Что такое патологические клетки крови. Структура и размеры ядер. Внутриклеточные адаптивные механизмы

16.06.2019

Патология клетки – типовой патологический процесс, характеризующийся нарушением внутриклеточного гомеостаза, что ограничивает функциональные возможности клетки и может приводить ее к гибели или снижению продолжительности жизни .

Гомеостаз клетки – способность клетки существовать при изменении условий обитания с сохранением устойчивого динамического равновесия со средой.

Понятие «гомеостаз клетки » включает в себя ряд показателей (констант): внутриклеточное постоянство ионов водорода, электронов, кислорода, субстратов для энергетического и пластического обеспечения жизнедеятельности клетки, ферментов, нуклеотидов и еще ряд веществ.

Константы (лат. constantus – постоянная величина) гомеостаза клетки зависят от:

    структурно-функционального состояния ее различных мембран (плазмолемы, митохондрий, лизосом и др.) и органелл, интенсивности течения внутриклеточных биохимических процессов. Это своеобразная «метаболическая составляющая гомеостаза » и определяется работой исполнительного аппарата клетки;

    информационных процессов . Нормальная жизнедеятельность клетки невозможна без информации, поступающей к ней из внешней среды. Очень часто она изменяет параметры внутриклеточного постоянства, что является следствием включения приспособительных (адаптивных) программ, позволяющих клетке оптимально приспосабливаться к конкретной ситуации согласно поступившей информации. «Правильность » изменения констант внутриклеточного гомеостаза и их поддержание в границах нормы в данном случае определяется в первую очередь количеством и качеством информационного обеспечения клетки (наличием сигнальных молекул, рецепторов, пострецепторных связей и др.). Исполнительный аппарат клетки выполняет лишь «полученные указание ».

Следовательно, патология клетки может возникнуть и без первичного «полома » ее исполнительного аппарата, а из-за нарушений в механизмах сигнализации, в так называемой «информационной составляющей » внутриклеточного гомеостаза.

В зависимости от природы этиологического фактора, нарушающего гомеостаз (метаболическое и/или информационное его составляющее) клетки, различают физические, химические и биологические повреждающие агенты.

Физические этиологические факторы – это механические и температурные воздействия (гипо- и гипертермия), энергия электрического тока, ионизирующей радиации и электромагнитных волн, влияние факторов космического полета (ускорение, гипокенезия) и др.

Химические этиологические факторы – воздействие многочисленных неорганических и органических веществ (кислоты, щелочи, соли тяжелых металлов, этиловый и метиловый спирт). Патология может быть обусловлена дефицитом или избытком белков, жиров, углеводов, витаминов, микроэлементов и др. веществ. Немаловажное значение в этой группе факторов имеют и лекарственные препараты.

Все, выше названные патогенные факторы, вызывают различные повреждения клеток.

Тип (вид) повреждения клетки зависит от :

    скорости развития основных проявлений нарушений функции клеток . Выделяют острое и хроническое повреждение клетки. Острое повреждение развивается быстро, и как правило, в результате однократного, но интенсивного повреждающего воздействия. Хроническое повреждение протекает медленно и является следствием многократного влияния, но менее интенсивного по силе повреждения агента;

    жизненного цикла клетки, на период которого приходится воздействие повреждающего фактора. Различают митотические и интерфазные повреждения;

    от степени (глубины) нарушения клеточного гомеостаза – обратимые и необратимые повреждения;

    от характера взаимодействия повреждающего фактора с клеткой . Если патогенный агент действует непосредственно на клетку, то говорят о прямом (первичном) ее повреждении. В условиях целостного организма влияние причины может осуществляться и через формирование цепи вторичных реакций. Например, при механической травме непосредственно в месте воздействия этого агента образуются биологически активные вещества (БАВ) – это продукты распада погибших клеток, гистамин, оксидазы, простогландины и др. соединения, синтезируемые поврежденными клетками. БАВ, в свою очередь, вызывают нарушения функции клеток, ранее не попавших под влияние данного фактора. Такое повреждение получило название опосредованное или вторичное . Воздействие этиологического фактора может проявляться опосредованно и через изменения нервных и эндокринных регуляций (шок, стресс), при отклонениях физико-химического состояния организма (ацидоз, алколоз), при нарушениях системного кровообращения (сердечная недостаточность), гипоксии, гипо- и гипертермия, гипо- и гипегликемия и др.

    от характера повреждений вызванных определенным патогенным фактором . Рассматривают специфические и неспецифические повреждения.

Литвицкий П.Ф. (2002) выделяет и специфические повреждения определенных клеток, возникающее при взаимодействии с самыми различными патогенными факторами. В качестве примера приводит развитие контрактур мышечных клеток при влиянии на них физических, химических и биологических факторов, или, возникновение гемолиза эритроцитов при аналогичных воздействиях.

Неспецифические повреждения – это стандартные, стереотипные изменения в клетках возникающие при их взаимодействии с широким спектром этиологических факторов. В качестве примера можно привести следующие нарушения:

    повышение проницаемости мембран клеток;

    активация свободно-радикальных и перекисных реакций;

    внутриклеточный ацидоз;

    денатурация молекул белков;

    дисбаланс ионов и воды;

    изменение интенсивности окислительного фосфорилирования.

Взаимосвязи между специфическими и неспецифическими повреждениями клеток разнообразны. Они могут возникать одновременно, либо одно из них предшествует другому. Выяснение конкретных видов нарушений, времени их возникновения и соотношении между собой, дает врачу необходимую информацию о характере и интенсивности действия причинного фактора, глубине и распространенности патологического процесса. Это в свою очередь обеспечивает проведение более этиотропной и патогенетической профилактики и терапии. Например, если при гепатитах различного происхождения регистрируется только увеличение в плазме крови концентрации ионов К и аланинаминотрансферазы (АЛТ) то это свидетельствуют о легком течении или начале заболевания. Калий и АЛТ находятся в цитоплазме, возрастание их содержание за пределами клеточной мембраны характерны при нарушении ее проницаемости (неспецифическое повреждение). Появление же в крови довольно специфического для печени фермента – сорбитдегидрогеназы и органеллоспецифичных – глютаматдегидрогеназы (локализация - митохондрии), кислой фосфотазы (локализация лизосомы) говорит об усугублении патологического процесса . Он уже не ограничивается только мембраной клетки, а затрагивает и внутриклеточные структуры.

Как было отмечено выше, патология клетки возникает вследствие нарушения ее гемостаза. Он может изменяться не только при непосредственном воздействии патогенного агента на клетку (тем самым, нарушая в основном работу ее исполнительного аппарата), но и при недостаточности информационных механизмов, инициирующих включение тех или иных адаптогенных программ. В связи с этим, природу заболеваний человека можно рассматривать с двояких позиций – материально-энергетических и информационных (А.Ш. Зайчик, Л.П. Чурилов, 1999). Болезнь развивается, и при повреждении исполнительного аппарата клетки (материально-энергетическая позиция ), и при нарушении ее информационных механизмов (информационная позиция ). Основываясь на последнем положеним, существует даже специальная терминология – «болезни регуляции », «дизрегуляционная патология ».

Данные позиции легче выявляются на начальных этапах патологии клетки. По мере ее развития различия между ними более затруднительны, и тем не менее, этиотропная и патогенетическая терапия будет более адекватной и успешной при установлении истинного механизма (причины) развития того или иного проявления патологии.

Сейчас мы приступаем непосредственно к рассмотрению ответа клетки на патогенный агент. Согласно нашего плана (рис. 1), сюда входят вопросы адаптации и паранекроза. Они между собой тесно связаны, так как любой патологический процесс (болезнь) состоит из двух компонентов: повреждения (альтерации ) и защитно-приспособительных (адаптивных ) механизмов. Альтерация моментально вызывает активацию адаптивных механизмов, направленных на поддержание жизнедеятельности клетки в изменившихся условиях. Параллельное изучение вопросов альтерации и защитно-приспособи-тельных механизмов создает определенные трудности в усвоении учебного материала. Поэтому мы первоначально разберем механизмы повреждения гомеостаза клетки, а затем защитно-приспособительных реакций. При этом будем помнить, что начальный этап альтерации клетки – паранекроз – это не только повреждение, но и наличие защитно-приспособительных механизмов, пусть и не в полной мере выполняющих свое назначение.

Рассмотрение патологии клетки начинаем с нарушений, возникающих при непосредственном воздействии на нее патогенного агента. Взаимодействие этиологического фактора с различными структурными образованиями клетки, ведет к нарушению ее гомеостаза (его метаболической составляющей ), и, следовательно, развитию болезни. Патология может возникнуть при повреждении различных биомембран клетки (особенно часто повреждается плазмолемма) и внутриклеточных образований: ядра, митохондрий, лизосом и др. (рис. 2).

5. В медико-генетическую консультацию обратилась женщина 20 лет. Ее родная сестра больна тяжелой формой серповидно-клеточной анемии, у пациентки никаких заболеваний крови не было, супруг здоров. Женщину интересует, каков риск развития этой болезни у планируемого ребенка. При обследовании крови супругов на типы гемоглобина получены результаты: у мужчины HbA 98 %, HbS 1 %; у женщины HbA 70 %, HbS 29 %.
Каков ответ на вопрос женщины? Были ли основания для беспокойства? Возможна ли профилактика при планировании конкретного ребенка? Связано ли заболевание с полом ребенка?
6. Какие группы крови невозможны у детей от родителей со следующими группами крови по системе АВ0: I(0) и III(В)? III(В) и IV(АВ)? IV(АВ) и IV(АВ)? II(А) и III(В)? Какое значение при рождении второго ребенка имеет установленная группа крови первого?
7. В медико-генетическую консультацию обратилась беременная, которая сообщила, что ее сестра больна фенилкетонурией, сама наследственные заболевания отрицает. Супруг здоров. В его роду были браки между близкими родственниками, но случаев фенилкетонурии не отмечалось.
Какова вероятность появления фенилкетонурии у ребенка? Имеет ли значение вероятный пол ребенка? Можно ли лечить эту болезнь после ее появления?

Глава 4
ПАТОЛОГИЯ КЛЕТКИ

Клетка – структурная и функциональная единица всех живых организмов. В клетке сосредоточено уникальное свойство живого – способность размножаться, видоизменяться и реагировать на изменения окружающей среды. Эукариотическая клетка состоит из трех основных компонентов: плазматической мембраны, ядра, цитоплазмы. Главной функцией клетки является осуществление обмена со средой веществом, энергией и информацией, что подчинено в конечном счете задаче сохранения клетки как целого при изменении условий существования (рис. 4.1 на с. 52).
Органоиды клетки, обладая определенными морфологическими особенностями, обеспечивают основные проявления жизнедеятельности клетки. С ними связаны дыхание и энергетические запасы (митохондрии), синтез белков (рибосомы, шероховатая эндоплазматическая сеть), накопление и транспорт липидов и гликогена, обезвреживание токсинов (гладкая эндоплазматическая сеть), синтез продуктов и их выделение из клетки (комплекс Гольджи), внутриклеточное пищеварение и защитная функция (лизосомы). Важно подчеркнуть, что функции субклеточных органелл не строго разграничены, поэтому они могут участвовать в разных внутриклеточных процессах.
Все перечисленное делает познание основ патологии клетки абсолютно необходимым для понимания закономерностей развития патологии на уровне тканей, органов и систем, болезни в целом – на уровне организма человека.

Рис. 4.1. Общее строение эукариотической клетки и ее основных органелл :
1 – секреторные гранулы (накопление продуктов секреции); 2 – центриоли (центр полимеризации микротрубочек); 3 – гладкая эндоплазматическая сеть (детоксикация и синтез стероидов); 4 – лизосомы (внутриклеточное переваривание); 5 – митохондрия (синтез АТФ и стероидов); 6 – сферические единицы (превращение энергии); 7 – липидные капельки (накопление); 8 – ядрышко (синтез рРНК); 9 – ядерная оболочка (разделение хроматина и цитоплазмы); 10 – шероховатая эндоплазматическая сеть (синтез и сегрегация белков, посттрансляционные изменения); 11 – комплекс Гольджи (конечные посттрансляционные изменения, упаковка и транспорт)

4.1. ПОВРЕЖДЕНИЕ КЛЕТКИ: ПРИЧИНЫ И ОБЩИЕ МЕХАНИЗМЫ

Повреждение – процесс, проявляющийся нарушением структурной и функциональной организации живой системы, вызванный различными причинами. В наиболее общем смысле повреждение на любом уровне представляет собой такое изменение структуры и функции, которое не способствует, а мешает жизни и существованию организма в окружающей среде. Повреждение является начальным моментом в развитии патологии, внутренней стороной взаимодействия причинного фактора с организмом. В этом смысле термины «этиологический фактор», «болезнетворный фактор» и «повреждающий фактор» являются синонимами.
Любое повреждение проявляется на различных уровнях:
молекулярном (повреждение клеточных рецепторов, молекул ферментов, нуклеиновых кислот вплоть до их дезинтеграции);
субклеточном – ультраструктурном (повреждение митохондрий, эндоплазматической сети, мембран и других ультраструктур вплоть до их деструкции);
клеточном (различные дистрофии из-за нарушения разных видов обмена с возможным развитием некроза по типу рексиса или лизиса клетки);
тканевом и органном (дистрофические изменения в большинстве клеток и строме с возможным развитием некроза (по типу инфаркта, секвестра и др.);
организменном (болезнь с возможным смертельным исходом).
Иногда дополнительно выделяют уровень тканевых комплексов, или гистионов, включающих в свой состав сосуды микроциркуляторного русла (артериола, капилляры, венула) и питаемые ими клетки паренхимы, соединительную ткань и терминальные нервные окончания. Морфологически повреждение может быть представлено двумя патологическими процессами: дистрофией и некрозом, которые нередко являются последовательными стадиями (рис. 4.2).
Причины повреждения клетки. Вовлечение клеток во все патологические процессы, происходящие в организме, объясняет и универсальность причин, вызывающих повреждение клеток, которые соответствуют по структуре классификации этиологических факторов болезни вообще (табл. 4.1).

Рис. 4.2. Обратимые и необратимые клеточные повреждения :
А – нормальная клетка: 1 – ядро; 2 – лизосома; 3 – эндоплазмолитическая сеть; 4 – митохондрии.
Б – обратимое повреждение: 1 – объединение внутримембранных частиц;
2 – разбухание эдоплазматической сети;
3 – дисперсия рибосом; 4 – разбухание митохондрий; 5 – уменьшение плотности митохондрий; 6 – самопереваривание лизосом; 7 – агрегация ядерного хроматина; 8 – выпячивание.
В – необратимые повреждения: 1 – миелиновые тельца; 2 – лизис эндоплазматической сети; 3 – дефект клеточной мембраны; 4 – большая разряженность митохондрий; 5 – пикноз ядра; 6 – разрыв лизосом и аутолиз

Причиной повреждения клетки может стать фактор как экзогенной, так и эндогенной природы. Применительно к клетке наиболее важные механические и физические агенты (механическая травма, колебания температуры окружающей среды и атмосферного давления, радиация, электрический ток, электромагнитные волны); химические агенты (изменение pH, снижение содержания кислорода, соли тяжелых металлов, органические растворители и др.); всевозможные инфекционные агенты; иммунные реакции, генетические нарушения, дисбаланс питания.

Таблица 4.1
Этиологические факторы повреждения клетки


Психогенные факторы повреждения для организма на уровне клеток воспринимаются через вторичные воздействия, которые являются физическими или химическими по своей природе. Например, при эмоциональном стрессе повреждение миокарда объясняется воздействием адреналина и изменением электрической активности симпатических волокон автономной нервной системы.

Общий патогенез клеточного повреждения. С точки зрения развития процессов в самой общей форме повреждения клетки могут проявляться нарушениями клеточного обмена веществ, развитием дистрофии, парабиоза и, наконец, некроза, когда клетка погибает.
Повреждения клетки могут быть обратимыми и необратимыми . Например, обратимым является повреждение лизосом в клетках эпителия кишечника под влиянием эндотоксина микроорганизмов кишечной группы. После прекращения интоксикации лизосомы в поврежденной клетке восстанавливаются. В случае повреждения клеток энтеровирусом повреждение выражается дегрануляцией лизосом, которую может вызвать, например, любая вирусная инфекция.
По своему течению повреждения могут быть острыми и хроническими . Функциональные проявления острого повреждения клетки делятся на преддепрессионную гиперактивность, парциальный некроз и тотальное повреждение (клеточный некроз).
Первое и наиболее общее неспецифическое выражение повреждения клетки при действии любого агента – это нарушение состояния неустойчивого равновесия клетки и среды, являющегося общей характеристикой всего живого, независимо от уровня его организации.
Преддепрессионная гиперактивность (по Ф. З. Меерсону) возникает вследствие обратимого повреждения клетки умеренными воздействиями патогенных факторов. В результате в мембране клетки происходят неспецифическое возбуждение и усиление деятельности органелл, в первую очередь митохондрий. Это приводит к усилению окисления субстратов и синтеза АТФ, сопровождается повышением резистентности клетки к патологическому фактору. Если воздействие этого фактора ограничено, может произойти ликвидация повреждения с последующим восстановлением первоначальной структуры и функции. Считают, что после такого воздействия в генетическом аппарате клетки сохраняется информация о происшедшем воздействии, так что в дальнейшем при повторном действии этого же фактора приспособление клетки значительно облегчается.
В случае парциального некроза поврежденная часть клетки отделяется от функционирующей части вновь образующейся мембраной и уничтожается фагоцитами. После этого структура и функция клетки восстанавливаются за счет гиперплазии субклеточных единиц.
Если повреждающий фактор имеет выраженную интенсивность и время действия, то происходит тотальное повреждение клетки, что приводит к прекращению функции митохондрий, нарушению клеточного транспорта и всех энергозависимых процессов. В дальнейшем происходит массивное разрушение лизосом, выход гидролитических ферментов в цитоплазму и расплавление остальных органелл, ядра и мембран. Фаза острого повреждения клетки, когда еще сохраняется небольшой градиент концентрации ионов между цитоплазмой и внеклеточной средой, называется агонией клетки. Она необратима и завершается некрозом клетки, при этом резкое увеличение проницаемости и частичное разрушение клеточных мембран способствуют доступу в клетку из окружающей среды ферментов, которые продолжают разрушение всех ее структурных элементов.

Специфическое и неспецифическое в повреждении клетки. Специфические повреждения можно усмотреть при анализе любого его вида. Например, при механической травме – это нарушение целостности структуры ткани, при аутоиммунной гемолитической анемии – изменение свойств мембраны эритроцитов под влиянием гемолизина и комплемента, при радиационном повреждении – образование свободных радикалов с последующим нарушением окислительных процессов.
Неспецифическими повреждениями клетки, т. е. мало зависящими от вида повреждающего фактора, являются следующие:
нарушение неравновесного состояния клетки и внешней среды;
нарушение структуры и функции мембран: проницаемости и мембранного транспорта, мембранного электрического потенциала, рецепторного аппарата, формы клеток;
нарушение обмена и электролитного состава клетки и ее отдельных частей;
нарушение активности ферментных систем клетки (вплоть до ферментативного разрушения клетки);
уменьшение объема и интенсивности биологического окисления;
нарушение хранения и передачи генетической информации;
снижение специфической функции (для специализированных клеток).
Повреждение специфических функций, нужных для организма в целом, прямо не отражается на судьбе клеток, но определяет суть изменений в органах и системах, поэтому рассматривается в курсе частной патологии.
Большинство повреждений на субклеточном уровне имеет неспецифический характер и не зависит от вида повреждающих факторов. Так, например, в миокарде при острой ишемии, воздействии адреналина, отравлении морфином, разлитом гнойном перитоните, облучении наблюдаются аналогичные изменения поврежденных клеток в виде набухания митохондрий и разрушения их мембран, вакуолизации эндоплазматической сети, очаговой деструкции миофибрилл и появления избыточного количества липидных включений. Такие идентичные изменения структур под влиянием различных факторов называются стереотипными.
При одинаковом воздействии на весь орган какого-либо повреждающего фактора обычно проявляется весь спектр возможных состояний клетки от практически нормального и даже усиленно функционирующего до гибели (некроза). Это явление называется мозаичностью . Например, при действии вируса ветряной оспы на клетки кожи некрозы развиваются в виде мелких очагов, образуя характерную сыпь в виде пузырьков (везикул).
Повреждения на клеточном уровне иногда могут иметь специфический характер. Специфические изменения обусловлены внутриклеточной репликацией вируса (с появлением в ядре или цитоплазме включений, представляющих собой или скопления вирусных частиц, или реактивные изменения клеточного вещества в ответ на их репликацию), опухолевым метаморфозом и врожденными или приобретенными ферментопатиями, приводящими к накоплению в клетке нормальных метаболитов в избыточном количестве или аномальных в виде включений.

4.2. ПАТОЛОГИЯ КЛЕТОЧНЫХ МЕМБРАН

Основной структурной частью мембраны является липидный бислой, состоящий из фосфолипидов и холестерина с включенными в него молекулами разных белков. Снаружи клеточная мембрана покрыта слоем гликопротеидов. К функциям мембраны клетки относятся избирательная проницаемость, реакции межклеточных взаимодействий, поглощение и выделение специфических веществ (рецепция и секреция). Плазматическая мембрана – место приложения физических, химических, механических раздражителей внешней среды и сигналов информационного характера из внутренней среды организма. Информационная функция обеспечивается рецепторами мембраны, защитная – самой мембраной, контактная – клеточными стыками (рис. 4.3).
Способность формировать мембраны является решающей в образовании клетки и ее субклеточных органелл. Любое нарушение сопровождается изменением проницаемости клеточных мембран и состояния цитоплазмы поврежденной клетки. Повреждение клеточных мембран может быть обусловлено деструкцией их липидных или белковых (ферментных и рецепторных) компонентов.
К патологии клетки могут вести нарушения следующих функций мембран: мембранного транспорта, проницаемости мембран, коммуникации клеток и их «узнавания», подвижности мембран и формы клеток, синтеза и обмена мембран (схема 4.1).

Рис. 4.3. Структура мембраны клетки (схема):
1 –двойной слой фосфолипидов; 2 – мембраные белки; 3 – полисахаридные цепи

Схема 4.1. Общие механизмы повреждения мембран клеток [Литвицкий П. Ф. , 1995]


Повреждение липидных компонентов клеточных и субклеточных мембран возникает несколькими путями. Важнейшими из них являются перекисное окисление липидов, активация мембранных фосфолипаз, осмотическое растяжение белковой основы мембран, повреждающее воздействие иммунных комплексов.
Мембранный транспорт предполагает перенос ионов и других субстратов против избытка (градиента) их концентрации. При этом нарушаются функция клеточных насосов и процессы регуляции обмена веществ между клеткой и окружающей ее средой.
Энергетической основой работы клеточных насосов являются процессы, зависящие от энергии АТФ. Эти ферменты «вмонтированы» в белковую часть клеточных мембран. В зависимости от вида проходящих по каналу ионов различают Na – K-АТФазу, Ca – Mg-АТФазу, Н – АТФазу и др. Особое значение имеет работа первого насоса, результатом которой является превышение концентрации К + внутри клетки приблизительно в 20–30 раз по сравнению с внеклеточной. Соответственно этому концентрация Na + внутри клетки приблизительно в 10 раз меньше, чем снаружи.
Повреждение Na – K-насоса вызывает освобождение К + из клетки и накопление в ней Na + , что характерно для гипоксии, инфекционных поражений, аллергии, снижения температуры тела и многих других патологических состояний. С транспортом Na + и К + тесно связан транспорт Ca 2+ . Интегральное выражение этих нарушений хорошо иллюстрируется на примере гипоксии миокарда, которая проявляется прежде всего патологией митохондрий.
Известно участие Са 2+ в освобождении медиаторов аллергии из лабиринтов (тучных клеток). По современным данным, их аллергическая травма сопровождается разжижением мембраны, разрыхлением и увеличением проводимости кальциевых каналов. Ионы кальция, проникая в большом количестве внутрь клетки, способствуют освобождению гистамина и других медиаторов из гранул.
Морфологически нарушение проницаемости плазматической мембраны проявляется усиленным образованием ультрамикроскопических пузырьков, что приводит к дефициту поверхности или, напротив, увеличению поверхности за счет мембран микропиноцитозных пузырьков. В отдельных случаях выявляются утолщение и извитость участков мембраны, отделение части цитоплазмы, окруженной мембраной, от клетки. Это свидетельствует об активизации цитоплазматической мембраны. Другим наблюдаемым при электронной микроскопии признаком повреждения мембраны является образование крупных микропор – «брешей», что ведет к набуханию клетки, перерастяжению и разрыву клеточных мембран.
С формой и подвижностью мембраны непосредственно связаны изменения формы и подвижности клетки в целом, хотя при патологии обычно происходит упрощение формы клеточной поверхности (например, потеря микроворсинок энтероцитами).
Отдельного внимания заслуживает патология, развивающаяся при повреждении межклеточных взаимодействий. Поверхность мембраны клетки содержит множество рецепторов, воспринимающих различные раздражители. Рецепторы представлены сложными белками (гликопротеидами), способными свободно перемещаться как по поверхности клеточной мембраны, так и внутри ее. Механизм рецепции является энергозависимым, поскольку для передачи сигнала с поверхности внутрь клетки требуется АТФ. Особый интерес представляют рецепторы, одновременно являющиеся поверхностными антигенами-маркерами определенных типов клеток.
При разных патологических процессах (воспаление, регенерация, опухолевый рост) могут изменяться поверхностные антигены, причем различия могут касаться как типа антигена, так и его доступности со стороны внеклеточного пространства. Например, повреждения гликолипидов мембраны делают ее более доступной воздействию антител.
Патология клеточной рецепции ведет к нарушению восприятия информации. Например, наследственное отсутствие апо-Е– и апо-В-рецепторов у клеток печени и жировой клетчатки ведет к развитию семейных типов ожирения и гиперлипопротеинемии. Аналогичные дефекты выявлены при некоторых формах сахарного диабета.
Межклеточное взаимодействие и кооперация клеток определяются состоянием клеточных стыков, которые могут повреждаться при различных патологических состояниях и болезнях. Клеточные стыки выполняют три главные функции: межклеточную адгезию, «тесное общение» клеток и герметизацию слоя эпителиальных клеток. Межклеточная адгезия ослабевает при опухолевом росте уже на ранних этапах онкогенеза и является одним из критериев роста опухоли. «Тесное общение» заключается в прямом обмене клеток через щелевидные стыки информационными молекулами. Дефекты «тесного общения» играют значительную роль в поведении и возникновении злокачественных опухолей. Нарушения межмембранных связей клеток тканевых барьеров (кровь – мозг, кровь – легкие, кровь – желчь, кровь – почки) ведут к увеличению проницаемости плотных стыков клеток и повышенной проницаемости барьеров.

4.3. ПАТОЛОГИЯ КЛЕТОЧНОГО ЯДРА

Ядро обеспечивает координацию работы клетки в интерфазу, хранение генетической информации, передачу генетического материала при клеточном делении. В ядре происходят репликация ДНК и транскрипция РНК. При повреждении могут наблюдаться отек ядра, его сморщивание (пикноз), разрыв и разрушение (кариорексис и кариолизис). Ультрамикроскопическое исследование позволяет различить несколько типовых нарушений ядра и генетического аппарата клетки.
1. Изменение структуры и размеров ядра зависит от содержания в нем ДНК. В нормальном интерфазном ядре содержится диплоидный (2n) набор хромосом. Если после окончания синтеза ДНК не происходит митоза, появляется полиплоидия – кратное увеличение набора ДНК. Полиплоидия может встречаться в нормально функционирующих клетках печени, почек, в миокарде; она особенно ярко выражена в тканях при регенерации и опухолевом росте, причем чем более злокачественна опухоль, тем более выражена гетероплоидия. Анеуплоидия – изменение в виде неполного набора хромосом – связана с хромосомными мутациями. Ее проявления встречаются в большом количестве в злокачественных опухолях.
Вещество ДНК в ядре распределено неравномерно. В наружных отделах ядер находят конденсированный хроматин (гетерохроматин), который считается неактивным, а в остальных отделах – неконденсированный (эухроматин), активный. Конденсация хроматина в ядре рассматривается как признак метаболической депрессии и предвестник гибели клетки. К патологическим изменениям ядра относят также его токсическое набухание. Уменьшение размеров ядра характерно для снижении обмена веществ в клетке и сопутствует ее атрофии.
2. Изменение формы ядра может вызываться цитоплазматическими включениями (перстневидные клетки при слизьобразующем раке, ожиревшие гепатоциты), образованием множественных выпячиваний ядра в цитоплазму вследствие повышения синтетической активности ядра (полиморфизм ядер при воспалении, опухолевом росте). Как крайний вариант в ядре могут встречаться включения (цитоплазматические или вирусные).
3. Изменение количества ядер проявляется многоядерностью в гигантских клетках при воспалении (клетки Пирогова–Лангханса при туберкулезе), опухолях (клетки Штернберга–Березовского при лимфогранулематозе). Безъядерность может наблюдаться в нормальных клетках (эритроциты, тромбоциты), в жизнеспособных фрагментах опухолевых клеток и как свидетельство гибели клеток (кариолизис).
4. Изменение структуры и размеров ядрышек заключается в их увеличении и повышении плотности (соответствует повышению функциональной активности) или дезорганизации (встречается при энергодефиците в клетке и сопровождается патологией митозов).
5. Изменение ядерной оболочки (двойной мембраны) состоит в нарушениях связи ее с эндоплазматической сетью, выпячивании и искривлении обеих мембран, изменении количества и размеров пор, появлению включений в межмембранном пространстве. Данные изменения свидетельствуют о вовлеченности ядра в повреждение клетки и характерны для интоксикации, вирусных инфекций, радиационных повреждений, опухолевого перерождения клетки.
6. Процессы клеточного деления (митоза) могут нарушаться при различных воздействиях, при этом может страдать любое из его звеньев. Наибольшую известность получила классификация патологии митозов, предложенная И.А. Аловым (1972):
I тип – повреждение хромосом (задержка деления в профазе);
II тип – повреждение митотического аппарата (задержка в метафазе);
III тип – нарушение цитотомии (задержка в телофазе).
Можно считать установленным, что задержка вступления клеток в митоз возникает в основном в связи с нарушением их метаболизма, в частности синтеза нуклеиновых кислот и белков, а нарушение хромосом при репродукции клетки, обнаруживаемое в условиях патологии, – вследствие разрыва цепей ДНК и расстройства репродукции ДНК хромосом.
Особенности реакции клетки на повреждающий фактор зависят как от его характеристики, так и от типа клетки по ее способности к делению, обеспечивающей возможность рекомпенсации. Считают, что в организме имеется три категории специализированных клеток по их способности к делению.
Клетки I категории с самого рождения организма достигают высокоспециализированного состояния структур за счет минимизации функций. В организме отсутствует источник возобновления этих клеток в случае их дисфункции. К таким клеткам относятся нейроны. Клетки I категории способны к внутриклеточной регенерации, в результате которой восстанавливаются утраченные части клеток, если сохранены ядерный аппарат и трофическое обеспечение.
Клетки II категории – это высокоспециализированные клетки, выполняющие какие-либо определенные функции и затем либо «изнашивающиеся», либо слущивающиеся с различных поверхностей, причем иногда очень быстро. Подобно клеткам I категории, они не способны размножаться, однако в организме имеется механизм для их непрерывного воспроизводства. Такие клеточные популяции называют обновляющимися, а состояние, в котором они находятся, – стационарным. К таким клеткам относятся, например, клетки, выстилающие большую часть кишечника.

имени профессора В.Ф. Войно-Ясенецкого

Министерства здравоохранения

и социального развития Российской Федерации»

ГОУ ВПО КрасГМУ

им. проф. Войно-Ясенецкого

Факультет ФМО

Кафедра биологии с экологией и курсом фармакогнозии

Ситуационные задачи

по дисциплине «Биология с экологией»

для самоподготовки студентов первого курса

специальность 060101– Лечебное дело

специальность 060103 – Педиатрия

специальность 060105 - Стоматология

Красноярск 2009

полочный индекс

Ситуационные задачи по дисциплине «Биология с экологией»: методические разработки к внеаудиторной работе для студентов 1 курса обучающихся на факультете ФМО по специальностям: 060101- «Лечебное дело», 060103 – «Педиатрия», 060105- «Стоматология»:- Красноярск, типография КрасГМУ.-2009.- 35с.

Составители: зав. каф., доц., д.б.н. Т.Я.Орлянская, доц., к.б.н. М.Н.Максимова, доц., к.б.н. доц., к.б.н. В.А.Чиненков, доц. к.б.н. Л.С. Смирнова, асс. Г.П. Гаевская, асс. Н.Н. Дегерменджи, асс. Т.С.Подгрушная, асс. В.С.Крупкина, асс. Т.И.Устинова, асс. С.В. Чижова.

Под редакцией д-ра биол. наук. Т.Я. Орлянской.

Методическое руководство по предмету «Биология с экологией» для студентов первого курса содержат набор ситуационных задач по основным разделам дисциплины, которые ориентируют обучающихся на контроль знаний программного материала в процессе самоподготовки.

1. Ситуационные задачи по теме «Биология клетки»

1. Постоянный препарат изучен на малом увеличении, однако при переводе на большое увеличение объект не виден, даже при коррекции макро- и микрометрическим винтами и достаточном освещении. Необходимо определить, с чем это может быть связано?

Ответ : Причина может быть связана с тем, что препарат помещен на предметный столик неправильно: покровным стеклом вниз, а при работе на большом увеличении толщина предметного стекла не позволяет добиться точной наводки на фокус.

2. Препарат помещен на предметный столик микроскопа, имеющего в основании лапки штатива зеркало. В аудитории слабый искусственный свет. Объект хорошо виден на малом увеличении, однако при попытке его рассмотреть при увеличении объектива х40, в поле зрения объект не просматривается, видно темное пятно. Необходимо определить, с чем это может быть связано?

Ответ : Причин может быть несколько: 1 – для исследования использована плоская сторона зеркала, а комната недостаточно ярко освещена, поэтому объект при большом увеличении недостаточно освещен и не виден в поле зрения; 2 – возможно, движение револьвера было недостаточным, не доведен до щелчка, поэтому объектив не находится против объекта исследования; 3 – посмотреть как помещен на предметный столик препарат, возможно, он помещен покровным стеклом вниз.

3. Исследуемый препарат оказался поврежден: разбито предметное и покровное стекла. Объясните, как это могло произойти?

Ответ : Причина - неправильное обращение с макрометрическим винтом. Он опускает объектив к препарату. При работе с ним необходимо смотреть не в окуляр, а сбоку, контролируя расстояние от объектива к препарату, которое составляет в среднем 0,5см.

4. Общее увеличение микроскопа составляет при работе в одном случае - 280, а в другом - 900. Объясните, какие использованы объективы и окуляры в первом и во втором случаях и, какие объекты они позволяют изучать?

Ответ: В первом случае используется окуляр х7, а объектив х40, при данном увеличении можно рассмотреть крупные микрообъекты (н-р, клетки кожицы лука, клетки крови лягушки, перекрест волос); во втором случае используется окуляр х10, а объектив х90, при данном увеличении можно рассмотреть самые мелкие микрообъекты, используя при этом иммерсионное масло (органоиды клеток, колонии бактерий, мелкие клетки простейших, клетки крови человека).

5. Как надо расположить препарат, чтобы увидеть объект в нужном виде?

Ответ: Препарат необходимо расположить на предметный столик покровным стеклом вверх, объект должен располагаться в центре отверстия предметного столика, с учетом того, что изображение в микроскопе получаем обратное.

6. При ряде врожденных лизосомных «болезнях накопления» в клетках накапливается значительное количество вакуолей, содержащих нерасщепленные вещества. Например, при болезни Помпе происходит накопление гликогена в лизосомах. Объясните с чем связано данное явление, исходя из функциональной роли данного органоида клеток.

Ответ: Лизосомы в клетке участвуют в процессах внутриклеточного переваривания, они содержат около 40 гидролитических ферментов: протеазы, нуклеазы, гликозидазы, фосфорилазы и др. В данном случае в наборе ферментов отсутствует фермент кислой а-гликозидазы, участвующий в функционировании лизосом.

7. При патологических процессах обычно в клетках значительно увеличивается количество лизосом. На основании этого возникло представление, что лизосомы могут играть активную роль при гибели клеток. Однако известно, что при разрыве мембраны лизосом, выходящие гидролазы теряют свою активность, так как в цитоплазме слабощелочная среда. Объясните, какую роль играют лизосомы в данном случае, исходя из функциональной роли этого органоида в клетке.

Ответ: Одной из функций лизосом является автолиз или аутофагия. В настоящее время склонны считать, что процесс аутофагоцитоза связан с отбором и уничтожением измененных, «сломанных» клеточных компонентов. В данном случае лизосомы выполняют роль внутриклеточных чистильщиков, контролирующих дефектные структуры. В конкретном случае накопление лизосом и связано с выполнением ферментами этой функции - автолиз погибших клеток.

8. Объясните какие последствия могут ожидать животную клетку, у которой в клеточном центре отсутствуют одна центриоль и лучистая сфера (астросфера).

Центросомы обязательны для клеток животных, они принимают участие в формировании веретена деления и располагаются на полюсах, в неделящихся клетках определяют полярность клеток. При отсутствии данного органоида такая клетка не способна к пролиферации.

9. Обычно, если клеточная патология связана с отсутствием в клетках печени и почек пероксисом, то организм с таким заболеванием нежизнеспособен. Дайте объяснение этому факту, исходя из функциональной роли этого органоида в клетке.

Ответ: Микротельца или пероксисомы играют важную роль в метаболизме перекиси водорода, которая является сильнейшим внутриклеточным ядом и разрушает клеточные мембраны. В пероксисомах печени фермент каталаза составляет до 40% всех белков и выполняет защитную функцию. Вероятно, отсутствие данных ферментов, приводит к необратимым изменениям на уровне функционирования клеток, тканей и органов.

10. Объясните, почему у зимних спящих сурков и зимующих летучих мышей число митохондрий в клетках сердечной мышцы резко снижено.

Ответ: Количество митохондрий в клетках сердечной мышцы зависит от функциональной нагрузки на сердце и расхода энергии, которая вырабатывается и накапливается в макроэргических связях АТВ в «энергетических станциях» клеток, которыми являются митохондрии. В период спячки в организме животных процессы метаболизма замедленны и нагрузка на сердце минимальная.

11. Известно, что у позвоночных животных кровь красная, а у некоторых беспозвоночных (головоногих моллюсков) голубая. Объясните с присутствием, каких микроэлементов связан определенный цвет крови у этих животных?

Ответ: Кровь этих животных голубая т.к. в ее состав входит гемоцианин, содержащий медь (Си).

12.Зерна пшеницы и семена подсолнечника богаты органическими веществами. Объясните, почему качество муки связано с содержанием клейковины в ней, какие органические вещества находятся в клейковине пшеничной муки. Какие органические вещества находятся в семенах подсолнечника?

Ответ: Клейковина – это та часть муки, в которой содержится белковый компонент, благодаря которому качество муки ценится выше. В семенах подсолнечника наряду с белками и углеводами в значительном количестве находятся растительные жиры.

13. Восковидные липофусцинозы нейронов могут проявляться в разном возрасте (детском, юношеском и зрелом), относятся к истинным болезням накопления, связанным с нарушением функций органоидов мембранного строения, содержащих большое количество гидролитических ферментов. Симптоматика включает признаки поражения центральной нервной системы с атрофией головного мозга, присоединяются судорожные припадки. Диагноз ставится при электронной микроскопии - в этих органоидах клеток очень многих тканей обнаруживаются патологические включения. Объясните, в каком органоиде в клетках нарушена функция?

Ответ: у людей с данной патологией нарушена функция лизосом, возможно, какие-то ферменты отсутствуют или не включаются, поэтому в лизосомах обнаруживаются недорасщепленные структуры.

14. У больного выявлена редкая болезни накопления гликопротеинов, связанная с недостаточностью гидролаз, расщепляющих полисахаридные связи эти аномалии характеризуются неврологическими нарушениями и разнообразными соматическими проявлениями. Фукозидоз и маннозидоз чаще всего приводят к смерти в детском возрасте, тогда как аспартилглюкозаминурия проявляется как болезнь накопления с поздним началом, выраженной психической отсталостью и более продолжительным течением.

Объясните, в каком органоиде в клетках нарушена функция?

Ответ: у людей с данной патологией нарушена функция лизосом, отсутствуют ферменты, расщепляющие гликопротеины, поэтому в лизосомах обнаруживаются недорасщепленные структуры.

15. Выявлено наследственное заболевание, связанное с дефектами в функционирования органоида клетки приводящее к нарушениям энергетических функций в клетках - нарушению тканевого дыхания, синтеза специфических белков. Данное заболевание передается только по материнской линии к детям обеих полов. Объясните, в каком органоиде произошли изменения. Ответ обоснуйте.

Ответ: произошел дефект митохондриальной ДНК, идет неправильное считывание информации, нарушается синтез специфических белков, проявляются дефекты в различных звеньях цикла Кребса , в дыхательной цепи , что привело к развитию редкого митохондриального заболевания.

16.Ядро яйцеклетки и ядро сперматозоида имеет равное количество хромосом, но у яйцеклетки объём цитоплазмы и количество цитоплазматических органоидов больше, чем у сперматозоида. Одинаково ли содержание в этих клетках ДНК?

Ответ: У яйцеклетки содержание ДНК больше, за счёт наличия митохондриальный ДНК.

17. Гены, которые должны были включиться в работу в периоде G 2 , остались неактивными. Отразится ли это на ходе митоза?

Ответ: В период G 2 синтезируются белки, необходимые для образования нитей веретена деления. При их отсутствии расхождение хроматид в анафазу митоза нарушится или вообще не произойдёт.

18. В митоз вступила двуядерная клетка с диплоидными ядрами (2n=46). Какое количество наследственного материала будет иметь клетка в метафазе при формировании единого веретена деления, а также дочерние ядра по окончании митоза?

Ответ: В каждом из двух ядер, вступивших в митоз, хромосомы диплоидного набора уже содержат удвоенное количество генетического материала. Объем генетической информации в каждом ядре - 2 n 4с. В метафазе при формировании единого веретена деления эти наборы объединятся, и объем генетической информации составит, следовательно - 4 n 8с (тетраплоидный набор самоудвоенных или реплицированных хромосом).

В анафазе митоза этой клетки к полюсам дочерних клеток разойдутся хроматиды. По окончании митоза ядра дочерних клеток будут содержать объем генетической информации = 4 n 4с.

19. После оплодотворения образовалась зигота 46,ХХ, из которой должен сформироваться женский организм. Однако в ходе первого митотического деления (дробления) этой зиготы на два бластомера сестринские хроматиды одной из Х-хромосом, отделившись друг от друга, не разошлись по 2-м полюсам, а обе отошли к одному полюсу.

Расхождение хроматид другой Х-хромосомы произошло нормально. Все последующие митотические деления клеток в ходе эмбриогенеза протекали без нарушений механизма митоза, не внося дополнительных изменений, но и не исправляя изменённые наборы хромосом.

Каким будет хромосомный набор клеток индивида, развившегося из этой зиготы? Предположите, какими могут быть фенотипические особенности этого организма?

Ответ: Набор неполовых хромосом (аутосом) в обоих бластомерах будет нормальным и представлен диплоидным числом = 44 несамоудвоенных (нереплицированных) хромосом – бывших хроматид метафазных хромосом зиготы.

В результате клетки организма, развившегося из этой зиготы, будут иметь разный набор хромосом, то есть будет иметь место мозаицизм кариотипа: 45,Х / 47,ХХХ примерно в равных пропорциях.

Фенотипически это женщины, у которых наблюдаются признаки синдрома Шерешевского-Тернера с неярким клиническим проявлением.

20. После оплодотворения образовалась зигота 46,ХY, из которой должен сформироваться мужской организм. Однако в ходе первого митотического деления (дробления) этой зиготы на два бластомера сестринские хроматиды Y-хромосомы не разделились и вся эта самоудвоенная (реплицированная) метафазная хромосома отошла к одному из полюсов дочерних клеток (бластомеров).

Расхождение хроматид Х-хромосомы произошло нормально. Все последующие митотические деления клеток в ходе эмбриогенеза протекали без нарушений механизма митоза, не внося дополнительных изменений, но и не исправляя изменённые наборы хромосом.

Каким будет хромосомный набор клеток индивида, развившегося из этой зиготы? Предположите, какой фенотип может иметь этот индивид?

Ответ: Мозаицизм кариотипа: 45,Х / 46,Х Y (сокращенно – Х0/Х Y ) примерно в равных пропорциях. Фенотипические варианты при этом типе мозаицизма - 45,Х / 46,Х Y разнообразны. Такой индивид внешне может быть как мужского, так и женского пола. Описаны случаи гермафродитизма у лиц с мозаицизмом 45,Х / 46,Х Y , когда внешне организм был женского пола, но с правой стороны обнаруживалось яичко (семенник), над влагалищем – половой член и уретральное отверстие.

Задачи для самоконтроля

1. Постоянный препарат изучен на малом увеличении, однако при переводе на большое увеличение объект не виден, даже при коррекции макро- и микрометрическим винтами и достаточном освещении. Необходимо определить, с чем это может быть связано?

2. Препарат помещен на предметный столик микроскопа, имеющего в основании лапки штатива зеркало. В аудитории слабый искусственный свет. Объект хорошо виден на малом увеличении, однако при попытке его рассмотреть при увеличении объектива х40, в поле зрения объект не просматривается, видно темное пятно. Необходимо определить, с чем это может быть связано?

3. Исследуемый препарат оказался поврежден: разбито предметное и покровное стекла. Объясните, как это могло произойти?

4. Общее увеличение микроскопа составляет при работе в одном случае - 280, а в другом - 900. Объясните, какие использованы объективы и окуляры в первом и во втором случаях и, какие объекты они позволяют изучать?

5. Вам выдан постоянный препарат для исследования объекта при большом увеличении микроскопа. Как надо расположить препарат, чтобы увидеть объект при большом увеличении? Объясните, почему неправильные манипуляции с препаратом можно обнаружить только при большом увеличении.

6. Объясните, какие перспективы могут ожидать клетку эпителиальной ткани, у которой нет центриолей?

7. В диплоидной клетке произошла 7-кратная эндоредупликация.

Какое количество наследственного материала она имеет?

8. Одним из фундаментальных первоначальных выводов классической генетики является представление о равенстве мужского и женского пола в передаче потомству наследственной информации. Подтверждается ли этот вывод при сравнительном анализе всего объема наследственной информации, вносимого в зиготу сперматозоидом и яйцеклеткой?

9. После выхода клетки из митоза произошла мутация гена, несущего программу для синтеза фермента геликазы.

Как это событие отразится на митотическом цикле клетки?

1 0. После оплодотворения образовалась зигота 46,ХХ, из которой должен сформироваться женский организм. Однако в ходе первого митотического деления (дробления) этой зиготы на два бластомера одна из двух Х-хромосом не разделилась на две хроматиды и в анафазе целиком отошла к полюсу. Поведение второй Х-хромосомы прошло без отклонений от нормы. Все последующие митотические деления клеток в ходе эмбриогенеза протекали также без нарушений механизма митоза

Каким будет хромосомный набор клеток индивида, развившегося из этой зиготы и (предположительно) фенотипические особенности этого организма?

11. Общеизвестно, что однояйцовые (монозиготные) близнецы являются генетически идентичными. По фенотипу они, при нормальном ходе цитологических процессов их формирования и развития в одних и тех же условиях среды, похожи друг на друга «как две капли воды».

Могут ли монозиготные близнецы быть разного пола – мальчиком и девочкой? Если не могут, то почему? А если могут, то в результате, каких нарушений в митотическом цикле делящейся зиготы?

Клетка является структурно-функциональной единицей организма. Пато­логические и физиологические процессы, происходящие в организме, связа­ны с изменениями структуры и функции клеток. Поэтому, прежде чем присту­пить к разбору патологических процессов, необходимо рассмотреть типовые изменения со стороны клетки.

Со стороны ядра возможны: 1) полиплоидия ядра, она отмечается при репаративной регенерации, компенсаторной гипертрофии, при токсических воз­действиях (например, в печени из-за нарушения деления клеток при отравле­нии барбитуратами, под воздействием цитостатиков), под действием ионизи­рующего излучения, а также при опухолевом росте, размеры ядра чаще пропорциональны размерам всей клетки (нормальный ядерно-цитоплазмати-ческий индекс); 2) функциональное набухание ядра с увеличением объема хро­матина из-за превращения неактивного гетеропикнотического конденсирован­ного хроматина (гетерохроматина) в активный эухроматин; 3) "дегенератив­ное" набухание ядра в результате коллоидно-осмотического набухания после нарушения активного транспорта; 4) увеличение размеров ядра в связи с реп­ликацией в нём вируса; 5) уменьшение объёма ядра при снижении обмена ве­ществ.

Среди изменений хроматина выделяют:

1) гипергетерохромазию с мелко­очаговой конденсацией хроматина и инактивацией отдельных участков хромосом.
2) дискариозы - равномерно распространенную, обычно мелкоочагвую гетерохромазию ядра, что характерно для низкодифференцированных клеток 3) маргинацию хроматина оболочек ядра - конденсацию хроматина в области ядерной мембраны, что является признаком начинающейся гибели клетки
Ядрышко в условиях патологии может: 1) приобретать форму кольца, черепицы или губки, что может сопровождаться снижением синтетической активности клеток; 2) быть сегрегированным, уменьшенным в разме­рах, что наблюдается при блокаде транскрипции антибиотиками или цитостатиками
Под воздействием разнообразных факторов возможно повреждение клеточной мембраны с последующим набуханием и, нередко, гибелью клетки.
Под воздействием различных факторов возможна дезагрегация полирибосом клетки с их распадом на отдельные рибосомы.
Изменения формы шероховатого ретикулума: 1) фрагментирование, 2) оьразование пузырьков или вакуолей из-за нарушения работы натриевого насоса 3) коллапс цистерн в результате нарушения синтеза из-за повреждения мембран

Со стороны гладкого эндоплазматического ретикулума (ГЭР) отмечаются.

I) увеличение ГЭР при алкоголизме, длительном введении антигистаминных и ряда других препаратов; 2) редукция ГЭР мембран в старческом возрасте и при хронических отравлениях.
Кроме того, возможно увеличение или уменьшение объёма ЭР.
Со стороны митохондрий возможны: 1) набухание митохондрий и дест­рукция крист; 2) увеличение их количества в результате пролиферации, чаще вего при хроническом поражении или при усиленной функции, например, миокарда; 3) обеднение митохондриями при остром повреждении клетки, а ыкже при атрофии; 4) образование гигантских митохондрий при нарушении питания, в частности при гиповитаминозах и интоксикациях.
Со стороны лизосом может наблюдаться повышение проницаемости их мембраны, что может привести к выходу в цитоплазму лизосомальных фер­ментов и гибели клетки.
В процессе жизнедеятельности клетка подвергается воздействию внешних стимулов, обычно обозначаемых как повреждающие факторы. Результат такого воздействия зависит от природы повреждающего фактора, его силы и про­должительности действия, а также от вида и состояния самой клетки. При слабых внешних воздействиях в клетке может не происходить никаких изме­нений. При более сильном и продолжительном воздействии возможны:
1) адаптивные изменения клетки, лежащие в основе компенсаторных и приспособительных процессов, 2) обратимое повреждение клетки, 3) необратимое повреждение клетки с последующей её гибелью. Эти процессы могут приводить к изменениям структуры и функции различных тканей и органов.

Повреждение (альтерация)

В основе всех патологических и многих физиологических процессов в организме лежит повреждение его структур. Повреждение классифицируют по различным принципам: 1) по причинным факторам - экзогенное (биоло-гическое, в том числе вызванное бактериями, вирусами, микоплазмами, простейшими; физическое; химическое) и эндогенное (гипоксия, интоксикация, иммунное повреждение); 2) по характеру воздействия повреждающего фактора- прямое и непрямое; 3) по тяжести процесса - обратимое и необратимое; 4) по значению для организма - патологическое и физиологическое; 5) по распространенности - числу и объему поврежденных структур.
Любое повреждение проявляется на различных уровнях: молекулярном, субклеточном (ультраструктурном), клеточном, тканевом и организменном. Иногда дополнительно выделяют и уровень тканевых комплексов или гистионов, включающих в свой состав сосуды микроциркуляторного русла (артериола, капилляры, венула) и питаемые ими клетки, паренхимы, соединительную ткань и терминальные нервные окончания.
Повреждения на молекулярном уровне известны еще мало и их изучение проводится в рамках молекулярной биохимии, генетики и биофизики. В эту группу повреждений могут быть отнесены изменения клеточных рецепторов под влиянием различных повреждающих факторов, выявляемые при иммунной электронной микроскопии.
Большинство наблюдаемых при электронно-микроскопическом изучении повреждений на субклеточном (ультраструктурном) уровне имеет неспецифический характер и не зависит от вида повреждающих факторов. Так, например, в миокарде при острой ишемии, токсических воздействиях катехоламинов, отравлении морфином, разлитом гнойном перитоните, облучении наблюдаются аналогичные изменения поврежденных клеток: 1) набухание митохондрий и разрушение их мембран; 2) вакуолизация эндоплазматического ретикулума; 3) очаговая деструкция миофибрилл; 4) появление избыточного количества липидных включений.

Свойство ультраструктур подвергаться идентичным изменениям под влиянием различных факторов носит название стереотипизм.
Известно, что функциональные возможности любого органа превышают потребности, предъявляемые к нему в оптимальных условиях жизнедеятельности. Следствием того, что клетки в момент воздействия повреждающего фактора находятся на разных фазах жизненного цикла и обладают различной функциональной активностью, является неодинаковая чувствительность (ранимость) клеток и неравномерность их вовлечения в патологический процесс. Мри одинаковом воздействии на весь орган какого-либо повреждающего фактора обычно наблюдается весь спектр возможных состояний клетки от прак-шчески нормального и даже усиленно функционирующего до гибели. Это явление называется мозаичностъю или дискретностью функций. Примером, иллюстрирующим это положение, может служить неравномерность поражения гепатоцитов при хроническом венозном застое или отравлении этанолом.
Тесная функциональная взаимосвязь всех клеточных ультраструктур прииодит в случае достаточно длительного и сильного воздействия повреждающего фактора к существенным поражениям всех компонентов клетки, вне зависимости от локализации начальных изменений. Эта закономерность носит название комплексности.
На основании результатов гистохимического изучения установлена стадийность развития повреждения клетки. Так, при гипоксии на начальном этапе происходит снижение выработки АТФ в митохондриях. На втором этапе наблюдается компенсаторное усиление анаэробного гликолиза, проявляющееся в повышении активности лактатдегидрогеназы (ЛДГ), одновременно с уменьшением содержания гликогена. Результатом этого этапа является увеличение содержания в клетках молочной кислоты, обусловливающей увеличение кислотности клеточной среды. Третий этап характеризуется клеточным ацидозом, в условиях которого повышается активность гидролитических ли-зосомальных ферментов, в первую очередь кислой фосфатазы, усиливающих внутриклеточные аутолитические процессы.
Повреждения на клеточном уровне иногда могут носить специфический характер. Специфические изменения обусловливаются внутриклеточной репликацией вируса (с появлением в ядре или цитоплазме включений, представляющих собой или скопления вирусных частиц, или реактивные изменения клеточного вещества в ответ на их репликацию), опухолевым метаморфозом и врожденными или приобретенными ферментопатиями, приводящими к накоплению в клетке нормальных метаболитов в избыточном количестве или аномальных - в виде включений Правда, специфичность клеточных изменений в ряде случаев весьма относительна; так, например, опухолевые клетки могут быть практически неотличимы от регенерирующих.
Клетки и их составные части могут претерпевать различные структурные изменения. На начальных этапах воздействия они носят обратимый характер и свидетельствуют лишь о функциональном напряжении клеток.

Нарушение жизнедеятельности организма человека при различных экстремальных состояниях и заболеваниях всегда, так или иначе, связано с изменением функционирования клеток. Клетка является структурно-функциональной единицей тканей и органов. В ней протекают процессы, лежащие в основе энергетического и пластического обеспечения структур и функций тканей. Под действием неблагоприятных факторов окружающей среды, нарушение функционирования клеток может приобретать стойкий характер и быть обусловленным их повреждением. Патология всегда начинается с повреждения, когда адаптационные возможности становятся несостоятельными. Любой патологический процесс протекает с большей или меньшей степенью и масштабом повреждения клеток, которое выражается в определенном нарушении их структуры и функций. Исходя из этого, под повреждением клетки понимают такие изменения ее структуры, обмена веществ, физико-химических свойств и функций, которые ведут к нарушению ее жизнедеятельности и которые сохраняются после удаления повреждающего агента. Однако, принимая во внимание, что организм, как система, есть совокупность элементов и связей между ними, то природу болезни необходимо рассматривать с двояких позиций - структурно-метаболических и информационных, поскольку она связана как с повреждением самих клеток, их исполнительного клеточного аппарата, так и с нарушением информационных процессов - сигнализации, рецепции и межклеточных связей, т.е. с дизрегуляцией, а по терминологии Г.Н. Крыжановского с дизрегуляторной патологией. В то же время, несмотря на разнообразие патогенных факторов, действующих на клетки, они отвечают принципиально однотипными реакциями, в основе которых лежат тканевые механизмы клеточной альтерации. Таким образом, повреждение следует рассматривать как типовой патологический процесс, основу которого составляют нарушения внутриклеточного гомеостаза, структурой целостности клетки, а также ее функциональной способности.

Переходя к конкретным аспектам патофизиологии повреждения, исходя из учения основоположника клеточной патологии Р. Вирхова, учитывая «приоритет повреждения элементов над расстройством связи», в начале рассмотрим типовые нарушения внутриклеточного гомеостаза, патохимические и патофизиологические аспекты повреждения клетки, ее исполнительного аппарата.

Причины нарушения функционирования и повреждения клетки

Непосредственной причиной нарушения функционирования клетки служат изменения в ее окружении, в то время как повреждение клетки вызвано действием на нее повреждающих агентов. Повреждение клетки, сущность которого составляют нарушения внутриклеточного гомеостаза, может быть результатом непосредственного (прямых) или опосредованного, вследствие нарушения межклеточного взаимодействия, постоянства внутренней среды самого организма (гипоксия, ацидоз, алкалоз, гипогликемия, гиперкалиемия, повышение содержания в организме конечных продуктов метаболизма), воздействия множества патогенных факторов, которые подразделяются на три основные группы: физического, химического и биологического характера.

Среди факторов физического характера причинами повреждения клеток наиболее часто являются следующие:

Механические воздействия: они обусловливают нарушение структуры плазмолеммы и мембран субклеточных образований;

Температурный фактор: повышенная температура среды, в которой находится клетка, до 45-50°С и более может привести к денатурации белка, нуклеиновых кислот, декомпозиции липопротеидных комплексов, повышению проницаемости клеточных мембран и другим изменениям. Значительное снижение температуры может обусловить существенное замедление или необратимое прекращение метаболических процессов в клетке, кристаллизацию внутриклеточной жидкости и разрыв мембран;

Изменения осмотического давления в клетке: накопление в ней продуктов неполного окисления органических субстратов, а также избытка ионов сопровождается током жидкости в клетку по градиенту осмотического давления, набуханием ее и растяжением (вплоть до разрыва) ее плазмолеммы и мембран органелл. Снижение внутриклеточного осмотического давления или повышение его во внеклеточной среде ведет к потере клеткой жидкости, ее сморщиванию (пикнозу) и нередко к гибели;

Воздействие ионизирующей радиации, обусловливающей образование свободных радикалов и активацию перекисных свободно-радикальных процессов, продукты которых повреждают мембраны и денатурируют ферменты клеток;

Гравитационные, электромагнитные факторы.

Повреждение клеток нередко вызывают воздействия факторов химической природы. К их числу относятся разнообразные вещества экзогенного и эндогенного происхождения: кислоты, щелочи, соли тяжелых металлов, яды растительного и животного происхождения, продукты нарушенного метаболизма. Так, цианиды подавляют активность цитохромоксидазы. Этанол и его метаболиты ингибируют многие ферменты клетки. Вещества, содержащие соли мышьяка, угнетают пируватоксидазу. Неправильное применение лекарственных средств также может привести к повреждению клеток. Например, передозировка строфантина обусловливает значительное подавление активности К + - Na + -АТФазы сарколеммы клеток миокарда, что ведет к дисбалансу интрацеллюлярного содержания ионов и жидкости.

Важно, что повреждение клетки может быть обусловлено как избытком, так и дефицитом одного и того же фактора. Например, избыточное содержание кислорода в тканях активирует процесс перекисного окисления липидов (ПОЛ), продукты которого повреждают ферменты и мембраны клеток. С другой стороны, снижение содержания кислорода обусловливает нарушение окислительных процессов, понижение образования АТФ и, как следствие, расстройство функций клетки.

Повреждение клеток нередко обусловливается факторами иммунных и аллергических процессов. Они могут быть вызваны, в частности, сходством антигенов, например, микробов и клеток организма.

Повреждение может быть также результатом образования антител или влияния Т-лимфоцитов, действующих против неизмененных клеток организма вследствие мутации в геноме В- или Т-лимфоцитов иммунной системы.

Важную роль в поддержании метаболических процессов в клетке играют вещества, поступающие в нее из окончаний нейронов, в частности, нейромедиаторы, трофогены, нейропептиды. Уменьшение или прекращение их транспорта является причиной расстройства обмена веществ в клетках, нарушения их жизнедеятельности и развития патологических состояний, получивших название нейродистрофий.

Кроме указанных факторов, повреждение клеток нередко бывает обусловлено значительно повышенной функцией органов и тканей. Например, при длительной чрезмерной физической нагрузке возможно развитие сердечной недостаточности в результате нарушения жизнедеятельности кардиомиоцитов.

Повреждение клетки может быть результатом действия не только патогенных факторов, но и следствием генетически запрограммированных процессов. Примером может служить гибель эпидермиса, эпителия кишечника, эритроцитов и других клеток в результате процесса их старения. К механизмам старения и смерти клетки относят постепенное необратимое изменение структуры мембран, ферментов, нуклеиновых кислот, истощение субстратов метаболических реакций, снижение устойчивости клеток к патогенным воздействиям.

По происхождению все причинные факторы повреждения клетки делят на: экзогенные и эндогенные; инфекционного и неинфекционного генеза.

Общие механизмы повреждения клеток

В зависимости от скорости развития и выраженности основных проявлений повреждение клетки может быть острым и хроническим. В зависимости от степени нарушения внутриклеточного гомеостаза повреждение бывает обратимым и необратимым.

Выделяются два патогенетических варианта повреждения клеток.

Насильственный вариант . Развивается в случае действия на исходно здоровую клетку физических, химических и биологических факторов, интенсивность которых превышает обычные возмущающие воздействия, к которым клетка адаптирована. Наиболее чувствительны к данному варианту повреждения функционально малоактивные клетки, обладающие малой мощностью собственных гомеостатических механизмов.

Цитопатический вариант . Возникает в результате первичного нарушения защитно-компенсаторных гомеостатических механизмов клетки. В этом случае фактором, запускающим патогенетические механизмы повреждения, являются естественные для данной клетки возмущающие стимулы, которые в этих условиях стано­вятся повреждающими. К цитопатическому варианту относятся все виды повреждения клетки вследствие отсутствия каких-либо необходимых ей компонентов (гипоксическое, при голодании, гиповитаминоз, нейротрофическое, при антиоксидантной недостаточности, при генетических дефектах и др.). К цитопатическому повреждению наиболее чувствительны те клетки, интенсивность возмущений, а, следовательно, и функциональная активность которых в естественных условиях очень высоки (нейроны, миокардиоциты).

На уровне клетки повреждающие факторы «включают» несколько патогенетических звеньев. К их числу относят:

Расстройство процессов энергетического обеспечения клеток;

Повреждение мембран и ферментных систем;

Дисбаланс ионов и жидкости;

Нарушение генетической программы и/или ее реализации;

Расстройство механизмов регуляции функции клеток.

Нарушение энергетического обеспечения процессов, протекающих в клетках, часто является инициальным и ведущим механизмом их альтерации. Энергоснабжение может расстраиваться на этапах синтеза АТФ, ее доставки и использования.

Нарушение процессов энергообеспечения, в свою очередь, может стать одним из факторов расстройств функции мембранного аппарата клеток, их ферментных систем (АТФазы актомиозина, К + - Na + - зависимой АТФазы плазмолеммы, Mg 2+ -зависимой АТФазы «кальциевой помпы» саркоплазмати-ческого ретикулума и др.), баланса ионов и жидкости, снижения мембранного потенциала, а также механизмов регуляции клетки.

Повреждение мембран и ферментов играет существенную роль в расстройстве жизнедеятельности клетки, а также переходе обратимых изменений в ней в необратимые. Это обусловлено тем, что основные свойства клетки в существенной мере зависят от состояния ее мембран и связанных с ними энзимов.

Одним из важнейших механизмов повреждения мембран и ферментов является интенсификация перекисного окисления их компонентов. Образующиеся в больших количествах радикалы кислорода (супероксид и гидроксильный радикал) и липидов вызывают: 1) изменение физико-химических свойств липидов мембран, что обусловливает нарушение конформации их липопротеидных комплексов и в связи с этим снижение активности белков и ферментных систем, обеспечивающих рецепцию гуморальных воздействий, трансмембранный перенос ионов и молекул, структурную целостность мембран; 2) изменение физико-химических свойств белковых мицелл, выполняющих структурную и ферментные функции в клетке; 3) образование структурных дефектов в мембране - т.н. простейших каналов (кластеров) вследствие внедрения в них продуктов ПОЛ. Указанные процессы, в свою очередь, обусловливают нарушение важных для жизнедеятельности клеток процессов – возбудимости, генерации и проведения нервного импульса, обмена веществ, восприятия и реализации регулирующих воздействий, межклеточного взаимодействия и др.

В норме состав и состояние мембран модифицируется не только свободнорадикальными и липоперексидными процессами, но также мембраносвязанными, свободными (солюбилизированными) и лизосомальными ферментами: липазами, фосфолипазами, протеазами. Под влиянием патогенных факторов их активность или содержание в гиалоплазме клетки может повыситься (в частности, вследствие развития ацидоза, способствующего увеличению выхода ферментов из лизосом и их последующей активации, проникновению ионов кальция в клетку). В связи с этим интенсивному гидролизу подвергаются глицерофосфолипиды и белки мембран, а также ферменты клеток. Это сопровождается значительным повышением проницаемости мембран и снижением кинетических свойств ферментов.

В результате действия гидролаз (главным образом липаз и фосфолипаз) в клетке накапливаются свободные жирные кислоты и лизофосфолипиды, в частности, глицерофосфолипиды: фосфатидилхолин, фосфатидил-этаноламин, фосфатидилсерин. Они получили название амфифильных соединений в связи со способностью проникать и фиксироваться в обеих - как в гидрофобной, так и в гидрофильных средах мембран клеток (амфи - означает «оба», «два»). Накопление в большом количестве амфифилов в мембранах, что так же, как и избыток гидроперекисей липидов, ведет к формированию кластеров и микроразрывов в них. Повреждение мембран и ферментов клеток является одной из главных причин существенного расстройства жизнедеятельности клеток и нередко приводит к их гибели.

Дисбаланс ионов и жидкости в клетке. Как правило, нарушение трансмембранного распределения, а также внутриклеточного содержания и соотношения различных ионов развивается вслед за или одновременно с расстройствами энергетического обеспечения и сочетается с признаками повреждения мембран и ферментов клеток. В результате этого существенно изменяется проницаемость мембран для многих ионов. В наибольшей мере это относится к калию, натрию, кальцию, магнию, хлору, то есть ионам, которые принимают участие в таких жизненно важных процессах, как возбуждение, его проведение, электромеханическое сопряжение и др.

Следствием дисбаланса ионов является изменение мембранного потенциала покоя и действия, а также нарушение проведения импульса возбуждения. Эти изменения имеют важное значение, поскольку они нередко являются одним из важных признаков наличия и характера повреждения клеток. Примером могут служить изменения электрокардиограммы при повреждении клеток миокарда, электроэнцефалограммы при нарушении структуры и функций нейронов головного мозга.

Нарушения внутриклеточного содержания ионов обусловливают изменение объема клеток вследствие дисбаланса жидкости. Это может проявляться гипергидратацией клетки. Так, например, повышение содержания ионов натрия и кальция в поврежденных клетках сопровождается увеличением в них осмотического давления. В результате этого в клетках накапливается вода. Клетки при этом набухают, объем их увеличивается, что сопровождается увеличением растяжения, нередко микроразрывами цитолеммы и мембран органелл. Напротив, дегидратация клеток (например, при некоторых инфекционных заболеваниях, обусловливающих потерю воды) характеризуется выходом из них жидкости и растворенных в ней белков (в том числе ферментов), а также других органических и неорганических водорастворимых соединений. Внутриклеточная дегидратация нередко сочетается со сморщиванием ядра, распадом митохондрий и других органелл.

Одним из существенных механизмов расстройства жизнедеятельности клетки является повреждение генетической программы и/или механизмов ее реализации. Основными процессами, ведущими к изменению генетической информации клетки, являются мутации, дерепрессия патогенных генов (например, онкогенов), подавление активности жизненно важных генов (например, регулирующих синтез ферментов) или внедрение в геном фрагмента чужеродной ДНК (например, ДНК онкогенного вируса, аномального участка ДНК другой клетки). Помимо изменений в генетической программе, важным механизмом расстройства жизнедеятельности клеток является нарушение реализации этой программы , главным образом, в процессе клеточного деления при митозе или мейозе.

Важным механизмом повреждения клеток является расстройство регуляции внутриклеточных процессов. Это может быть результатом нарушений, развивающихся на одном или нескольких уровнях регуляторных механизмов:

На уровне взаимодействия биологически активных веществ (гормонов, нейромедиаторов и др.) с рецепторами клетки;

На уровне клеточных т.н. «вторых посредников» (мессенджеров) нервных влияний: циклических нуклеотидов-аденозинмонофосфата (цАМФ) и гуанозинмонофосфата (цГМФ), образующихся в ответ на действие «первых посредников» - гормонов и нейромедиаторов. Примером может служить нарушение формирования мембранного потенциала в кардиомиоцитах при накоплении в них цАМФ, что является, в частности, одной из возможных причин развития сердечных аритмий;

На уровне метаболических реакций, регулируемых циклическими нуклеотидами или другими внутриклеточными факторами. Так, нарушение процесса активации клеточных ферментов может существенно изменить интенсивность метаболических реакций и, как следствие, привести к расстройству жизнедеятельности клетки.

Рассмотрев патохимические аспекты повреждения клетки, необходимо не забывать, что проблема клеточного повреждения имеет и другую, очень важную сторону - информационный аспект проблемы повреждения клетки. Связь между клетками, те сигналы, которыми они обмениваются тоже могут быть источниками болезни.

В большинстве случаев клетки в организме управляются химическими регуляторными сигналами, а именно гормонами, медиаторами, антителами, субстратами, ионами. Недостаток или отсутствие того или иного сигнала, как и избыток, может воспрепятствовать включению тех или иных адаптивных программ или способствовать излишне интенсивному, а, возможно, ненормально долгому их функционированию, что приводит к определенным патологическим последствиям. Особый случай представляет достаточно распространенная ситуация, когда клетка ошибочно принимает один сигнал за другой - так называемая мимикрия биорегуляторов, приводящая к серьезным регуляторным расстройствам. Примерами болезней, вызванных патологией сигнализации, могут служить: паркинсонизм, квашиоркор, инсулинозависимый сахарный диабет (патология, обусловленная дефицитом сигнала), болезнь фон Базедова, синдром Иценко-Кушинга, ожирение (патология, обусловленная избытком сигнала). Особенно ярко видна патогенность избытка субстратов на примере ожирения.

В ряде случаев, даже при адекватной сигнализации, клетка не в состоянии ответить должным образом, если она «слепа и глуха» по отношению к данному сигналу. Именно такая ситуация создается при отсутствии или дефиците рецепторов, соответствующих какому-либо биорегулятору. В частности, примером такой патологии может служить семейная наследственная гиперхолестеринемия, патогенез которой связан с дефектом белка-рецептора, ответственного за распознавание клетками сосудистой стенки и некоторых других тканей и органов белкового компонента липопротеинов низкой и очень низкой плотности - апопротеина В, а также инсулинрезистивная форма сахарного диабета.

Однако, даже при адекватной сигнализации и правильном распознавании сигналов клеточными рецепторами, клетки не в состоянии подключить надлежащие адаптационные программы, если отсутствует передача информации от рецепторов поверхностной мембраны внутрь клетки. По современным представлениям механизмы, опосредующие внутриклеточную передачу сигнала на геном клетки, разнообразны. Особое значение имеют пути пострецепторной передачи сигналов в клетке через систему G-белков (гуанозинтрифосфатсвязывающих белков). Эти белки - передатчики занимают ключевое положение в обмене информацией между поверхностно раположенными на клеточных мембранах рецепторами и внутриклеточным регуляторным аппаратом, потому что они способны интегрировать сигналы, воспринимаемые несколькими различными рецепторами, и в ответ на определенный рецепторно-опосредованный сигнал могут включать множество различных эффекторных программ, вводя в действие сеть различных внутриклеточных модуляторов, посредников, таких как цАМФ и цГМФ.

Неадекватное использование клеткой своих адаптационных возможностей при ряде наследственных и приобретенных болезней может быть результатом сбоев в работе не только пострецепторных информационных механизмов, но и дефектом генетических программ и/или механизмов их реализации (в результате повреждения мутациями ДНК, возникновения хромосомных аномалий). Из-за этого они либо не реализуются, либо дают неадекватный или несоответствующий ситуации результат.

Основные проявления повреждений клетки

Дистрофии . Под дистрофиями (dys - нарушение, расстройство, trophe- питание) понимают нарушения обмена веществ в клетках и тканях, сопровождающиеся расстройствами их функций, пластических проявлений, а также структурными изменениями, ведущими к нарушению их жизнедеятельности.

Основными механизмами дистрофий являются:

Синтез аномальных веществ в клетке, например, белково-полисахаридного комплекса амилоида;

Избыточная трансформация одних соединений в другие, например, жиров и углеводов в белки, углеводов в жиры;

Декомпозиция (фанероз), например, белково-липидных комплексов мембран;

Инфильтрация клеток и межклеточного вещества, органическими и неорганическими соединениями, например, холестерином и его эфирами стенок артерий при атеросклерозе.

К числу основных клеточных дистрофий относят белковые (диспротеинозы), жировые (липидозы), углеводные и минеральные.

Дисплазии (dys - нарушение, расстройство, plaseo- образую) представляют собой нарушение процесса развития клеток, проявляющееся стойким изменением их структуры и функции, что ведет к расстройству их жизнедеятельности.

Причиной дисплазии является повреждение генома клетки. Именно это обусловливает стойкие и, как правило, наследуемые от клетки к клетке изменения, в отличие от дистрофий, которые нередко носят временный, обратимый характер и могут устраниться при прекращении действия причинного фактора.

Основным механизмом дисплазии является расстройство процесса дифференцировки, который заключается в формировании структурной и функциональной специализации клетки. Структурными признаками дисплазии являются изменения величины и формы клеток, их ядер и других органелл, числа и строения хромосом. Как правило, клетки увеличены в размерах, имеют неправильную, причудливую форму («клетки-монстры»), соотношение различных органелл в них диспропорционально. Нередко в таких клетках обнаруживаются различные включения, признаки дистрофических процессов. В качестве примеров дисплазии клеток можно назвать образование мегалобластов в костном мозге при пернициозной анемии, серповидных эритроцитов при патологии гемоглобина, многоядерных гигантских клеток с причудливым расположением хроматина при нейрофиброматозе Реклингхаузена. Клеточные дисплазии являются одним из проявлений атипизма опухолевых клеток.

Изменение структуры и функций клеточных органелл при повреждении клетки . Повреждение клетки характеризуется большим или меньшим нарушением структуры и функции всех ее компонентов. Однако при действии различных патогенных факторов могут преобладать признаки повреждения тех или иных органелл.

При действии патогенных факторов отмечается уменьшение числа митохондрий по отношению к общей массе клетки. Стереотипными для действия большинства повреждающих факторов изменениями отдельных митохондрий является уменьшение или увеличение их размеров и формы. Многие патогенные воздействия на клетку (гипоксия, эндо- и экзогенные токсические агенты, в том числе лекарственные препараты при их передозировке, ионизирующая радиация, изменение осмотического давления) сопровождаются набуханием и вакуолизацией митохондрий, что может привести к разрыву их мембраны, фрагментации и гомогенизации крист. Нарушение структуры митохондрий приводит к существенному подавлению процесса дыхания в них и образования АТФ, а также к дисбалансу ионов внутри клетки.

При патогенных воздействиях высвобождение и активация ферментов лизосом может привести к «самоперевариванию» (аутолизу) клетки.

При действии повреждающих факторов наблюдается разрушение группировок субъединиц рибосом (полисом), уменьшение числа рибосом, отрыв органелл от внутриклеточных мембран. Эти изменения сопровождаются снижением интенсивности процесса синтеза белка в клетке.

Повреждение эндоплазматической сети и аппарата Гольджи сопровождается расширением канальцев сети, вплоть до образования крупных вакуолей и цистерн вследствие накопления в них жидкости. Имеет место очаговая деструкция мембран канальцев сети, их фрагментация.

Повреждение ядра сочетается с изменением его формы, конденсацией хроматина по периферии ядра (маргинация хроматина), нарушением двуконтурности или разрывами ядерной оболочки.

Действие на клетку повреждающих факторов может обусловливать уменьшение или увеличение содержания в цитоплазме жидкости, протеолиз или коагуляцию белка, образование «включений», не встречающихся в норме. Изменение состояния цитоплазмы, в свою очередь, существенно влияет на процессы метаболизма, протекающие в ней, в связи с тем, что многие ферменты (например, гликолиза) находятся в клеточном матриксе, на функцию органелл, на процессы восприятия регулирующих и других влияний на клетку.

Некроз и аутолиз . Некроз (гр. necros - мертвый) - гибель клеток и тканей, сопровождающаяся необратимым прекращением их жизнедеятельности. Некроз нередко является завершающим этапом дистрофий, дисплазий, а также следствием прямого действия повреждающих факторов значительной силы. Изменения, предшествующие некрозу, называют некробиозом или патобиозом. По И.В. Давыдовскому некробиоз - это процесс отмирания клеток. Примерами патобиоза могут служить процессы омертвления тканей при нейротрофических расстройствах в результате денервации тканей, вследствие длительной венозной гиперемии или ишемии. Некробиотические процессы протекают и в норме, являясь завершающим этапом жизненного цикла многих клеток. Большинство погибших клеток подвергаются аутолизу, т.е. саморазрушению структур. Основным механизмом аутолиза является гидролиз компонентов клеток и межклеточного вещества под влиянием ферментов лизосом. Этому способствует развитие ацидоза в поврежденных клетках.

В процессе лизиса поврежденных клеток могут принимать участие и другие клетки - фагоциты, а также микроорганизмы. В отличие от аутолитического механизма последний называют гетеролитическим. Таким образом, лизис некротизированных клеток (некролиз) может обеспечиваться ауто- и гетеролитическими процессами, в которых принимают участие ферменты и другие факторы как погибших, так и контактирующих с ними живых клеток.

Специфические и неспецифические изменения при повреждении клеток . Любое повреждение клетки вызывает в ней комплекс специфических и неспецифических изменений.

Под специфическими понимают изменения свойств клеток, характерные для данного фактора при действии его на различные клетки, либо свойственные лишь данному виду клеток при воздействии на них повреждающих агентов различного характера. Так, действие на любую клетку механических факторов сопровождается нарушением целостности ее мембран. Под влиянием разобщителей процесса окисления и фосфорилирования снижается или блокируется сопряжение этих процессов. Высокая концентрация в крови одного из гормонов коры надпочечников - альдостерона обусловливает накопление в различных клетках избытка ионов натрия. С другой стороны, действие повреждающих агентов на определенные виды клеток вызывает специфические для них изменения. Например, влияние различных патогенных факторов на мышечные клетки сопровождается развитием контрактуры миофибрилл, на нейроны - формированием так называемого потенциала повреждения, на эритроциты - гемолизом и выходом из них гемоглобина.

Повреждение всегда сопровождается комплексом и неспецифических , стереотипных изменений в клетках. Они наблюдаются в различных видах клеток при действии на них разнообразных агентов. К числу часто встречающихся неспецифических проявлений альтераций клеток относятся ацидоз, чрезмерная активация свободно-радикальных и перекисных реакций, денатурация молекул белка, повышение проницаемости клеточных мембран, повышение сорбционных свойств клеток.

Выявление комплекса специфических и неспецифических изменений в клетках органов и тканей дает возможность судить о характере и силе действия патогенного фактора, о степени повреждения, а также об эффективности применяемых с целью лечения медикаментозных и немедикаментозных средств.

Механизмы компенсации при повреждении

Действие на клетку патогенных факторов и развитие повреждения сопровождается активацией или включением реакций, направленных на устранение либо уменьшение степени повреждения и его последствий. Комплекс этих реакций обеспечивает приспособление клетки к изменившимся условиям ее жизнедеятельности. К числу основных приспособительных механизмов относят реакции компенсации, восстановления и замещения утраченных или поврежденных структур и нарушенных функций, защиты клеток от действия патогенных агентов, а также регуляторное снижение их функциональной активности. Весь комплекс таких реакций условно можно разделить на две группы: внутриклеточные и внеклеточные (межклеточные).

К числу основных внутриклеточных механизмов компенсации при повреждении можно отнести следующие.

Компенсация нарушений процесса энергетического обеспечения клеток . Одним из способов компенсации нарушений энергетического обмена вследствие поражения митохондрий является интенсификация процесса гликолиза. Определенный вклад в компенсацию нарушений энергообеспечения внутриклеточных процессов при повреждении вносит активация ферментов транспорта и утилизация энергии АТФ (адениннуклеотидтрансферазы, креатинфосфокиназы, АТФ-аз), а также снижение функциональной активности клетки. Последнее способствует уменьшению расхода АТФ.

Защита мембран и ферментов клеток . Одним из механизмов защиты мембран и ферментов клеток является ограничение свободно-радикальных реакций и процессов перекисного окисления липидов ферментами антиоксидантной защиты (супероксиддисмутазой, каталазой, глютатионпероксидазой). Другим механизмом защиты мембран и энзимов от повреждающего действия, в частности, ферментов лизосом, может быть активация буферных систем клетки. Это обусловливает уменьшение степени внутриклеточного ацидоза и, как следствие, избыточной гидролитической активности лизосомальных энзимов. Важную роль в защите мембран и ферментов клеток от повреждения играют ферменты микросом, обеспечивающие физико-химическую трансформацию патогенных агентов путем их окисления, восстановления, деметилирования и т.д.

Компенсация дисбаланса ионов и жидкости . Компенсация дисбаланса содержания ионов в клетке может быть достигнута путем активации механизмов энергетического обеспечения ионных «насосов», а также защиты мембран и ферментов, принимающих участие в транспорте ионов. Определенную роль в снижении степени ионного дисбаланса имеет действие буферных систем. Активация внутриклеточных буферных систем (карбонатной, фосфатной, белковой) может способствовать восстановлению оптимальных соотношений ионов К + , Na + и Са ++ . Снижение степени дисбаланса ионов в свою очередь, может сопровождаться нормализацией содержания внутриклеточной жидкости.

Устранение нарушений в генетической программе клеток . Повреждения участка ДНК могут быть обнаружены и устранены с участием ферментов репаративного синтеза ДНК. Эти ферменты обнаруживают и удаляют измененный участок ДНК (эндонуклеазы и рестриктазы), синтезируют нормальный фрагмент нуклеиновой кислоты взамен удаленного (ДНК-полимеразы) и встраивают этот вновь синтезированный фрагмент на место удаленного (лигазы). Помимо этих сложных ферментных систем репарации ДНК в клетке имеются энзимы, устраняющие «мелкомасштабные» биохимические изменения в геноме. К их числу относятся деметилазы, удаляющие метильные группы, лигазы, устраняющие разрывы в цепях ДНК, возникающие под действием ионизирующего излучения или свободных радикалов.

Компенсация расстройств внутриклеточных метаболических процессов, вызванных нарушением регуляторных функций клеток . Сюда относят: изменение числа рецепторов гормонов, нейромедиаторов и других физиологически активных веществ на поверхности клетки, а также чувствительности рецепторов к этим веществам. Количество рецепторов может меняться благодаря тому, что молекулы их способны погружаться в мембрану или цитоплазму клетки и подниматься на ее поверхность. От числа и чувствительности рецепторов, воспринимающих регулирующие стимулы, в значительной мере зависит характер и выраженность ответа на них.

Избыток или недостаток гормонов и нейромедиаторов или их эффектов может быть скомпенсирован также на уровне вторых посредников - циклических нуклеотидов. Известно, что соотношение цАМФ и цГМФ изменяется не только в результате действия внеклеточных регуляторных стимулов, но и внутриклеточных факторов, в частности, фосфодиэстераз и ионов кальция. Нарушение реализации регулирующих влияний на клетку может компенсироваться и на уровне внутриклеточных метаболических процессов, поскольку многие из них протекают на основе регуляции интенсивности обмена веществ количеством продукта ферментной реакции (принцип положительной или отрицательной обратной связи).

Снижение функциональной активности клеток . В результате снижения функциональной активности клеток обеспечивается уменьшение расходования энергии и субстратов, необходимых для осуществления пластических процессов. В результате этого степень и масштаб повреждения клеток при действии патогенного фактора существенно снижаются, а после прекращения его действия отмечается более интенсивное и полное восстановление клеточных структур и их функции. К числу главных механизмов, обеспечивающих временное понижение функции клеток, можно отнести уменьшение эфферентной импульсации от нервных центров, снижение числа или чувствительности рецепторов на поверхности клетки, внутриклеточное регуляторное подавление метаболических реакций.

Приспособление клеток в условиях повреждения происходит не только на метаболическом и функциональном уровнях. Длительное повторное или значительное повреждение обусловливает существенные структурные перестройки в клетке, имеющие приспособительное значение. Они достигаются за счет процессов регенерации, гипертрофии, гиперплазии, гипотрофии (см. раздел «Структурные основы компенсации»).

Регенерация (regeneratio - возрождение; восстановление) означает возмещение клеток и/или ее отдельных структурных элементов взамен погибших, поврежденных или закончивших свой жизненный цикл. Регенерация структур сопровождается восстановлением их функций. Выделяют так называемую клеточную и внутриклеточную формы регенерации. Первая характеризуется размножением клеток путем митоза или амитоза. Внутриклеточная регенерация проявляется восстановлением органелл - митохондрий, ядра, эндоплазматической сети и других вместо
поврежденных или погибших.

Гипертрофия (hyper - чрезмерно, увеличение; trophe - питаю) представляет собой увеличение объема и массы структурных элементов, в частности, клеток. Гипертрофия неповрежденных органелл клетки компенсирует нарушение или недостаточность функций ее поврежденных элементов.

Гиперплазия (hyper - чрезмерно; plaseo - образую) характеризуется увеличением числа структурных элементов, в частности, органелл в клетке. Нередко в одной и той же клетке наблюдаются признаки и гиперплазии и гипертрофии. Оба процесса обеспечивают не только компенсацию структурного дефекта, но и возможность повышенного функционирования клетки.

Межклеточные (внеклеточные) механизмы взаимодействия и приспособления клеток при их повреждении. В пределах тканей и органов клетки не разобщены. Они взаимодействуют друг с другом путем обмена метаболитами, физиологически активными веществами, ионами. В свою очередь взаимодействие клеток тканей и органов в организме в целом обеспечивается функционированием систем лимфо- и кровообращения, эндокринными, нервными и иммунными влияниями.

Характерной чертой межклеточных (внеклеточных) механизмов адаптации является то, что они реализуются, в основном, при участии клеток, которые не подвергались непосредственному действию патогенного фактора (например, гиперфункция кардиомиоцитов за пределами зоны некроза при инфаркте миокарда).

По уровню и масштабу такие реакции при повреждении клеток можно разделить на органно-тканевые, внутрисистемные, межсистемные. Примером приспособительной реакции органно-тканевого уровня может служить активация функции неповрежденных клеток печени или почки при повреждении клеток части органа. Это снижает нагрузку на клетки, подвергшиеся патогенному воздействию, и способствует уменьшению степени их повреждения. К числу внутрисистемных реакций относится сужение артериол при снижении работы сердца (например, при инфаркте миокарда), что обеспечивает и предотвращает (или уменьшает степень) повреждения их клеток.

Вовлечение в приспособительные реакции нескольких физиологических систем наблюдается, например, при общей гипоксии. При этом активируется работа систем дыхания, кровообращения, крови и тканевого метаболизма, что снижает недостаток кислорода и субстратов метаболизма в тканях, повышает их утилизацию и уменьшает благодаря этому степень повреждения их клеток (смотри раздел «Гипоксия»).

Активация внутриклеточных и межклеточных механизмов приспособления при повреждении, как правило, предотвращает гибель клеток, обеспечивает выполнение ими функций и способствует ликвидации последствий действия патогенного фактора. В этом случае говорят об обратимых изменениях в клетках. Если сила патогенного агента велика и/или защитно-приспособительные недостаточны, развивается необратимое повреждение клеток, и они погибают.



© dagexpo.ru, 2024
Стоматологический сайт