В каком году появился первый микроскоп. Микроскоп гука, первый микроскоп. Кратко о возможностях современных устройств

28.06.2020

Что ни говорите, а микроскоп является одним из важнейших инструментов ученых, одним из главных их оружий в познании окружающего мира. Как появился первый микроскоп, какая история микроскопа от средних веков и до наших дней, какое строение микроскопа и правила работы с ним, ответы на все эти вопросы Вы найдете в нашей статье. Итак, приступим.

История создания микроскопа

Хотя первые увеличительные линзы, на основе которых собственно и работает световой микроскоп, археологи находили еще при раскопках древнего Вавилона, тем не менее, первые микроскопы появились в Средневековье. Что интересно, среди историков нет согласия по поводу того, кто первым изобрел микроскоп. Среди кандидатов на эту почтенную роль такие известные ученые и изобретатели как Галилео Галилей, Христиан Гюйгенс, Роберт Гук и Антонии ван Левенгук.

Стоит также упомянуть итальянского врача Г. Фракосторо, который еще в далеком 1538 году первым предложил совместить несколько линз, чтобы получить больший увеличительный эффект. Это еще не было созданием микроскопа, но стало предтечей его возникновения.

А в 1590 году некто Ханс Ясен, голландский мастер по созданию очков заявил, что его сын – Захарий Ясен – изобрел первый микроскоп, для людей Средневековья такое изобретение было сродни маленькому чуду. Однако, ряд историков сомневается в том, является ли Захарий Ясен истинным изобретателем микроскопа. Дело в том, что в его биографии немало темных пятен, в том числе пятен и на его репутации, так современники обвиняли Захарию в фальшивомонетчестве и краже чужой интеллектуальной собственности. Как бы там ни было, но точно узнать был ли Захарий Ясен изобретателем микроскопа или нет, мы, к сожалению, не можем.

А вот репутация Галилео Галилея в этом плане безупречна. Этого человека мы знаем, прежде всего, как, великого астронома, ученого, гонимого католической церковью за свои убеждения о том, что Земля вращается вокруг , а не наоборот. Среди важных изобретений Галилея – первый телескоп, с помощью которого ученый проник своим взором в космические сферы. Но сфера его интересов не ограничивалась лишь звездами и планетами, ведь микроскоп, это по сути тот же телескоп, но только наоборот. И если с помощью увеличительных линз можно наблюдать за далекими планетами, то почему бы не обратить их мощь в другое направление – изучить то, что находится у нас «под носом». «Почему бы и нет», – наверное, подумал Галилей, и вот, в 1609 году он уже представляет широкой публике в Академии деи Личеи свой первый составной микроскоп, который состоял из выпуклой и вогнутой увеличительных линз.

Старинные микроскопы.

Позднее, спустя 10 лет, голландский изобретатель Корнелиус Дреббель усовершенствовал микроскоп Галилея, добавив в него еще одну выпуклую линзу. Но настоящую революцию в развитии микроскопов совершил Христиан Гюйгенс, голландский физик, механик и астроном. Так он первым создал микроскоп с двухлинзовой системой окуляров, которые регулировались ахроматически. Стоит заметить, что окуляры Гюйгенса применяются и по сей день.

А вот знаменитый английский изобретатель и ученый Роберт Гук навеки вошел в историю науки, не только как создатель собственного оригинального микроскопа, но и как человек, сделавший при его помощи великое научное открытие. Именно он первым увидел через микроскоп органическую клетку, и предположил, что все живые организмы состоят из клеток, этих мельчайших единиц живой материи. Результаты своих наблюдений Роберт Гук опубликовал в своем фундаментальном труде – Микрографии.

Опубликованная в 1665 году Лондонским королевским обществом, эта книга тут же стала научным бестселером тех времен и произвела подлинный фурор в научном сообществе. Еще бы, ведь в ней имелись гравюры с изображением увеличенной в микроскоп , вши, мухи, клетки растения. По сути, этот труд представлял собой удивительное описание возможностей микроскопа.

Интересный факт: термин «клетка» Роберт Гук взял потому, что клетки растений ограниченные стенами напомнили ему монашеские кельи.

Так выглядел микроскоп Робета Гука, изображение из «Микрографии».

И последним выдающимся ученым, который внес свой вклад в развитие микроскопов, был голландец Антонии ван Левенгук. Вдохновленный трудом Роберта Гука, «Микрографией», Левенгук создал свой собственный микроскоп. Микроскоп Левенгука, хотя и обладал лишь одной линзой, но она была чрезвычайно сильной, таким образом, уровень детализации и увеличения у его микроскопа был лучшим на то время. Наблюдая в микроскоп живую природу, Левенгук сделал множество важнейших научных открытий в биологии: он первым увидел эритроциты, описал бактерии, дрожжи, зарисовал сперматозоиды и строение глаз насекомых, открыл и описал многие их формы. Работы Левенгука дали огромный толчок к развитию биологии, и помогли привлечь внимание биологов к микроскопу, сделали его неотъемлемой частью биологических исследований, аж по сей день. Такая в общих чертах история открытия микроскопа.

Виды микроскопов

Далее с развитием науки и техники стали появляться все более совершенные световые микроскопы, на смену первому световому микроскопу, работающему на основе увеличительных линз, пришел микроскоп электронный, а затем и микроскоп лазерный, микроскоп рентгеновский, дающие в разы более лучший увеличительный эффект и детализацию. Как же работают эти микроскопы? Об этом дальше.

Электронный микроскоп

История развития электронного микроскопа началась в 1931 году, когда некто Р. Руденберг получил патент на первый просвечивающий электронный микроскоп. Затем в 40-х годах прошлого века появились растровые электронные микроскопы, достигшие своего технического совершенства уже в 60-е годы прошлого века. Они формировали изображение объекта благодаря последовательному перемещению электронного зонда малого сечения по объекту.

Как работает электронный микроскоп? В основе его работы лежит направленный пучок электронов, ускоренный в электрическом поле и выводящий изображение на специальные магнитные линзы, этот электронный пучок намного меньше длины волн видимого света. Все это дает возможность увеличить мощность электронного микроскопа и его разрешающую способность в 1000-10 000 раз по сравнению с традиционным световым микроскопом. Это главное преимущество электронного микроскопа.

Так выглядит современный электронный микроскоп.

Лазерный микроскоп

Лазерный микроскоп представляет собой усовершенствованную версию электронного микроскопа, в основе его работы лежит лазерный пучок, позволяющий взору ученого наблюдать живые ткани на еще большой глубине.

Рентгеновский микроскоп

Рентгеновские микроскопы используются для исследования очень маленьких объектов, имеющих размеры сопоставимые с размерами рентгеновской волны. В основе их работы лежит электромагнитное излучение с длиной волны от 0,01 до 1 нанометра.

Устройство микроскопа

Конструкция микроскопа зависит от его вида, разумеется, электронный микроскоп будет отличаться своим устройством от светового оптического микроскопа или от рентгеновского микроскопа. В нашей статье мы рассмотрим строение обычного современного оптического микроскопа, который является наиболее популярным как среди любителей, так и профессионалов, так как с их помощью можно решить множество простых исследовательских задач.

Итак, прежде всего в микроскопе можно выделить оптическую и механическую части. К оптической части относится:

  • Окуляр – это та часть микроскопа, которая прямо связана с глазами наблюдателя. В самых первых микроскопах он состоял из одной линзы, конструкция окуляра в современных микроскопах, разумеется, несколько сложнее.
  • Объектив – практически самая важная часть микроскопа, так как именно объектив обеспечивает основное увеличение.
  • Осветитель – отвечает за поток света на исследуемый объект.
  • Диафрагма – регулирует силу светового потока, поступающего на исследуемый объект.

Механическая часть микроскопа состоит из таких важных деталей как:

  • Тубус, он представляет собой трубку, в которой заключается окуляр. Тубус должен быть прочным и не деформироваться, так как иначе пострадают оптические свойства микроскопа.
  • Основание, оно обеспечивает устойчивость микроскопа во время работы. Именно на него крепится тубус, держатель конденсатора, ручки фокусировки и другие детали микроскопа.
  • Револьверная головка – применяется для быстрой смены объективов, в дешевых моделях микроскопов отсутствует.
  • Предметный столик – это то место, на котором размещается исследованный объект или объекты.

А тут на картинке изображено более подробное строение микроскопа.

Правила работы с микроскопом

  • Работать с микроскопом необходимо сидя;
  • Перед работой микроскоп необходимо проверить и протереть от пыли мягкой салфеткой;
  • Установить микроскоп перед собой немного слева;
  • Начинать работу стоит с малого увеличения;
  • Установить освещение в поле зрения микроскопа, используя электроосветитель или зеркало. Глядя одним глазом в окуляр и пользуясь зеркалом с вогнутой стороной, направить свет от окна в объектив, а затем максимально и равномерно осветить поле зрения. Если микроскоп снабжен осветителем, то подсоединить микроскоп к источнику питания, включить лампу и установить необходимую яркость горения;
  • Положить микропрепарат на предметный столик так, чтобы изучаемый объект находился под объективом. Глядя сбоку, опускать объектив при помощи макровинта до тех пор, пока расстояние между нижней линзой объектива и микропрепаратом не станет 4-5 мм;
  • Передвигая препарат рукой, найти нужное место, расположить его в центре поля зрения микроскопа;
  • Для изучения объекта при большом увеличении, сначала нужно поставить выбранный участок в центр поля зрения микроскопа при малом увеличении. Затем поменять объектив на 40 х, поворачивая револьвер, так чтобы он занял рабочее положение. При помощи микрометренного винта добиться хорошего изображения объекта. На коробке микрометренного механизма имеются две черточки, а на микрометренном винте – точка, которая должна все время находиться между черточками. Если она выходит за их пределы, ее необходимо возвратить в нормальное положение. При несоблюдении этого правила, микрометренный винт может перестать действовать;
  • По завершении работы с большим увеличением, установить малое увеличение, поднять объектив, снять с рабочего столика препарат, протереть чистой салфеткой все части микроскопа, накрыть его полиэтиленовым пакетом и поставить в шкаф.

Открытие Галлилео Галлилея

Однажды Галилей соорудил очень длинную подзорную трубу. Дело происходило днем. Закончив работу, он навел трубу на окно, чтобы на свету проверить чистоту линз. Прильнув к окуляру, Галилей оторопел: все поле зрения занимала какая-то серая искрящаяся масса. Труба немного покачнулась, и ученый увидел огромную голову с выпуклыми черными глазами по бокам. У чудовища было черное, с зеленым отливом туловище, шесть коленчатых ног… Да ведь это … муха! Отняв трубу от глаза, Галилей убедился: на подоконнике действительно сидела муха.

Так появился на свет микроскоп - состоящий из двух линз прибор для увеличения изображения маленьких предметов. Свое название - «микроскопиум» - он получил от члена «Академиа деи линчеи» («академии рысьеглазых»)

И. Фабера в 1625 г. Это было научное общество, которое, кроме прочего, одобряло и поддерживало применение оптических приборов в науке.

А сам Галилей в 1624 г. вставил в микроскоп более короткофокусные (более выпуклые) линзы, благодаря чему труба стала короче.


Роберт Гук

Следующая страница в истории микроскопа связана с именем Роберта Гука. Это был очень одаренный человек и талантливый ученый. По окончании Оксфордского университета в 1657 г. Гук стал помощником Роберта Бойля. Это была отличная школа у одного из крупнейших ученых того времени. В 1663 г. Гук уже работал секретарем и демонстратором опытов Английского Королевского общества (академии наук). Когда там стало известно о микроскопе, Гуку поручили провести наблюдения на этом приборе. Имевшийся в его распоряжении микроскоп мастера Дреббеля являл собой полуметровую позолоченную трубу, расположенную строго вертикально. Работать приходилось в неудобной позе - изогнувшись дугой.


Роберт Гук

Прежде всего Гук сделал трубу - тубус - наклонной. Чтобы не зависеть от солнечных дней, которых в Англии бывает немного, он установил перед прибором масляную лампу оригинальной конструкции. Однако солнце светило все же гораздо ярче. Поэтому пришла мысль лучи света от лампы усилить, сконцентрировать. Так появилось очередное изобретение Гука - большой стеклянный шар, наполненный водой, а за ним специальная линза. Такая оптическая система в сотни раз усиливала яркость освещения.


Роберт Гук

Когда микроскоп был готов, Гук принялся за наблюдения. Их результаты он описал в своей книге «Микрография», изданной в 1665 г. За 300 лет она переиздавалась десятки раз. Помимо описаний, она содержала замечательные иллюстрации - гравюры самого Гука.


Открытие клетки Р.Гуком

Особый интерес в ней представляет наблюдение № 17 - «О схематизме, или строении пробки и о клетках и порах некоторых других пустых тел». Гук так описывает срез обыкновенной пробки: «Вся она перфорированная и пористая, подобно сотам, но поры ее неправильной формы, и в этом отношении она напоминает соты… Далее, эти поры, или клетки, неглубоки, но состоят из множества ячеек, разделенных перегородками».

В этом наблюдении бросается в глаза слово «клетка». Так Гук назвал то, что и сейчас называется клетками, например, клетки растений. В те времена люди не имели об этом ни малейшего представления. Гук первым наблюдал их и дал название, оставшееся за ними навсегда. Это было открытие громадной важности.


Антони ван Левенгук

Вскоре после Гука начал вести свои наблюдения голландец Антони ван Лсвенгук. Это была

интересная личность - он торговал тканями и зонтиками, но не получил никакого научного образования. Зато у него был пытливый ум, наблюдательность, настойчивость и добросовестность. Линзы, которые он сам шлифовал, увеличивали предмет в 200-300 раз, то есть в 60 раз лучше применявшихся тогда приборов. Все свои наблюдения он излагал в письмах, которые аккуратно посылал в Лондонское королевское общество. В одном из своих писем он сообщил об открытии мельчайших живых существ - анималькул, как Левенгук их назвал. Оказалось, что они присутствуют повсюду-в земле, растениях, теле животных. Это событие произвело революцию в науке - были открыты микроорганизмы.


Антони ван Левенгук

В 1698 г. Антони ван Левенгук встретился с российским императором Петром I и продемонстрировал ему свой микроскоп и анималькул. Император был так заинтересован всем, что он увидел и что объяснил ему голландский ученый, что закупил для России микроскопы голландских мастеров. Их можно увидеть в Кунсткамере в Петербурге.


Оптическая микроскопия

Теория получения изображения с помощью линз может быть представлена с точки зрения либо геометрической, либо физической оптики. Геометрическая оптика хорошо объясняет фокусирование и аберрацию, однако для понимания, почему изображение не совсем четкое и как получается контрастность, необходимо привлечь физическую оптику. В геометрической оптике существует два правила, которые следует постоянно помнить: 1) свет распространяется по прямой и 2) луч отклоняется от прямой (преломляется) на границе раздела между двумя прозрачными средами.



Объектив

Объективы микроскопов, как правило, тщательно стандартизируются по увеличению NA. Обычно NA увеличивается с уменьшением фокусного расстояния, поскольку увеличение растет с уменьшением диаметра линз


Окуляр

Окуляры Основная функция окуляра состоит в передаче изображения от объектива глазу. Существуют разнообразные системы окуляров: Рамсдена, Гюйгенса, Кельнера и компенсирующие. Три первых типа взаимозаменяемы и отличаются только способом нанесения сеток, указателей и других точек отсчета. Компенсирующий окуляр разработан для коррекции хроматической аберрации.

Регулировка микроскопа

Для подготовки микроскопа к работе необходимо провести следующую регулировку: 1) источник света и все его компоненты должны быть отцентрированы по оптической оси прибора; 2) объектив необходимо сфокусировать и 3) требуется отрегулировать освещение. В большинстве обычных (стандартных) микроскопов конденсор, объектив и окуляр коаксиальны, поэтому центрировать требуется только источник света. Это достигается путем фокусировки на микроскопном стекле, удаления окуляра и перемещения источника света с помощью регулировочного винта до тех пор, пока свет (при наблюдении в тубус) не будет находиться в центре объектива. Если регулируется и установка по центру конденсора, то конденсор вначале вынимают, источник света центрируют, как описано выше, затем конденсор ставят на место и с помощью регулировочного винта центрируют по источнику света. Затем конденсор фокусируют на объекте для критического освещения Для того чтобы избежать влияния рассеянного и отраженного света, полевую диафрагму следует уменьшить так, чтобы освещен был только объект. Если интенсивность освещения мешает удобному наблюдению, то ее можно уменьшить. Для уменьшения интенсивности ни в коем случае нельзя изменять апертуры, для этого либо вводят перед источником света нейтральные плотные фильтры, либо уменьшают напряжение, подаваемое на источник.


Контраст

Чтобы объект был видимым, его изображение должно отличаться по интенсивности от окружающего фона. Различие в интенсивно-стях объекта и фона называется контрастом. К сожалению, большинство биологических образцов (клетки и их компоненты) прозрачны, т. е. их контраст близок к нулю. В прошлом для решения этой проблемы образцы окрашивали, прибавляя окрашенные вещества, которые реагировали с определенными компонентами клеток.

Изготовление микропрепаратов

Изготовление срезов препаратов Как правило, толщина кусочков материала слишком велика, чтобы сквозь них могло пройти достаточное для исследования под микроскопом количество света. Обычно приходится срезать очень тонкий слой исследуемого материала, т. е. готовить срезы. Срезы можно делать бритвой или на микротоме. Вручную срезы готовятся с помощью остро отточенной бритвы. Для работы на обычном микроскопе срезы должны быть толщиной 8-12 мкм. Ткань закрепляют между двумя кусочками сердцевины бузины. Бритву смачивают жидкостью, в которой хранилась ткань; срез делают через бузину и ткань, причем бритву держат горизонтально и двигают ее к себе медленным скользящим движением, направленным чуть вкось. Быстро сделав несколько срезов, следует выбрать из них самый тонкий, содержащий характерные участки ткани. Срез с ткани, залитой в ту или иную среду, можно сделать на микротоме. Для светового микроскопа срезы толщиной в несколько микрометров можно сделать с залитой в парафин ткани с помощью специального стального ножа. На ультратоме изготавливают чрезвычайно тонкие срезы (20-100 нм) для электронного микроскопа. В этом случае необходим алмазный или стеклянный нож. Срезы для светового микроскопа можно приготовить, не заливая материал в среду; для этого используют замораживающий микротом. В процессе приготовления замороженного среза образец сохраняется в замороженном твердом состоянии.


Простейшие под микроскопом

Многих простейших вы можете увидеть своими глазами в поле зрения под микроскопом в любое время года. Чтобы иметь для наблюдения живых простейших, необходимо заранее заготовить питательную среду, в которой они могли бы развиваться продолжительное время. Для этого в 2-3 стеклянные банки накладывают слой (толщиной 2 см) нарезанных листьев или сенной трухи, а сверху наливают (13 банки) дождевую или водопроводную воду. Банки покрывают стеклом и ставят на окно, затеняя от прямых солнечных лучей. Через 3-4 суток заливают водой, взятой из стоячего водоема (пруда, канавы), на дне которого находится гниющая растительность (трава, листья, ветки). С водой следует захватить и немного ила со дна. Через несколько дней в сосудах появится пленка, отливающая металлическим блеском. Просматривая под микроскопом капли воды, можно убедиться, какими видами простейших богата вода из банок. При таком разведении простейших сначала появляются разные виды мелких инфузорий, затем амебы и, наконец (через 15 суток), инфузории-туфельки.


Анализ крови

Микроскоп давно стал незаменимым помощником человека во многих сферах. В объектив прибора можно увидеть то, что не видно невооруженным глазом. Интереснейший объект для исследований представляет собой кровь. Под микроскопом можно рассмотреть основные элементы состава крови человека: плазму и форменные элементы.

Впервые состав крови человека исследовал врач - итальянец Марчелло Мальпиги. Он принял плавающие в плазме форменные элементы за жировые шарики. Клетки крови еще не раз называли то воздушными шариками, то животными, принимая их за разумных существ. Термин «кровяные клетки» или «кровяные шарики» ввел в научный обиход Антоний Левенгук. Кровь под микроскопом – это своеобразное зеркало состояния человеческого организма.


Человек долгое время жил в окружении невидимых организмов. Постоянно сталкиваясь с продуктами их жизнедеятельности. Изготавливал вино, уксус, выпекал хлеб и многое другое. Страдал от заболеваний вызванных этими организмами. Не подозревая об их существовании. Ведь их размеры настолько малы, что невидимы человеческому глазу.
Ещё в Древнем Вавилоне пытались расширить человеческие возможности. Во время раскопок были найдены двояковыпуклые линза. На сегодня простейшие оптические приборы. Это был шаг в микромир. В дальнейшем в 16-17 века благодаря развитию астрономии были созданы подзорные трубы. Было замечено, если линзы расположить наоборот, можно рассмотреть очень мелкие предметы. Зная это, в 1610 году Г. Галилей создал микроскоп.
Позднее физик, изобретатель Р. Гук сконструировал микроскоп из двух двояковыпуклых линз. Он давал увеличение в 30 раз. При рассмотрении среза пробки он увидел ячейки. Впоследствии они были им названы клетками. Все дальнейшее изучение микромира было связано с усовершенствованием микроскопов.
Большой вклад в изучении микроорганизмов внес Антони ван Левенгук. Изначально его заинтересовало строение льняных волокон. Для их рассмотрения он отшлифовал несколько грубых линз. В дальнейшем он увлекся этой работой. Стал усовершенствовать линзы. Он их называл «микроскопии». Свои одинарные двояковыпуклые стекла вставлял в оправу из серебра или латуни. Имели вид современных луп. В дальнейшем он создал микроскоп с подсветкой. Их увеличительные способности были на тот период наибольшими. Увеличивали в 200-270 раз. Будучи от природы любознательным он рассматривал все: кровь, зубной налет, слюну и многое другое. За свои работы был принят в Лондонское Королевское общество. Он пришел к выводу, что все вокруг заселено маленькими организмами. По его мнению, они были устроены как животные. Известно, что Петр первый побывал у него и привез в Россию первый микроскоп. В дальнейшем по его образцу их выпускали в России.
Развитие наук требовало усложнение увеличительных приборов. И в 1863 году появился поляризационный. С 1931 года пришло время электронных микроскопов. Он был гораздо мощней, чем световой. Его возможности позволили рассмотреть не только клетку, но и её органеллы. Началось время развития гистологии (наука о тканях) и цитологии (наука о клетке). Позже его создателю Э. Руска была вручена Нобелевская премия.
Усовершенствование электронного микроскопа привело к созданию лазерного прибора. В основе лежит лазерный пучок. Это приводит к тому, что появилась возможность рассматривать в более глубоких слоях. Его модернизация привела к созданию лазерного рентгеновского микроскопа. На сегодняшний день с помощью увеличительных приборов можно не просто увидеть микромир, но и сфотографировать. Сделать 3 D проекцию. Если на первых этапах создания увеличительных приборов их размеры были не большие. Современное оборудование же бывает не просто больших, а очень больших размеров. В тоже время они стали более доступные. Их можно приобрести для личного пользования.
Создание микроскопа и его дальнейшее совершенствование позволило развиться многим наукам. Первой, из которых стала микробиология. Его используют во многих смежных дисциплинах: медицине, ботаники, геологии, химии, энтомологии (наука о насекомых), физики и других. Благодаря ему было сделано большое количество научных открытий. Появилась возможность понять механизм многих процессов. Научиться справляться с опасными заболеваниями, которые вызываются микроорганизмами.

Микроскоп – уникальный оптический прибор, позволяющий рассмотреть, изучить и измерить мельчайшие предметы и структуры, невидимые человеческим глазом. С помощью него было сделано множество открытий, изменивших судьбу человечества, появилась новая наука – микробиология. Известно, что , позволяющее увеличивать предметы в сотни и тысячи раз, совершенствовалось на протяжении многих лет. В данной статье рассмотрим, кто изобрел первый микроскоп и положил начало изучению недоступных глазу человека объектов Вселенной.

История создания первого микроскопа

О том, что изогнутые поверхности способны зрительно увеличивать предметы, было известно еще до нашей эры. В 1550 году эти необычные свойства нашли свое применение в устройстве, сооруженном голландским мастером по изготовлению очков. Звали его Ханс Янсен, с помощью своего сына он изготовил прибор, позволяющий добиться увеличения объектов в 30 раз. Это стало возможным благодаря использованию двух линз, помещенных в одну трубку. Первая из них увеличивала исследуемый объект, а вторая усиливала действие, делая полученное изображение больше. Однако сконструированный прибор не нашел широкого применения, поэтому история изобретения микроскопа продолжилась в трудах других исследователей:

  • Галилео Галилей – создал прибор, состоящий из двух видов линз. Выпуклые и вогнутые оптические элементы позволяли добиться лучшего изображения и большего увеличения объектов. Произошло это событие в 1609 году;
  • Корнелиус Дреббель – внес в составной микроскоп существенную доработку, применив для увеличения две выпуклые линзы;
  • Кристиан Гюйгенс – разработал регулируемую систему окуляров, что стало огромным прорывом в области изучения микромира.

Все вышеназванные исследователи внесли неоценимый вклад в создание важного оптического прибора. Однако история изобретения и распространения микроскопа начинается с устройств, созданных Левенгуком. Знаменитый голландец не был ученым, его открытия основаны только на любительском интересе. Микроскоп Левенгука имел всего одну, но очень сильную линзу, которая позволяла увеличить изображение в несколько сотен раз. Подобное устройство давало возможность рассмотреть объект исследования подробно и четко. С помощью него Левенгук обнаружил эритроциты в человеческой крови, рассмотрел волокна мышечной ткани, а также впервые увидел бактерии. Данный микроскоп был первым устройством подобного рода, ввезенным в Россию по приказу Петра I. Неоспоримым его преимуществом перед составным микроскопом было отсутствие дефектов изображения, порождаемых несколькими линзами.

Современные открытия и достижения

Современные микроскопы значительно изменились и усовершенствовались по сравнению с самыми первыми моделями. Появились электронные устройства, которые позволяют многократно увеличить изображение, используя вместо света поток электронов. Кто изобрел электронный микроскоп? В 30-е годы XX столетия немецкий инженер Р. Руденберг запатентовал просвечивающее устройство с фокусировкой электронов. Этот прибор был назван световым микроскопом и стал широко применяться во многих научных исследованиях.

Еще более совершенной моделью является наноскоп. Это самый современный вид оптического микроскопа, позволяющий наблюдать за фантастически малыми объектами. С помощью этого прибора стало возможным изучать элементы микромира, имеющие размеры менее 10 нанометров. Кроме этого, устройство позволяет получить качественные трехмерные изображения . Какой ученый впервые изобрел микроскоп, имеющий такие возможности? Над открытием наноскопа трудилась целая группа ученых, руководил которой немецкий исследователь Штефан Хелль. Известный изобретатель и доктор физических наук, он получил Нобелевскую премию за неоценимый вклад в развитие оптической техники.

С помощью современных приборов стало возможным наблюдать уникальные явления и делать сенсационные открытия. Ученые смогли проследить движение отдельных молекул внутри клетки, получить четкое изображение атома, а также зафиксировать молекулярные изменения в ходе химической реакции. Безусловно, тот, кто изобрел первый микроскоп, внес неоценимый вклад в развитие всего человечества.

В XXI веке развитие биологии идет семимильными шагами. Сегодня эта профессия снова обрела популярность, многие родители стремятся направить своих юных ученых именно по этой стезе. И действительно, новости об открытиях приходят практически ежедневно из всех уголков земного шара. Человечество взрослеет в интеллектуальном плане. Те, кто изобрел микроскоп - настоящие гении и профессионалы, они позволили цивилизации расти не только в медицине и области знаний об эволюции, но и во всех других научных и промышленных отраслях. Благодаря им формы жизни активно изучаются как на клеточном, так и на молекулярном уровне, кроме того достигнуты колоссальные результаты в металлургии, геологии, машиностроении. Их имена заслуживают уважения целых поколений, которым дано счастье пользоваться современными благами.

Кто изобрел микроскоп - пожалуй, именно с этого молодым биологам, смышленым детям и просто любознательным интеллектуалам следует начать свое удивительное путешествие в микромир, таящий в себе множество тайн и загадок, удивляющий и восхищающий не зависимо от возраста наблюдателя. Это полезное изобретение стало плодом многолетний кропотливой работы сразу нескольких изобретателей, гениальное попадание в цель, которую другие попросту не видели. Вспомним их и рассмотрим неоценимый вклад каждого.

Будучи неравнодушным к астрономии, Галилео Галилей разработал и сконструировал телескоп, оптическая схема которого в скором времени была использована в первых составных микроскопах. Доработанное устройство было названо «маленьким глазом» или «Оккиолино». Можно ли при этом утверждать, что он его изобрел в 1609 г., являясь весьма далеким от каких-либо биологических экспериментов (за исключением, может быть, наблюдения насекомых, являвшимся хобби)? С некоторой натяжкой, наверное, да. И большинство энциклопедий едины в своем мнении.

Более чем 6 десятилетий спустя, Антони ван Левенгук изобрел усовершенствованный микроскоп, способный показывать клетки растений и даже одноклеточные организмы, например, эвглен, инфузорий. По своей сути это был прибор, состоящий из отшлифованной линзы, закрепленной на металлической пластине. Не смотря на очевидную простоту, он был самый мощный, выдававший увеличение более чем в 270 крат! Образцы подсвечивались с помощью естественного света, направленного на них из открытого окна или горящей свечки.

Начиная с 1870-х г, после разработки Эрнстом Аббе теории о микроскопии, производители получают готовую технологию, и немецкая компания Carl Zeiss впервые берется за серийное производство, обеспечив себе лидерство и даже монополию на долгие годы вперед.

XIX и XX вв. ознаменовались созданием специализированных микроскопов, например, поляризационных, люминесцентных, металлографических. Помимо классических методов исследования (светлое и темное поле) получил широкое применение фазового контраста. В условиях современности изображение фиксируется в цифровом виде - делаются фотографии и видеоролики. Это оказалось возможным после появления видеоокуляра, позволяющего выводить картинку на экран компьютера в режиме on-line.



© dagexpo.ru, 2024
Стоматологический сайт