Кто и когда изобрел микроскоп? Микроскоп гука, первый микроскоп

01.05.2019

В XXI веке развитие биологии идет семимильными шагами. Сегодня эта профессия снова обрела популярность, многие родители стремятся направить своих юных ученых именно по этой стезе. И действительно, новости об открытиях приходят практически ежедневно из всех уголков земного шара. Человечество взрослеет в интеллектуальном плане. Те, кто изобрел микроскоп - настоящие гении и профессионалы, они позволили цивилизации расти не только в медицине и области знаний об эволюции, но и во всех других научных и промышленных отраслях. Благодаря им формы жизни активно изучаются как на клеточном, так и на молекулярном уровне, кроме того достигнуты колоссальные результаты в металлургии, геологии, машиностроении. Их имена заслуживают уважения целых поколений, которым дано счастье пользоваться современными благами.

Кто изобрел микроскоп - пожалуй, именно с этого молодым биологам, смышленым детям и просто любознательным интеллектуалам следует начать свое удивительное путешествие в микромир, таящий в себе множество тайн и загадок, удивляющий и восхищающий не зависимо от возраста наблюдателя. Это полезное изобретение стало плодом многолетний кропотливой работы сразу нескольких изобретателей, гениальное попадание в цель, которую другие попросту не видели. Вспомним их и рассмотрим неоценимый вклад каждого.

Будучи неравнодушным к астрономии, Галилео Галилей разработал и сконструировал телескоп, оптическая схема которого в скором времени была использована в первых составных микроскопах. Доработанное устройство было названо «маленьким глазом» или «Оккиолино». Можно ли при этом утверждать, что он его изобрел в 1609 г., являясь весьма далеким от каких-либо биологических экспериментов (за исключением, может быть, наблюдения насекомых, являвшимся хобби)? С некоторой натяжкой, наверное, да. И большинство энциклопедий едины в своем мнении.

Более чем 6 десятилетий спустя, Антони ван Левенгук изобрел усовершенствованный микроскоп, способный показывать клетки растений и даже одноклеточные организмы, например, эвглен, инфузорий. По своей сути это был прибор, состоящий из отшлифованной линзы, закрепленной на металлической пластине. Не смотря на очевидную простоту, он был самый мощный, выдававший увеличение более чем в 270 крат! Образцы подсвечивались с помощью естественного света, направленного на них из открытого окна или горящей свечки.

Начиная с 1870-х г, после разработки Эрнстом Аббе теории о микроскопии, производители получают готовую технологию, и немецкая компания Carl Zeiss впервые берется за серийное производство, обеспечив себе лидерство и даже монополию на долгие годы вперед.

XIX и XX вв. ознаменовались созданием специализированных микроскопов, например, поляризационных, люминесцентных, металлографических. Помимо классических методов исследования (светлое и темное поле) получил широкое применение фазового контраста. В условиях современности изображение фиксируется в цифровом виде - делаются фотографии и видеоролики. Это оказалось возможным после появления видеоокуляра, позволяющего выводить картинку на экран компьютера в режиме on-line.


Открытие Галлилео Галлилея

Однажды Галилей соорудил очень длинную подзорную трубу. Дело происходило днем. Закончив работу, он навел трубу на окно, чтобы на свету проверить чистоту линз. Прильнув к окуляру, Галилей оторопел: все поле зрения занимала какая-то серая искрящаяся масса. Труба немного покачнулась, и ученый увидел огромную голову с выпуклыми черными глазами по бокам. У чудовища было черное, с зеленым отливом туловище, шесть коленчатых ног… Да ведь это … муха! Отняв трубу от глаза, Галилей убедился: на подоконнике действительно сидела муха.

Так появился на свет микроскоп - состоящий из двух линз прибор для увеличения изображения маленьких предметов. Свое название - «микроскопиум» - он получил от члена «Академиа деи линчеи» («академии рысьеглазых»)

И. Фабера в 1625 г. Это было научное общество, которое, кроме прочего, одобряло и поддерживало применение оптических приборов в науке.

А сам Галилей в 1624 г. вставил в микроскоп более короткофокусные (более выпуклые) линзы, благодаря чему труба стала короче.


Роберт Гук

Следующая страница в истории микроскопа связана с именем Роберта Гука. Это был очень одаренный человек и талантливый ученый. По окончании Оксфордского университета в 1657 г. Гук стал помощником Роберта Бойля. Это была отличная школа у одного из крупнейших ученых того времени. В 1663 г. Гук уже работал секретарем и демонстратором опытов Английского Королевского общества (академии наук). Когда там стало известно о микроскопе, Гуку поручили провести наблюдения на этом приборе. Имевшийся в его распоряжении микроскоп мастера Дреббеля являл собой полуметровую позолоченную трубу, расположенную строго вертикально. Работать приходилось в неудобной позе - изогнувшись дугой.


Роберт Гук

Прежде всего Гук сделал трубу - тубус - наклонной. Чтобы не зависеть от солнечных дней, которых в Англии бывает немного, он установил перед прибором масляную лампу оригинальной конструкции. Однако солнце светило все же гораздо ярче. Поэтому пришла мысль лучи света от лампы усилить, сконцентрировать. Так появилось очередное изобретение Гука - большой стеклянный шар, наполненный водой, а за ним специальная линза. Такая оптическая система в сотни раз усиливала яркость освещения.


Роберт Гук

Когда микроскоп был готов, Гук принялся за наблюдения. Их результаты он описал в своей книге «Микрография», изданной в 1665 г. За 300 лет она переиздавалась десятки раз. Помимо описаний, она содержала замечательные иллюстрации - гравюры самого Гука.


Открытие клетки Р.Гуком

Особый интерес в ней представляет наблюдение № 17 - «О схематизме, или строении пробки и о клетках и порах некоторых других пустых тел». Гук так описывает срез обыкновенной пробки: «Вся она перфорированная и пористая, подобно сотам, но поры ее неправильной формы, и в этом отношении она напоминает соты… Далее, эти поры, или клетки, неглубоки, но состоят из множества ячеек, разделенных перегородками».

В этом наблюдении бросается в глаза слово «клетка». Так Гук назвал то, что и сейчас называется клетками, например, клетки растений. В те времена люди не имели об этом ни малейшего представления. Гук первым наблюдал их и дал название, оставшееся за ними навсегда. Это было открытие громадной важности.


Антони ван Левенгук

Вскоре после Гука начал вести свои наблюдения голландец Антони ван Лсвенгук. Это была

интересная личность - он торговал тканями и зонтиками, но не получил никакого научного образования. Зато у него был пытливый ум, наблюдательность, настойчивость и добросовестность. Линзы, которые он сам шлифовал, увеличивали предмет в 200-300 раз, то есть в 60 раз лучше применявшихся тогда приборов. Все свои наблюдения он излагал в письмах, которые аккуратно посылал в Лондонское королевское общество. В одном из своих писем он сообщил об открытии мельчайших живых существ - анималькул, как Левенгук их назвал. Оказалось, что они присутствуют повсюду-в земле, растениях, теле животных. Это событие произвело революцию в науке - были открыты микроорганизмы.


Антони ван Левенгук

В 1698 г. Антони ван Левенгук встретился с российским императором Петром I и продемонстрировал ему свой микроскоп и анималькул. Император был так заинтересован всем, что он увидел и что объяснил ему голландский ученый, что закупил для России микроскопы голландских мастеров. Их можно увидеть в Кунсткамере в Петербурге.


Оптическая микроскопия

Теория получения изображения с помощью линз может быть представлена с точки зрения либо геометрической, либо физической оптики. Геометрическая оптика хорошо объясняет фокусирование и аберрацию, однако для понимания, почему изображение не совсем четкое и как получается контрастность, необходимо привлечь физическую оптику. В геометрической оптике существует два правила, которые следует постоянно помнить: 1) свет распространяется по прямой и 2) луч отклоняется от прямой (преломляется) на границе раздела между двумя прозрачными средами.



Объектив

Объективы микроскопов, как правило, тщательно стандартизируются по увеличению NA. Обычно NA увеличивается с уменьшением фокусного расстояния, поскольку увеличение растет с уменьшением диаметра линз


Окуляр

Окуляры Основная функция окуляра состоит в передаче изображения от объектива глазу. Существуют разнообразные системы окуляров: Рамсдена, Гюйгенса, Кельнера и компенсирующие. Три первых типа взаимозаменяемы и отличаются только способом нанесения сеток, указателей и других точек отсчета. Компенсирующий окуляр разработан для коррекции хроматической аберрации.

Регулировка микроскопа

Для подготовки микроскопа к работе необходимо провести следующую регулировку: 1) источник света и все его компоненты должны быть отцентрированы по оптической оси прибора; 2) объектив необходимо сфокусировать и 3) требуется отрегулировать освещение. В большинстве обычных (стандартных) микроскопов конденсор, объектив и окуляр коаксиальны, поэтому центрировать требуется только источник света. Это достигается путем фокусировки на микроскопном стекле, удаления окуляра и перемещения источника света с помощью регулировочного винта до тех пор, пока свет (при наблюдении в тубус) не будет находиться в центре объектива. Если регулируется и установка по центру конденсора, то конденсор вначале вынимают, источник света центрируют, как описано выше, затем конденсор ставят на место и с помощью регулировочного винта центрируют по источнику света. Затем конденсор фокусируют на объекте для критического освещения Для того чтобы избежать влияния рассеянного и отраженного света, полевую диафрагму следует уменьшить так, чтобы освещен был только объект. Если интенсивность освещения мешает удобному наблюдению, то ее можно уменьшить. Для уменьшения интенсивности ни в коем случае нельзя изменять апертуры, для этого либо вводят перед источником света нейтральные плотные фильтры, либо уменьшают напряжение, подаваемое на источник.


Контраст

Чтобы объект был видимым, его изображение должно отличаться по интенсивности от окружающего фона. Различие в интенсивно-стях объекта и фона называется контрастом. К сожалению, большинство биологических образцов (клетки и их компоненты) прозрачны, т. е. их контраст близок к нулю. В прошлом для решения этой проблемы образцы окрашивали, прибавляя окрашенные вещества, которые реагировали с определенными компонентами клеток.

Изготовление микропрепаратов

Изготовление срезов препаратов Как правило, толщина кусочков материала слишком велика, чтобы сквозь них могло пройти достаточное для исследования под микроскопом количество света. Обычно приходится срезать очень тонкий слой исследуемого материала, т. е. готовить срезы. Срезы можно делать бритвой или на микротоме. Вручную срезы готовятся с помощью остро отточенной бритвы. Для работы на обычном микроскопе срезы должны быть толщиной 8-12 мкм. Ткань закрепляют между двумя кусочками сердцевины бузины. Бритву смачивают жидкостью, в которой хранилась ткань; срез делают через бузину и ткань, причем бритву держат горизонтально и двигают ее к себе медленным скользящим движением, направленным чуть вкось. Быстро сделав несколько срезов, следует выбрать из них самый тонкий, содержащий характерные участки ткани. Срез с ткани, залитой в ту или иную среду, можно сделать на микротоме. Для светового микроскопа срезы толщиной в несколько микрометров можно сделать с залитой в парафин ткани с помощью специального стального ножа. На ультратоме изготавливают чрезвычайно тонкие срезы (20-100 нм) для электронного микроскопа. В этом случае необходим алмазный или стеклянный нож. Срезы для светового микроскопа можно приготовить, не заливая материал в среду; для этого используют замораживающий микротом. В процессе приготовления замороженного среза образец сохраняется в замороженном твердом состоянии.


Простейшие под микроскопом

Многих простейших вы можете увидеть своими глазами в поле зрения под микроскопом в любое время года. Чтобы иметь для наблюдения живых простейших, необходимо заранее заготовить питательную среду, в которой они могли бы развиваться продолжительное время. Для этого в 2-3 стеклянные банки накладывают слой (толщиной 2 см) нарезанных листьев или сенной трухи, а сверху наливают (13 банки) дождевую или водопроводную воду. Банки покрывают стеклом и ставят на окно, затеняя от прямых солнечных лучей. Через 3-4 суток заливают водой, взятой из стоячего водоема (пруда, канавы), на дне которого находится гниющая растительность (трава, листья, ветки). С водой следует захватить и немного ила со дна. Через несколько дней в сосудах появится пленка, отливающая металлическим блеском. Просматривая под микроскопом капли воды, можно убедиться, какими видами простейших богата вода из банок. При таком разведении простейших сначала появляются разные виды мелких инфузорий, затем амебы и, наконец (через 15 суток), инфузории-туфельки.


Анализ крови

Микроскоп давно стал незаменимым помощником человека во многих сферах. В объектив прибора можно увидеть то, что не видно невооруженным глазом. Интереснейший объект для исследований представляет собой кровь. Под микроскопом можно рассмотреть основные элементы состава крови человека: плазму и форменные элементы.

Впервые состав крови человека исследовал врач - итальянец Марчелло Мальпиги. Он принял плавающие в плазме форменные элементы за жировые шарики. Клетки крови еще не раз называли то воздушными шариками, то животными, принимая их за разумных существ. Термин «кровяные клетки» или «кровяные шарики» ввел в научный обиход Антоний Левенгук. Кровь под микроскопом – это своеобразное зеркало состояния человеческого организма.


Человек долгое время жил в окружении невидимых организмов. Постоянно сталкиваясь с продуктами их жизнедеятельности. Изготавливал вино, уксус, выпекал хлеб и многое другое. Страдал от заболеваний вызванных этими организмами. Не подозревая об их существовании. Ведь их размеры настолько малы, что невидимы человеческому глазу.
Ещё в Древнем Вавилоне пытались расширить человеческие возможности. Во время раскопок были найдены двояковыпуклые линза. На сегодня простейшие оптические приборы. Это был шаг в микромир. В дальнейшем в 16-17 века благодаря развитию астрономии были созданы подзорные трубы. Было замечено, если линзы расположить наоборот, можно рассмотреть очень мелкие предметы. Зная это, в 1610 году Г. Галилей создал микроскоп.
Позднее физик, изобретатель Р. Гук сконструировал микроскоп из двух двояковыпуклых линз. Он давал увеличение в 30 раз. При рассмотрении среза пробки он увидел ячейки. Впоследствии они были им названы клетками. Все дальнейшее изучение микромира было связано с усовершенствованием микроскопов.
Большой вклад в изучении микроорганизмов внес Антони ван Левенгук. Изначально его заинтересовало строение льняных волокон. Для их рассмотрения он отшлифовал несколько грубых линз. В дальнейшем он увлекся этой работой. Стал усовершенствовать линзы. Он их называл «микроскопии». Свои одинарные двояковыпуклые стекла вставлял в оправу из серебра или латуни. Имели вид современных луп. В дальнейшем он создал микроскоп с подсветкой. Их увеличительные способности были на тот период наибольшими. Увеличивали в 200-270 раз. Будучи от природы любознательным он рассматривал все: кровь, зубной налет, слюну и многое другое. За свои работы был принят в Лондонское Королевское общество. Он пришел к выводу, что все вокруг заселено маленькими организмами. По его мнению, они были устроены как животные. Известно, что Петр первый побывал у него и привез в Россию первый микроскоп. В дальнейшем по его образцу их выпускали в России.
Развитие наук требовало усложнение увеличительных приборов. И в 1863 году появился поляризационный. С 1931 года пришло время электронных микроскопов. Он был гораздо мощней, чем световой. Его возможности позволили рассмотреть не только клетку, но и её органеллы. Началось время развития гистологии (наука о тканях) и цитологии (наука о клетке). Позже его создателю Э. Руска была вручена Нобелевская премия.
Усовершенствование электронного микроскопа привело к созданию лазерного прибора. В основе лежит лазерный пучок. Это приводит к тому, что появилась возможность рассматривать в более глубоких слоях. Его модернизация привела к созданию лазерного рентгеновского микроскопа. На сегодняшний день с помощью увеличительных приборов можно не просто увидеть микромир, но и сфотографировать. Сделать 3 D проекцию. Если на первых этапах создания увеличительных приборов их размеры были не большие. Современное оборудование же бывает не просто больших, а очень больших размеров. В тоже время они стали более доступные. Их можно приобрести для личного пользования.
Создание микроскопа и его дальнейшее совершенствование позволило развиться многим наукам. Первой, из которых стала микробиология. Его используют во многих смежных дисциплинах: медицине, ботаники, геологии, химии, энтомологии (наука о насекомых), физики и других. Благодаря ему было сделано большое количество научных открытий. Появилась возможность понять механизм многих процессов. Научиться справляться с опасными заболеваниями, которые вызываются микроорганизмами.

С древних времен человек хотел увидеть вещи, куда более мелкие, чем может воспринять невооруженный глаз. Кто первый начал использовать линзы, сейчас сказать невозможно, но достоверно известно, например, что наши предки более 2 тысяч лет назад знали о том, что стекло способно преломлять свет.

Во втором веке до нашей эры Клавдий Птолемей описывал, как “изгибается” палка, которую окунули в воду, и даже очень точно подсчитал постоянную рефракции. Еще ранее в Китае делали устройства из линз и наполненной водой трубки, чтобы “видеть невидимое”.

В 1267 году Роджер Бэкон описал принципы работы линз и общую идею телескопа и микроскопа, но только в конце XVI века Захарий Янсен и его отец Ганс, производители очков из Голландии, начали экспериментировать с линзами. Они поместили несколько линз в трубку и обнаружили, что предметы, обозреваемые через нее, выглядят значительно больше, чем под простым увеличительным стеклом.

Но этот их “микроскоп” был скорее диковинкой, нежели научным прибором. Сохранилось описание инструмента, который отец и сын сделали для королевской семьи. Он состоял из трех скользящих трубок общей длиной в 45 с небольшим сантиметров и диаметром в 5 сантиметров. В закрытом виде он увеличивал в 3 раза, в полностью раскрытом - в 9 раз, правда, изображение получалось немного размытым.

В 1609 году Галилео Галилей создал составной микроскоп с выпуклыми и вогнутыми линзами и в 1612 представил этот “оккиолино” (“маленький глаз”) польскому королю Сигизмунду III. Через несколько лет, в 1619-м, нидерландский изобретатель Корнелиус Дреббель продемонстрировал в Лондоне свою версию микроскопа, с двумя выпуклыми линзами. Но само слово “микроскоп” появилось только в 1625 году, когда, по аналогии с “телескопом”, его придумал немецкий ботаник из Бамберга, Иоханн (Джованни) Фабер.

От Левенгука до Аббе

В 1665 году английский естествоиспытатель Роберт Гук усовершенствовал увеличительный инструмент и открыл элементарные единицы строения, клетки, изучая кору пробкового дуба. Через 10 лет после этого голландский ученый Антони ван Левенгук сумел получить еще более совершенные линзы. Его микроскоп увеличивал предметы в 270 раз, при том, что остальные подобные приборы едва достигали 50-кратного увеличения.

Благодаря своим качественно отшлифованным и отполированным линзам, Ленвенгук сделал множество открытий - он первым увидел и описал бактерии, дрожжевые клетки, наблюдал движение кровяных телец в капиллярах. Всего ученый изготовил как минимум 25 разных микроскопов, из которых до нашего времени дошли лишь девять. Есть предположения, что некоторые из утерянных приборов имели даже 500-кратное увеличение.

Несмотря на все достижения в этой области, в последующие 200 лет микроскопы практически не изменились. И только в 1850-х немецкий инженер Карл Цейс начал совершенствовать линзы для микроскопов, которые производила его компания. В 1880-х он нанял Отто Шотта, специалиста по оптическим стеклам. Его исследования позволили значительно улучшить качество увеличительных приборов.

Еще один сотрудник Карла Цейса, физик-оптик Эрнст Аббе, усовершенствовал сам процесс производства оптических инструментов. Прежде все работы с ними выполнялись методом проб и ошибок; Аббе же создал для них теоретический фундамент, научно обоснованные методы изготовления.

С развитием технологии и появился микроскоп, который мы знаем сейчас. Однако теперь оптические микроскопы, способные фокусироваться на объектах, размер которых превышает или равен длине волны света, уже не могли удовлетворить ученых.

Современные электронные микроскопы

В 1931 году немецкий физик Эрнст Руска начал работу над созданием первого электронного микроскопа (просвечивающий (трансмиссионный) электронный микроскоп). В 1986 году за это изобретение он получит Нобелевскую премию.

В 1936-м немецкий же ученый Эрвин Вильгель Мюллер изобрел электронный проектор (автоэлектронный микроскоп). Прибор позволял увеличить изображение твердого тела в миллионы раз. Через 15 лет Мюллер же сделал еще один прорыв в этой области - автоионный микроскоп, который дал физику возможность впервые в истории человечества увидеть атомы.

Параллельно велись и другие работы. В 1953 году голландец Фриц Цернике, профессор теоретической физики, получил Нобелевскую премию за создание фазово-контрастной микроскопии. В 67-м Эрвин Мюллер усовершенствовал свой автоионный микроскоп, добавив к нему время-пролетный масс-спектрометр, создав первый “атомный зонд”. Это устройство позволяет не только идентифицировать отдельно взятый атом, но и определять массу и кратность заряда иона.

В 1981-м Герд Бинниг и Генрих Рорер из Германии создали сканирующий (растровый) туннельный микроскоп; через пять лет после этого Бинниг и его коллеги изобрели сканирующий атомно-силовой микроскоп. В отличие от предыдущей разработки, АСМ позволяет исследовать и проводящие, и непроводящие поверхности и фактически манипулировать атомами. В том же году Бинниг и Рорер получили Нобелевскую премию за СТМ.

В 1988 году трое ученых из Великобритании снабдили “атомный зонд” Мюллера позиционно-чувствительным детектором, что дало возможность определять положение атомов в трех измерениях.

В 1988-м японский инженер Кинго Итая изобрел электрохимический сканирующий туннельный микроскоп, а три года спустя был предложен кельвин-зондовый силовой микроскоп - бесконтактная версия атомно-силового микроскопа.

История микроскопа

Невозможно точно определить, кто изобрёл микроскоп. Считается, что голландский мастер очков Ханс Янссен и его сын Захария Янссен изобрели первый микроскоп в , но это было заявление самого Захария Янссена в середине XVII века . Дата, конечно, не точна, так как оказалось, что Захария родился около г. Другим претендентом на звание изобретателя микроскопа был Галилео Галилей. Он разработал «occhiolino» («оккиолино»), или составной микроскоп с выпуклой и вогнутой линзами в г. Галилей представил свой микроскоп публике в Академии деи Линчеи, основанной Федерико Чези в г. Изображение трёх пчел Франческо Стеллути было частью печати Папы Урбана VIII и считается первым опубликованным микроскопическим символом (см. «Stephen Jay Gould, The Lying stones of Marrakech, 2000»). Кристиан Гюйгенс , другой голландец, изобрел простую двулинзовую систему окуляров в конце 1600-х , которая ахроматически регулировалась и, следовательно, стала огромным шагом вперед в истории развития микроскопов. Окуляры Гюйгенса производятся и по сей день, но им не хватает широты поля обзора, а расположение окуляров неудобно для глаз по сравнению с современными широкообзорными окулярами. Антон Ван Левенгук ( -) считается первым, кто сумел привлечь к микроскопу внимание биологов, несмотря на то, что простые увеличительные линзы уже производились с 1500-х годов , а увеличительные свойства наполненных водой стеклянных сосудов упоминались ещё древними римлянами (Сенека). Изготовленные вручную, микроскопы Ван Левенгука представляли собой очень небольшие изделия с одной очень сильной линзой. Они были неудобны в использовании, однако позволяли очень детально рассматривать изображения лишь из-за того, что не перенимали недостатков составного микроскопа (несколько линз такого микроскопа удваивали дефекты изображения). Понадобилось около 150 лет развития оптики, чтобы составной микроскоп смог давать такое же качество изображения, как простые микроскопы Левенгука. Так что, хотя Антон Ван Левенгук был великим мастером микроскопа, он не был его изобретателем вопреки широко распространённому мнению.

Недавние достижения

Немецкие ученые Штефан Хелль в 2006 году Stefan Hell и Мариано Босси Mariano Bossi из Института биофизической химии разработали оптический микроскоп под названием Наноскоп, позволяющий наблюдать объекты размером около 10 нм и получать высококачественные трёхмерные изображения.

Применение

Устройство микроскопа

Оптическая система микроскопа состоит из основных элементов - объектива и окуляра. Они закреплены в подвижном тубусе, расположенном на металлическом основании, на котором имеется предметный столик.

В современном микроскопе практически всегда есть осветительная система (в частности, конденсор с ирисовой диафрагмой), макро- и микро- винты для настройки резкости, система управления положением конденсора.

В зависимости от назначения, в специализированных микроскопах могут быть использованы дополнительные устройства и системы.

Объективы

Иммерсия

Может быть сухой и масляной. а)сухая: показатель преломления равен 1; б)масляная: используется при работе с мелкими объектами, показатель преломления равен 1,33 Иммерсионное масло добывают из деревьев

Окуляры

Система освещения препарата

В первых микроскопах исследователи вынуждены были пользоваться естественными источниками света. Для улучшения освещённости стали использовать зеркало, а затем - и вогнутое зеркало, с помощью которого на препарат направляли лучи солнца или лампы. В современных микроскопах освещение регулируют с помощью конденсора.

Конденсор

Конденсор тёмного поля

Предметный столик

Предметный столик выполняет роль поверхности, на которой размещают микроскопический препарат. В разных конструкциях микроскопов столик может обеспечить координатное движение препарата в поле зрения объектива, по вертикали и горизонтали, или поворот препарата на заданный угол.

Вспомогательные приспособления

Предметные и покровные стёкла

Первые наблюдения в микроскоп производились непосредственно над каким-либо объектом (птичье перо, снежинки, кристаллы и т. п.). Для удобства наблюдения в проходящем свете, препарат стали размещать на стеклянной пластинке (предметное стекло). Иногда эту пластинку делали с лункой - для размещения объекта в капле воды. Позже препарат стали закреплять тонким покровным стеклом, что позволило создавать коллекции образцов, например, гистологические коллекции.

Классификация

Рабочие лабораторные микроскопы

Бинокулярные микроскопы

Бинокуляр Olympus_SZIII Stereo microscope

Исследование с помощью компьютеризованного бинокулярного микроскопа

Бинокулярный микроскоп (иначе - стереомикроскоп) позволяет получать 2 изображения объекта, рассматриваемые под небольшим углом, что обеспечивает объёмное восприятие. В современных бинокулярных микроскопах одновременно используются два окуляра (по одному на каждый глаз) и обычно 1 объектив. Общее увеличение (объектив*оккуляр) бинокуляров обычно меньше, чем у монокулярных микроскопов. Бинокулярные микроскопы хорошо работают как в проходящем, так и в отражённом свете..



© dagexpo.ru, 2024
Стоматологический сайт