фруктоза и галактоза.

Глюкоза. Основные понятия. Строение молекулы.

Для установления структурной формулы молекулы глюкозы необходимо знать е химические свойства. Экспериментально доказали, что один моль глюкозы реагирует с пятью молями уксусной кислоты с образованием сложного эфира. Это означает, что в молекуле глюкозы имеется пять гидроксильных групп. Так как глюкоза в аммиачном растворе оксида серебра (II) дает реакцию «серебрянного зеркала», то в её молекуле должна быть альдегидная группа.

Опытным путем так же одказали, что глюкоза имеет неразветвленную углеродную цепь. На основании этих данных строение молекулы глюкозы можно выразить следующей формулой:

Размещено на http://www.allbest.ru/

Как видно из формулы, глюкоза является одновременно многоатомным спиртом а альдегидом, т.е. альдегид спиртом.

Дальнейшие исследование показали, что кроме молекул с открытой цепью, для глюкозы характерны молекулы циклического строения. Это объясняется тем, что молекулы глюкозы, вследствие вращения атомов углерода вокруг связей могут принимать изогнутую форму и гидроксильная группа 5 углерода может приблизиться к гидроксильной группе. В последней под действием гидроксильной группы разрывается р-связь. К свободной связи присоединяется атом водорода, и образуется шестичленное кольцо, в котором альдегидная группа отсутствует. Доказано, что в водном растворе существуют обе формы молекул глюкозы альдегидная и циклическая, между которыми устанавливается химическое равновесие:

В молекулах глюкозы с открытой цепью альдегидная группа может свободно вращаться вокруг у-связи, которая находится между первым и вторым атомами углерода. В молекулах циклической формы такое вращение не возможно. По этой причине циклическая форма молекулы может иметь различное пространственное строение:

б-форма глюкозы - гидроксильные группы (-ОН) при первом и втором атомах углерода расположены по одну сторону кольца.

б - форма глюкозы - гидроксильные группы находятся по разные стороны кольца молекулы.

Физические свойства.

Глюкоза - бесцветное кристаллическое вещество со сладким вкусом, хорошо растворимое в воде. Из водного раствора кристаллизуется. По сравнению со свекловичным сахаром менее сладкая.

Химические свойства.

Глюкоза обладает химическими свойствами, характерными для спиртов (гидроксильная (-ОН) группа) и альдегидов (группа альдегида (-СНО). Кроме того, она обладает и некоторыми специфическими свойствами.

1. Свойства, характерные для спиртов:

а) взаимодействие с оксидом меди (II):

C6H12O6 + Cu(OH)2 > C6H10O6Cu + H2O - алкоголят меди (II)

б) взаимодействие с карбоновыми кислотами с образованием сложных эфиров (реакция этерификации).

C6H12O6+5CH3COOH>C6H7O6(CH3CO)5

2. Свойства, характерные для альдегидов

а) взаимодействие с оксидом серебра (I) в аммиачном растворе (реакция "серебряного зеркала"):

C6H12O6 + Аg2O > C6H12O7 +2Agv - глюкоза, глюконовая кислота

б)восстановление (гидрирование) - до шестиатомного спирта (сорбита):

C6H12O6 + H2 > C6H14O6 - глюкоза, сорбит

3. Специфические реакции - брожение:

а) спиртовое брожение (под действием дрожжей):

С6Н12О6 > 2С2Н5ОН + 2СО2 - глюкоза, этиловый спирт

б) молочнокислые брожение (под действие молочнокислых бактерий):

С6Н12О6 > С3Н6О3 - глюкоза, молочная кислота

в) маслянокислое брожение:

С6Н12О6 > С3Н7СООН +2Н2 +2СО2 - глюкоза, масляная кислота

Получение глюкозы.

Первый синтез простейших углеводов из формальдегида в присутствии гидроксида кальция был произведен А.М.Бутлеровым в 1861 году:

са(он)2, 6НСОН > С6Н12О6 - формальдегид глюкоза

На производстве глюкозу чаще всего получают гидролизом крахмала в присутствии серной кислоты:

(С6Н10О5)n + nН2О > nC6H12O6 - крахмал, глюкоза

Применение глюкозы.

Глюкоза является ценным питательным продуктом. В организме она подвергается сложным биохимическим превращениям, в результате которых освобождается энергия, которая накопилась в процессе фотосинтеза. Упрощено процесс окисления глюкозы в организме можно выразить следующим уравнением:

С6Н12О6 + 6О2>6СО2+6H2O+Q

Так как глюкоза легко усваивается организмом, ее используют в медицине в качестве укрепляющего лечебного средства. Широко применяют глюкозу в кондитерском деле (изготовление мармелада, карамели, пряников).

Большое значение имеют процессы брожения глюкозы. Так, например, при квашении капусты, огурцов, молока происходит молочнокислое брожение глюкозы, так же, как при силосований кормов. Если подвергаемая силосованию масса недостаточно уплотнена, то под влиянием проникшего воздуха происходит маслянокислое брожение и корм становится непригоден к применению.

В организме человека глюкоза содержится в мышцах, в крови и в небольших количествах во всех клетках. Много глюкозы находится во фруктах, ягодах, нектаре цветов, особенно много в винограде.

В природе глюкоза образуется в растениях в результате фотосинтеза в присутствии зелёного вещества - хлорофилла, содержащего атом магния. В свободном виде глюкоза содержится почти во всех органах зеленых растений. Особенно ее много в соке винограда, поэтому глюкозу иногда называют виноградным сахаром. Мед в основном состоит из смеси глюкозы с фруктозой.

4. Дисахариды

Дисахариды - кристаллические углеводы, молекулы которых построены из соединённых между собой остатков двух молекул моносахаридов.

Простейшими представителями дисахаридов являются обычный свекловичный или тростниковый сахар - сахароза, солодовый сахар - мальтоза, молочный сахар - лактоза и целлобиоза. Все эти дисахариды имеют одну и туже формулу С12Н22О11.

Сахароза. Основные понятия. Строение молекулы

Опытным путем доказано, что молекулярная формула сахарозы C12H22O11. При исследовании химических свойств сахарозы можно убедиться, что для нее характерна реакция многоатомных спиртов: при взаимодействии с гидроксидом меди (II) образуется ярко-синий раствор. Реакцию «серебряного зеркала» с сахарозой осуществить не удается. Следовательно, в ее молекуле имеются гидроксильные группы, но нет альдегидной.

Но если раствор сахарозы нагреть в присутствии соляной или серной кислоты, то образуются два вещества, одно из которых, подобно альдегидам, реагирует как с аммиачным раствором оксида серебра (I), так и с гидроксидом меди (II). Эта реакция доказывает, что в присутствии минеральных кислот сахароза подвергается гидролизу и в результате образуются глюкоза и фруктоза. Так подтверждается, что молекулы сахарозы состоят из взаимно связанных остатков молекул глюкозы и фруктозы.

Размещено на http://www.allbest.ru/

Физические свойства.

Чистая сахароза -- бесцветное кристаллическое вещество сладкого вкуса, хорошо растворимое в воде.

Химические свойства.

Главным свойством дисахаридов, отличающим их от моносахаридов, является способность к гидролизу в кислой среде (или под действием ферментов в организме):

С12Н22О11+Н2О> С6Н12О6+ С6Н12О6

Образовавшуюся в процессе гидролиза глюкозу можно обнаружить реакцией «серебряного зеркала» или при взаимодействии ее с гидроксидом меди (II).

Получение сахарозы.

Сахарозу C12H22O11 (сахар) получают в основном из сахарной свеклы и сахарного тростника. При производстве сахарозы не происходят химические превращения, ибо она уже имеется в природных продуктах. Ее лишь выделяют из этих продуктов по возможности в более чистом виде.

Применение сахарозы.

Сахароза в основном используется в качестве продукта питания и в кондитерской промышленности. Путем гидролиза из нее получают искусственный мед.

5. Полисахариды

Некоторые углеводы представляют собой природные полимеры, состоящие из многих сотен и даже тысяч моносахаридных звеньев, входящих в состав одной макромолекулы. Поэтому такие вещества получили название полисахариды. Наиболее важными среди полисахаридов являются крахмал и целлюлоза. Оба они образуются в растительных клетках из глюкозы, основного продукта процесса фотосинтеза.

Крахмал. Основные понятия. Строение молекулы.

Экспериментально доказано, что химическая формула крахмала (C6H10O5)n, где п достигает нескольких тысяч. Крахмал является природным полимером, молекулы которого состоят из отдельных звеньев C6H10O5. Так как при гидролизе крахмала образуется только глюкоза, то можно сделать вывод, что эти звенья являются остатками молекул б-глюкозы.

Ученым удалось доказать, что макромолекулы крахмала состоят из остатков молекул циклической глюкозы. Процесс образования крахмала можно представить так:

Кроме того, установлено, что крахмал состоит не только из линейных молекул, но и из молекул разветвленной структуры. Этим объясняется зернистое строение крахмала.

Физические свойства.

Крахмал белый порошок, нерастворимый в холодной воде. В горячей воде он набухает и образует клейстер. В отличие от моно- и олигосахаридов полисахариды не обладают сладким вкусом.

Химические свойства.

Качественная реакция на крахмал.

Характерной реакцией крахмала является его взаимодействие с йодом. Если к охлажденному крахмальному клейстеру добавить раствор йода, то появляется синее окрашивание. При нагревании клейстера оно исчезает, а при охлаждении появляется вновь. Этим свойством пользуются при определении крахмала в пищевых продуктах. Так, например, если каплю йода поместить на срез картофеля или ломтик белого хлеба, то появляется синее окрашивание.

Реакция гидролиза:

(С6Н6О5)n + nH2O > nC6H12O6

Получение крахмала.

В промышленности крахмал получают в основном из картофеля, риса или кукурузы.

Применение крахмала.

Крахмал является ценным питательным продуктом. Чтобы облегчить его усвоение, содержащие крахмал продукты подвергают действию высокой температуры, т. е. картофель варят, хлеб пекут. В этих условиях происходит частичный гидролиз крахмала и образуются декстрины, растворимые в воде. Декстрины в пищеварительном тракте подвергаются дальнейшему гидролизу до глюкозы, которая усваивается организмом. Избыток глюкозы превращается в гликоген (животный крахмал). Состав гликогена такой же, как у крахмала, но его молекулы более разветвленные. Особенно много гликогена содержится в печени (до 10%). В организме гликоген является резервным веществом, которое превращается в глюкозу по мере ее расходования в клетках.

В промышленности крахмал путем гидролиза превращают в патоку и глюкозу. Для этого его нагревают с разбавленной серной кислотой, избыток которой затем нейтрализуют мелом. Образовавшийся осадок сульфата кальция отфильтровывают, раствор упаривают и выделяют глюкозу. Если гидролиз крахмала не доводить до конца, то образуется смесь декстринов с глюкозой -- патока, которую применяют в кондитерской промышленности. Получаемые из крахмала декстрины используются в качестве клея, для загустения красок при нанесении рисунков на ткань.

Крахмал применяется для накрахмаливания белья. Под горячим утюгом происходит частичный гидролиз крахмала и превращение его в декстрины. Последние образуют на ткани плотную пленку, которая придает блеск ткани и предохраняет ее от загрязнения.

Нахождение в природе и организме человека.

Крахмал, являясь одним из продуктов фотосинтеза, широко распространен в природе. Для различных растений он является запасным питательным материалом и содержится главным образом в плодах, семенах и клубнях. Наиболее богато крахмалом зерно злаковых растений: риса (до 86%), пшеницы (до 75%), кукурузы (до 72%), а также клубни картофеля (до 24%). В клубнях крахмальные зерна плавают в клеточном соке, поэтому картофель является основным сырьем для получения крахмала.. Для организма человека крахмал наряду с сахарозой служит основным поставщиком углеводов -- одного из важнейших компонентов пищи.

углевод химический молекула глюкоза

Заключение

Биологическое значение углеводов очень велико:

Углеводы выполняют пластическую функцию, то есть участвуют в построении костей, клеток, ферментов. Они составляют 2-3 % от веса. Углеводы выполняют две основные функции: строительную и энергетическую. Целлюлоза образует стенки растительных клеток. Сложный полисахарид хитин служит главным структурным компонентом наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов. Углеводы являются основным энергетическим материалом (см.). При окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 воды. Крахмал у растений и гликоген у животных откладываются в клетках и служат энергетическим резервом. В крови содержится (0,1-0,12%) глюкозы. От концентрации глюкозы зависит осмотическое давление крови. Пентоза (рибоза и дезоксирибоза) участвуют в постоении АТФ. В суточном рационе человека и животных преобладают углеводы. Животные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом. Ежедневная потребность человека в сахарах составляет около 500 граммов, но она пополняется в основном за счет крахмала, содержащегося в хлебе, картофеле, макаронных изделиях. При рациональном питании суточная доза сахарозы не должна превышать 75 граммов (12 - 14 стандартных кусочков сахара, включая тот, что расходуется на приготовление пищи). Кроме того, углеводы играют значительную роль в современной промышленности технологии и продукты, в которых используются углеводы, не загрязняют окружающей среды, не приносят ей ущерба.

Список литературы

1. А.М. Прохоров, Н.Р. Либерман. Химия: Органическая химия: Учебное пособие для 10 кл. средней школы - Москва, Просвещение - 1993г. - с. 153-154 - ISBN 5-09-014413-3.

2. Электронная энциклопедия Кирилла и Мефодия, 2004г.

3. Васильев А. Справочник школьника, II том, Москва, Издательство Амфора, - 2002 г.- с.23 ISBN: 978-5-367-02141-7

4. Каменский А.А. Биология. Введение в общую биологию и экологию. Учебное пособие для 11кл. средней школы./ Каменский А.А., Криксунов Е.А., Пасечник В.В.: Издательство «Дрофа» - 2002г. - 176-178 с. - ISBN 5-7107-5287-8

5. Березин И.В. Основы биохимии. Учебное пособие для студентов вузов. Москва, Издательство МГУ - 1990г. - с. 130-160 - ISBN 5-211-00407-8

6. Северин Е.С. Биохимия. Учебное пособие для студентов вузов: Издательство ГЭОТАР-МЕД, Серия: XXIвек - 2004г - с. 26 - ISBN 5-9231-0390-7

Приложение 1 .

Углеводы важнейший источник энергии в организме.

Из всех потребляемых человеком пищевых веществ углеводы, несомненно, являются главным источником энергии. В среднем на их долю приходится от 50 до 70% калорийности дневных рационов. Несмотря на то, что человек потребляет значительно больше углеводов, чем жиров и белков, их резервы в организме невелики. Это означает, что снабжение ими организма должно быть регулярным.

Основными углеводами пищи являются сложные сахара, так называемые полисахариды: крахмал и гликоген, построенные из большого числа остатков глюкозы. Сама глюкоза содержится в больших количествах в винограде и сладких фруктах. В меде и фруктах, помимо глюкозы, содержатся значительные количества фруктозы. Обычный сахар, который мы покупаем в магазинах, относится к дисахаридам, так как его молекула построена из остатков глюкозы и фруктозы. В молоке и молочных продуктах содержатся большие количества менее сладкого, молочного сахара лактозы, в состав которого наряду с глюкозой входит и моносахарид галактоза.

Потребности в углеводах в очень большой степени зависят от энергетических трат организма. В среднем у взрослого мужчины, занятого преимущественно умственным или легким физическим трудом, суточная потребность в углеводах колеблется от 300 до 500 г. У работников физического труда и спортсменов она значительно выше. В отличие от белков и в известной степени жиров, количество углеводов в рационах питания без вреда для здоровья может быть существенно снижено. Тем, кто хочет похудеть, стоит обратить на это внимание: углеводы имеют главным образом энергетическую ценность. При окислении 1 г углеводов в организме освобождается 4,0 - 4,2 ккал. Поэтому за их счет легче всего регулировать калорийность питания.

Какие же продукты следует считать главными источниками углеводов? Наиболее богаты углеводами многие растительные продукты: хлеб, крупы, макароны, картофель. Чистым углеводом является сахар. Мед, в зависимости от происхождения, содержит 70-80% моно- и дисахаридов. Его высокая сладость объясняется значительным содержанием фруктозы, сладкие свойства которой примерно в 2,5 раза выше глюкозы и в 1,5 выше сахарозы. Конфеты, пирожные, торты, варенье, мороженое и другие сладости являются наиболее привлекательными источниками углеводов и представляют несомненную опасность для полнеющих людей. Отличительной особенностью этих продуктов является высокая калорийность и низкое содержание незаменимых факторов питания.

Размещено на Allbest.ru

Подобные документы

    Общая формула углеводов, их первостепенное биохимическое значение, распространенность в природе и роль в жизни человека. Виды углеводов по химической структуре: простые и сложные (моно- и полисахариды). Произведение синтеза углеводов из формальдегида.

    контрольная работа , добавлен 24.01.2011

    Органические вещества, в состав которых входит углерод, кислород и водород. Общая формула химического состава углеводов. Строение и химические свойства моносахаридов, дисахаридов и полисахаридов. Основные функции углеводов в организме человека.

    презентация , добавлен 23.10.2016

    Классификация альдегидов, строение, нахождение в природе, биологическое действие, применение. Номенклатура кетонов, история открытия, физические и химические свойства. Реакции нуклеофильного присоединения. Химические методы идентификации альдегидов.

    презентация , добавлен 13.05.2014

    Определение и строение глюкозы - моносахарида и шестиатомного сахара. Изомеры. Фруктоза. Физические и химические свойства. Особенности получения - гидролиз крахмала, фотосинтез. Сферы применения. Распространение в природе. Значение глюкозы для человека.

    презентация , добавлен 11.09.2016

    Строение РНК, ее синтез и роль в передаче наследственности. Формула незаменимых аминокислот; структура холестерина, его источники и функции в организме. Распад и всасывание углеводов в желудочно-кишечном тракте; ферменты. Витамин В3; строение жиров.

    контрольная работа , добавлен 01.06.2012

    Формула углеводов, их классификация. Основные функции углеводов. Синтез углеводов из формальдегида. Свойства моносахаридов, дисахаридов, полисахаридов. Гидролиз крахмала под действием ферментов, содержащихся в солоде. Спиртовое и молочнокислое брожение.

    презентация , добавлен 20.01.2015

    Биологическая роль углеводов, действие ферментов пищеварительного тракта на углеводы. Процесс гидролиза целлюлозы (клетчатки), всасывание продуктов распада углеводов. Анаэробное расщепление и реакция гликолиза. Пентозофосфатный путь окисления углеводов.

    реферат , добавлен 22.06.2010

    Углеводы - важнейшие химические соединения живых организмов. В растительном мире составляют 70-80% из расчета на сухое вещество. Функции углеводов: энергетическая – главный вид клеточного топлива, функция запасных питательных веществ, защитная, регуляторн

    реферат , добавлен 17.01.2009

    Физические и химические свойства галогенов, их положение в Периодической таблице элементов Менделеева. Основные источники и биологическое значение хлора, брома, иода, фтора. Нахождение галогенов в природе, их получение и промышленное использование.

    презентация , добавлен 01.12.2014

    Классификация углеводов (моносахариды, олигосахариды, полисахариды) как самых распространенных органических соединений. Химические свойства вещества, его роль в питании как основного источника энергии, характеристика и место глюкозы в жизни человека.

Реферат: Биологическая роль углеводов

Федеральное агентство по образованию

Контрольная работа

по дисциплине "Физиологические и санитарно-гигиенические основы питания"

тема: "Биологическая роль углеводов"


Введение

1. Углеводы и их значение в питании

2. Виды углеводов

Заключение

Список используемой литературы


Введение

Гигиена питания - наука о закономерностях и принципах организации рационального (оптимального) питания здорового и больного человека. В ее рамках разрабатывают научные основы и практические мероприятия по оптимизации питания различных групп населения и санитарной охране пищевых ресурсов, сырья и продуктов на всех этапах их производства и оборота.

Фундаментальные аспекты гигиены питания связаны с изучением физиологических процессов, биохимических механизмов переваривания, усвоения пищи и клеточной метаболизации нутриентов и других компонентов пищевых продуктов, а также нутриогеномики, т.е. основ алиментарной регуляции экспрессии генов.

Гигиена питания, с одной стороны, определяет нормы физиологических потребностей в пищевых веществах и энергии, разрабатывает требования к качеству пищевой продукции и рекомендации по употреблению различных групп пищевых продуктов в зависимости от возрастных, социальных, географических и экологических факторов, режиму и условиям питания, а с другой стороны, регламентирует мероприятия по санитарно-эпидемиологической (гигиенической) экспертизе качества и безопасности пищевых продуктов и контактирующих с ними материалов и по контролю соответствия пищевых объектов на этапе их строительства и во время эксплуатации.

Гигиена питания как наука развивается с использованием общей методологии научных исследований в области физиологии, биохимии, токсикологии, микробиологии, эпидемиологии, внутренних болезней, а также собственных уникальных подходов и методик, включающих в себя оценку состояния питания, параметров пищевого статуса и алиментарной адаптации, показателей пищевой и биологической ценности продуктов.

Современный период развития гигиены питания связан с реализацией следующих научно-практических направлений:

разработка основ государственной политики в области здорового питания населения России;

фундаментальные исследования физиолого-биохимических основ питания;

постоянный мониторинг состояния питания населения России;

организация профилактики алиментарно-зависимых заболеваний;

исследования по проблеме безопасности пищевых продуктов;

разработка научно-методических подходов к оценке нетрадиционных и новых пищевых источников;

разработка и совершенствование научных основ и практики детского, диетического и профилактического питания;

научное обоснование и практическое осуществление системы алиментарной адаптации в современных экологических условиях;

широкое внедрение образовательных и просветительских программ и проектов как в системе профессионального образования и обучения, так и в обществе в целом.

В настоящее время гигиена питания в третий раз за последние 100 лет приобретает мощный общественный характер, обеспечивая выработку государственных подходов в области питания населения.

Питание является одним из важнейших факторов, определяющих здоровье населения. Правильное питание обеспечивает нормальный рост и развитие детей, способствует профилактике заболеваний, продлению жизни людей, повышению работоспособности и создает условия для адекватной адаптации их к окружающей среде.

Вместе с тем в последнее десятилетие состояние здоровья населения характеризуется негативными тенденциями. Продолжительность жизни населения в России значительно меньше, чем в большинстве развитых стран. Увеличение частоты сердечно-сосудистых, онкологических и других хронических неинфекционных заболеваний в определенной степени связано с питанием. У большинства населения России выявлены нарушения полноценного питания, обусловленные как недостаточным потреблением пищевых веществ, в первую очередь витаминов, макро - и микроэлементов (кальция, йода, железа, фтора, цинка и др.), полноценных белков, так и их нерациональным соотношением.

Одним из важных элементов являются углеводы. Они служат основным источником энергии. Свыше 56% энергии организм получает за счет углеводов, остальную часть - за счет белков и жиров.

Мир углеводов представляется нам очень неоднозначным. Иногда углеводы обвиняют в том, что именно они являются причиной лишнего веса. А иногда, наоборот, говорят, что углеводы - это идеальный источник энергии для организма.


1. Углеводы и их значение в питании

Впервые термин "углеводы" был предложен профессором Дерптского (ныне Тартуского) университета К.Г. Шмидтом в 1844 г. В то время предполагали, что все углеводы имеют общую формулу Cm (H 2O ) n , т.е. углевод + вода. Отсюда название "углеводы". В дальнейшем оказалось, что ряд соединений, по своим свойствам относящихся к классу углеводов, содержат водород и кислород в несколько иной пропорции, чем указано в общей формуле.

В 1927 г. Международная комиссия по реформе химической номенклатуры предложила термин "углеводы" заменить термином "глициды", однако старое название "углеводы" укоренилось и является общепризнанным.

Углеводы образуются в растениях при фотосинтезе и поступают в организм главным образом с растительными продуктами. Однако все большее значение в питании приобретают добавленные углеводы, которые чаще всего представлены сахарозой (или смесями других сахаров), получаемой промышленным способом и вводимой затем в пищевые рецептуры.

Величина потребности в углеводах для человека определяется их ведущей ролью в обеспечении организма энергией и нежелательностью синтеза глюкозы из жиров (а тем более из белков) и находится в прямой зависимости от энергозатрат. Средняя потребность в углеводах для тех, кто не занят тяжелым физическим трудом, 400 - 500 г. в сутки.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их сберегающего белок действия. При поступлении с пищей достаточного количества углеводов аминокислоты лишь в незначительной степени используются в организме как энергетический материал. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50 - 60 г.

Дальнейшее снижение количества углеводов ведет к резким нарушениям метаболических процессов. Избыточное потребление углеводов ведет к ожирению. При поступлении с пищей значительных количеств сахаров они не могут полностью откладываться в виде гликогена, и их избыток превращается в триглицериды, способствуя усиленному развитию жировой ткани. Повышенное содержание в крови инсулина способствует ускорению этого процесса, поскольку инсулин оказывает мощное стимулирующее действие на жироотложение.

При построении пищевых рационов чрезвычайно важно не только удовлетворить потребности человека в необходимом количестве углеводов, но и подобрать оптимальные соотношения качественно различных типов углеводов. Наиболее важно учитывать соотношение в рационе легкоусвояемых углеводов (сахаров) и медленно всасывающихся (крахмал, гликоген).

В отличие от сахаров крахмал и гликоген медленно расщепляются в кишечнике. Содержание сахара в крови при этом нарастает постепенно. В связи с этим целесообразно удовлетворять потребности в углеводах в основном за счет медленно всасывающихся углеводов. На их долю должно приходиться 80 - 90% от общего количества потребляе мых углеводов. Ограничение легкоусвояемых углеводов приобретает особое значение для тех, кто страдает атеросклерозом, сердечно-сосудистыми заболеваниями, сахарным диабетом, ожирением.

Углеводы являются основными энергонесущими элементами в питании человека, обеспечивая 50-70% общей энергетической ценности рациона.

Наряду с основной энергетической функцией углеводы участвуют в пластическом обмене. Углеводы оказывают антикетогенное действие, стимулируя окисление ацетилкоэнзима А, образующегося при окислении жирных кислот. Основным источником углеводов в питании человека является растительная пища, и только лактоза и гликоген содержатся в продуктах животного происхождения.

Основная функция углеводов - обеспечение энергией всех процессов в организме. Клетки способны получать из углеводов энергию, как при их окислении, т.е. "сгорании", так и в анаэробных условиях (без доступа кислорода). В результате метаболизации 1 г углеводов организм получает энергию, эквивалентную 4 ккал. Обмен углеводов тесно связан с обменом жиров и белков, что обеспечивает их взаимные превращения. При умеренном недостатке углеводов в питании депонированные жиры, а при глубоком дефиците (менее 50 г/сут) и аминокислоты (как свободные, так и из состава мышечных белков) вовлекаются в процесс глюконеогенеза, приводящий к получению необходимой организму энергии. Боль в мышцах после тяжелой работы - результат действия на клетки молочной кислоты, которая образуется при анаэробном распаде углеводов, когда для обеспечения работы мышечных клеток не хватает кислорода, поступающего с кровью.

Часто резкое ограничение углеводов в диете ведет к значительным нарушениям обмена веществ. Особенно страдает при этом белковый обмен. Белки при дефиците углеводов используются не по назначению: они становятся источником энергии и участниками некоторых важных химических реакций. Это приводит к повышенному образованию азотистых веществ и, как следствие, к повышенной нагрузке на почки, нарушениям солевого обмена и другим, вредным для здоровья, последствиям.

При дефиците углеводов в пище организм использует для синтеза энергии не только белки, но и жиры. При усиленном распаде жиров могут возникнуть нарушения обменных процессов, связанные с ускоренным образованием кетонов (к этому классу веществ относится известный всем ацетон) и накоплением их в организме. Избыточное образование кетонов при усиленном окислении жиров и частично белков может привести к "закислению" внутренней среды организма и отравлению тканей мозга вплоть до развития ацидотической комы с потерей сознания. При достаточном поступлении углеводов с пищей белки используются, главным образом, для пластического обмена, а не для производства энергии. Таким образом, углеводы необходимы для рационального использования белков. Они также способны стимулировать окисление промежуточных продуктов обмена жирных кислот.

Этим, однако, не исчерпывается роль углеводов. Они являются составной частью молекул некоторых аминокислот, участвуют в построении ферментов, образовании нуклеиновых кислот, являются предшественниками образования жиров, иммуноглобулинов, играющих важную роль в системе иммунитета, и гликопротеидов - комплексов углеводов и белков, которые являются важнейшими компонентами клеточных оболочек. Гиалуроновые кислоты и другие мукополисахариды образуют защитную прослойку между всеми клетками, из которых состоит организм.

Интерес к углеводам сдерживался чрезвычайной сложностью их структуры. В отличие от мономеров нуклеиновых кислот (нуклеотидов) и белков (аминокислот), которые способны связываться между собой только одним определенным путем, моносахаридные единицы в олигосахаридах и полисахаридах могут соединяться между собой несколькими путями по множеству разных положений.

Со второй половины XX в. происходит стремительное развитие химии и биохимии углеводов, обусловленное их важным биологическим значением.

Углеводы наряду с белками и липидами являются важнейшими химическими соединениями, входящими в состав живых организмов. У человека и животных углеводы выполняют важные функции: энергетическую (главный вид клеточного топлива), структурную (обязательный компонент большинства внутриклеточных структур) и защитную (участие углеводных компонентов иммуноглобулинов в поддержании иммунитета).

Углеводы (рибоза, дезоксирибоза) используются для синтеза нуклеиновых кислот, они являются составными компонентами нуклеотидных ко-ферментов, играющих исключительно важную роль в метаболизме живых существ. В последнее время все большее внимание к себе привлекают смешанные биополимеры, содержащие углеводы: гликопептиды и глико-протеины, гликолипиды и липополисахариды, гликолипопротеины и т.д. Эти вещества выполняют в организме сложные и важные функции.

Итак, выделю б иологическое значение углеводов:

· Углеводы выполняют пластическую функцию, то есть участвуют в построении костей, клеток, ферментов. Они составляют 2-3 % от веса.

· Углеводы являются основным энергетическим материалом. При окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.

· В крови содержится 100-110 мг глюкозы. От концентрации глюкозы зависит осмотическое давление крови.

· Пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ.

· Углеводы выполняют защитную роль в растениях.


2. Виды углеводов

Различают две основные группы углеводов: простые и сложные. К простым углеводам относятся глюкоза, фруктоза, галактоза, сахароза, лактоза и мальтоза. К сложным - крахмал, гликоген, клетчатка и пектиновые вещества.

Углеводы подразделяются на моносахариды (простые), олигосахариды и полисахариды (сложные).

1. Моносахариды

· глюкоза

· фруктоза

· галактоза

· манноза

2. Олигосахариды

· Дисахариды

· сахароза (обычный сахар, тростниковый или свекловичный)

· мальтоза

· изомальтоза

· лактоза

· лактулоза

3.Полисахариды

· декстран

· гликоген

· крахмал

· целлюлоза

· галактоманнаны

Моносахариды (простые углеводы) являются наиболее простыми представителями углеводов и при гидролизе не расщепляются до более простых соединений. Простые углеводы легко растворяются в воде и быстро усваиваются. Они обладают выраженным сладким вкусом и относятся к сахарам.

В зависимости от числа углеродных атомов в молекулах моносахариды делятся на триозы, тетрозы, пентозы и гексозы. Для человека наиболее важны гексозы (глюкоза, фруктоза, галактоза и др.) и пентозы (рибоза, дезоксирибоза и др.).

При соединении двух молекул моносахаридов образуются дисахариды.

Наиболее важной из всех моносахаридов является глюкоза, так как она является структурной единицей (кирпичиком) для построения большинства пищевых ди - и полисахаридов. Транспорт глюкозы в клетки регулируется во многих тканях гормоном поджелудочной железы - инсулином.

У человека излишки глюкозы в первую очередь превращаются именно в гликоген - единственный резервный углевод животных тканей. В организме человека общее содержание гликогена составляет около 500 г - это суточный запас углеводов, используемый при их глубоком дефиците в питании. Длительный дефицит гликогена в печени ведет к дисфункции гепатоцитов и ее жировой инфильтрации.

Олигосахариды - более сложные соединения, построенные из нескольких (от 2 до 10) остатков моносахаридов. Они делятся на дисахариды, трисахариды и т.д. Наиболее важны для человека дисахариды - сахароза, мальтоза и лактоза. Олигосахариды, к которым относятся рафиноза, стахиоза, вербаскоза, в основном содержатся в бобовых и продуктах их технологической переработки, например в соевой муке, а также в незначительных количествах во многих овощах. Фрукто-олигосахариды встречаются в зерновых (пшенице, ржи), овощах (луке, чесноке, артишоках, спарже, ревене, цикории), а также в бананах и меде.

К группе олигосахаридов также относятся мальто-декстрины, являющиеся основными компонентами промышленно производимых из полисахаридного сырья сиропов, паток. Одним из представителей олигосахаридов является лактулоза, образующаяся из лактозы в процессе тепловой обработки молока, например при выработке топленого и стерилизованного молока.

Олигосахариды практически не расщепляются в тонком кишечнике человека из-за отсутствия соответствующих ферментов. По этой причине они обладают свойствами пищевых волокон. Некоторые олигосахариды играют существенную роль в жизнедеятельности нормальной микрофлоры толстого кишечника, что позволяет отнести их к пребиотикам - веществам, частично ферментирующимся некоторыми кишечными микроорганизмами и обеспечивающим поддержание нормального микробиоценоза кишечника.

Полисахариды - высокомолекулярные соединения-полимеры, образованные из большого числа мономеров, в качестве которых выступают остатки моносахаридов. Полисахариды делятся на перевариваемые и неперевариваемые в желудочно-кишечном тракте человека. В первую подгруппу входят крахмал и гликоген, во вторую - разнообразные соединения, из которых наиболее важны для человека целлюлоза (клетчатка), гемицсллюлоза и пектиновые вещества.

Олиго - и полисахариды объединяют термином "сложные углеводы". Моно - и дисахариды обладают сладким вкусом, в связи с чем их называют также "сахарами". Полисахариды сладким вкусом не обладают. Сладость сахароз различна. Если сладость раствора сахарозы принять за 100 %, то сладость эквимолярных растворов друг их Сахаров составит: фруктозы - 173 %, глюкозы - 81 %, мальтозы и галактозы - 32 % и лактозы - 16 %.

Основным усваиваемым полисахаридом является крахмал - пищевая основа зерновых, бобовых и картофеля. На его долю приходится до 80% потребляемых с пищей углеводов. Он представляет из себя сложный полимер, состоящий из двух фракций: амилозы - линейного полимера и амило-пектина - разветвленного полимера. Именно соотношение этих двух фракций в различных сырьевых источниках крахмала и определяет его различные физико-химические и технологические характеристики, в частности растворимость в воде при разной температуре. Источником крахмала служат растительные продукты, в основном злаковые: крупы, мука, хлеб, а также картофель.

Для облегчения усвоения крахмала организмом продукт, содержащий его, должен быть подвергнут тепловой обработке. При этом образуется крахмальный клейстер в явной форме, например кисель, или скрытом виде в составе пищевой композиции: каше, хлебе, макаронах, блюд из бобовых. Крахмальные полисахариды, поступившие с пищей в организм, подвергаются последовательной, начиная с ротовой полости, ферментации до мальтодекстринов, мальтозы и глюкозы с последующим практически полным усвоением.

Вторым перевариваемым полисахаридом является гликоген. Его пищевое значение невелико - с рационом поступает не более 10-15 г гликогена в составе печени, мяса и рыбы. При созревании мяса гликоген превращается в молочную кислоту.

Некоторые сложные углеводы (клетчатка, целлюлоза и др.) в организме человека не перевариваются вовсе. Тем не менее, это необходимый компонент питания: они стимулируют перистальтику кишечника, формируют каловые массы, способствуя тем самым выведению шлаков и очистке организма. Кроме того, клетчатка хоть и не переваривается человеком, но служит источником питания для полезной кишечной микрофлоры.


Заключение

Значение углеводов в питании человека весьма велико. Они служат важнейшим источником энергии, обеспечивая до 50-70 % общей калорийности рациона.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их "сберегающего белок" действия. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50-60 г.

С нарушением обмена углеводов тесно связан ряд заболеваний: сахарный диабет, галактоземия, нарушение в системе депо гликогена, нетолерантность к молоку и т.д. Следует отметить, что в организме человека и животного углеводы присутствуют в меньшем количестве (не более 2% от сухой массы тела), чем белки и липиды; в растительных организмах за счет целлюлозы на долю углеводов приходится до 80% от сухой массы, поэтому в целом в биосфереуглеводов больше, чем всех других органических соединений вместе взятых.


Список используемой литературы

1. Справочник по диетологии/под ред. А.А. Покровского, М.А. Самсонова. - М.: Медицина, 1981

2. Популярно о питании. Под ред. А.И. Столмаковой, И.О. Мартынюка, Киев, "Здоровье", 1990

3. Королев А.А. Гигиена питания - 2-е изд. Перераб. и доп. - М.: "Академия", 2007

4. Ауреден Л. Как стать красивой. - М.: Топикал, 1995

5. http ://hudeemtut .ru

6. Ленинджер А. Основы биохимии // М.: Мир, 1985.

Углеводы составляют незначительную часть общего сухого веса тканей человеческого организма - не более 2%, в то время как на белки, например, приходится до 45% сухой массы тела. Тем не ме­нее, углеводы выполняют в организме целый ряд жизненно важных функции, принимая участие в структурной и метаболической органи­зации органов и тканей.

С химической точки зрения углеводы представляют собой много­атомные альдегидо- или кетоноспирты или их полимеры, причем моно­мерные единицы в полимерах соединены между собой гликозидными связями.

Классификация углеводов.

Углеводы делятся на три больших группы: моносахариды и их производные, олигосахариды и полисахариды.

Моносахариды в свою очередь делятся, во первых, по характеру карбонильной группы на альдозы и кетозы и, во-вто­рых,по числу атомов углерода в молекуле на триозы, тетрозы, пен­тозы и т.д. Обычно моносахариды имеют тривиальные названия: глю­коза, галактоза, рибоза, ксилоза и др. К этой же группе соедине­ний относятся различные производные моносахаридов, важнейшими из них являются фосфорные эфиры моносахаридов [ глюкозо-6-фосфат, фруктозо-1,6-бисфосфат, рибозо-5-фосфат и др.], уроновые кислоты

[галактуроновая, глюкуроновая, идуроновая и др.], аминосахара

[глюкозамин, галактозамин и др.], сульфатированные производные

уроновых кислот, ацетилированные производные аминосахаров и др.Об­щее количество мономеров и их производных составляет несколько де­сятков соединений, что не уступает имеющемуся в организме коли­честву индивидуальных аминокислот.

Олигосахариды, представляющие собой полимеры, мономерными единицами которых являются моносахариды или их произ­водные. Число отдельных мономерных блоков в полимере может дости­гать полутора или двух / не более / десятков. Все мономерные еди­ницы в полимере связаны гликозидными связями. Олигосахариды в свою очередь делятся на гомоолигосахариды, состоящие из одинако-

вых мономерных блоков [ мальтоза ] , и гетероолигосахариды - в их

состав входят различные мономерные единицы [ лактоза ]. В боль­шинстве своем олигосахариды встречаются в организме в качестве структурных компонентов более сложных молекул - гликолипидов или гликопротеидов. В свободном виде в организме человека могут быть обнаружены мальтоза, причем мальтоза является промежуточным про­дуктом расщепления гликогена, и лактоза, входящая в качестве ре­зервного углевода в молоко кормящих женщин. Основную массу олиго­сахаридов в организме человека составляют гетероолигосахариды гликолипидов и гликопротеидов. Они имеют чрезвычайно разнообраз­ную структуру, обусловленную как разнообразием входящих в них мо­номерных единиц, так и разнообразием вариантов гликозидных связей между мономерами в олигомере .

Полисахариды, представляющие собой полимеры, построенные из моносахаридов или их производных, соединенных меж-

ду собой гликозидными связями, с числом мономерных единиц от нес­кольких десятков до нескольких десятков тысяч. Эти полисахариды могут состоять из одинаковых мономерных единиц, т.е. являться го­мополисахаридами, или же в их состав могут входить различные мо­номерные единицы - тогда мы имеем дело с гетерополисахаридами. Единственным гомополисахаридом в организме человека является гли­коген, состоящий из остатков a-D - глюкозы. Более разнообразен на-

бор гетерополисахаридов - в организме присутствуют гиалуроновая кислота, хондроитинсульфаты, кератансульфат, дерматансульфат, ге­парансульфат и гепарин. Каждый из перечисленных гетерополисахари­дов состоит из индивидуального набора мономерных единиц.Так основ-

ными мономерными единицами гиалуроновой кислоты являются глюку­роновая кислота и N-ацетилглюкозамин,тогда как в состав гепарина входят сульфатированный глюкозамин и сульфатированная идуроновая кислота.

Цель изучения темы: получить знания об особенностях строения и свойствах углеводов, об их биологической роли в организме, а также роли углеводов пищи и запасных углеводов человеческого тела в ходе процессов восстановления организма после физических нагрузок.

Учебно-целевые вопросы (план самоподготовки по теме)

 Общая характеристика углеводов.

 Особенности химического строения моно-, ди- и полисахаридов, входящих в состав пищевых продуктов и образующихся в теле человека.

 Биологическая роль углеводов, их содержание в различных тканях и органах тела человека.

 Ферментативные превращения углеводов в пищеварительной системе.

 Транспорт углеводов через клеточные мембраны.

 Норма углеводов в питании, понятие гликемического индекса.

Целевые задачи

 На основе знаний о структуре и химических свойствах моно-, и- и полисахаридов научиться объяснять различия между углеводами, входящими в состав продуктов питания, и углеводами человеческого тела.

 На основе знания основных этапов биохимических превращений углеводов в процесс пищеварения и всасывания выбирать методы применения пищевых углеводов для повышения работоспособности и ускорения восстановительных процессов после физических нагрузок.

Методические указания к изучению темы

Работая над материалом этой темы, прежде всего нужно выяснить, по каким признакам вещества относятся к классу углеводов, рассмотреть циклические и ациклические структуры моносахаридов, поскольку моносахариды являются основой для построения молекул более сложных углеводов. Определение характерных признаков моносахаридов целесообразно начать с выявления функциональных групп. Все моносахариды содержат одну карбонильную группу -С = О и несколько спиртовых гидроокислов -ОН, т. е. являются альдегидо- или кето-спиртами.

Происхождение названия "Углеводы" связано с тем, что судя по эмпирической формуле, большинство соединений этого класса представляют собой соединения углерода с водой. Так, эмпирическая формула глюкозы С 6 Н 12 О 6 =(СН 2 О) 6 , и большинство из распространенных углеводов можно охарактеризовать общей формулой (СН 2 О) n , n>3. Если карбонил расположен в конце углеродной цепи, он образует альдегидную группу, и моносахарид называется альдозой. Большинство альдоз можно изобразить общей формулой СН 2 ОН-(СНОН) n -СOH

Если карбонил расположен между углеродными атомами, он представляет собой кетонную группу, и моносахарид называется кетозой. Кетозам соответствует общая формула СН 2 ОН-СO-(СНОН) n -СН 2 ОН .

1. Биологическая роль углеводов

    Энергетическая. При распаде углеводов высвобождаемая энергия рассеивается в виде тепла или накапливается в молекулах АТФ. Углеводы обеспечивают около 50-60% суточного энергопотребления организма, а при мышечной деятельности на выносливость - до 70%. При окислении 1 г углеводов выделяется 17кДж энергии (4,1ккал). В качестве основного энергетического источника используется свободная глюкоза или запасы углеводов в виде гликогена.

    Пластическая. Углеводы (рибоза, дезоксирибоза) используются для построения АТФ, АДФ и других нуклеотидов, а также нуклеиновых кислот. Они входят в состав некоторых ферментов. Отдельные углеводы являются компонентами клеточных мембран. Продукты превращения глюкозы (глюкуроновая кислота, глюкозамин и т.д.) входят в состав полисахаридов и сложных белков хрящевой и других тканей.

    Резервная. Углеводы запасаются в скелетных мышцах, печени и других тканях в виде гликогена. Его запасы зависят от массы тела, функционального состояния организма, характера питания. При мышечной деятельности запасы гликогена существенно снижаются, а в период отдыха после работы восстанавливаются. Систематическая мышечная деятельность приводит к увеличению запасов гликогена, что повышает энергетические возможности организма.

    Защитная. Сложные углеводы входят в состав компонентов иммунной системы; мукополисахариды находятся в слизистых веществах, покрывающих поверхность сосудов, бронхов, пищеварительного тракта, мочеполовых путей и защищают от проникновения бактерий, вирусов, а также от механических повреждений.

    Специфическая. Отдельные углеводы участвуют в обеспечении специфичности групп крови, выполняют роль антикоагулянтов, являются рецепторами ряда гормонов или фармакологических веществ, оказывают противоопухолевое действие.

    Регуляторная. Клетчатка пищи не расщепляется в кишечнике, но активирует перистальтику кишечника, ферменты пищеварительного тракта, усвоение питательных веществ.



© dagexpo.ru, 2024
Стоматологический сайт