Сплавы неблагородных металлов. малую толщину и массу при достаточной жесткости базиса благодаря высокой удельной прочности титана. Легкоплавкие металлы в стоматологии

18.03.2019

    Благородные

    1. Серебряно-палладиевые

    Неблагородные

    1. Нержавеющая сталь

      Кобальтохромовые

      Никельхромовые

      Сплавы титана

    1. Благородные

      Неблагородные

Требования к металлам, применяемым в ортопедической стоматологии. Металлы должны:

    Обладать высокими механическими свойствами: прочность, упругость, твердость, высокое сопротивление нагрузке.

    Иметь хорошие технологические свойства: минимальная усадка, ковкость, пластичность, точное литье, полировка.

    Иметь нужные физические свойства: небольшой удельный вес, невысокая температура плавления.

    Обладать высокой химической стойкостью к воздействию агрессивных сред полости рта.

    Быть безвредными, химически инертными в полости рта.

    Сохранять постоянство формы и объема.

    Быть биологически совместимыми с восстанавливаемыми тканями.

Основные свойства нержавеющей стали.

В ортопедической стоматологии применяются специальные марки нержавеющих сталей, так называемые легированные стали: для штамповки 12Х18Н9Т или 12Х18Н10Т, для литья 20Х18Н9С2.

В состав нержавеющих сталей входят: 72% железа, 0,12% углерода, 18% хрома, 9-10% никеля, 1% титана, 2% кремния. Легированные стали содержат минимальное количество углерода (его увеличение приводит к повышению твердости и уменьшению ковкости стали) и повышенное содержание специально введенных элементов, обеспечивающих получение сплавов с нужными свойствами. Хром придает устойчивость к окислению. Никель добавляют к сплаву для повышения пластичности и вязкости. Титан уменьшает хрупкость и предотвращает межкристаллическую коррозию стали. Кремний присутствует только в литьевой стали и улучшает ее текучесть. Нержавеющая сталь обладает хорошей ковкостью и плохими литьевыми качествами.

Нержавеющая сталь применяется для изготовления штампованных коронок, паяных мостовидных протезов, гнутых кламмеров. Паяние нержавеющей стали проводится при помощи серебряного припоя (ПСрМЦ 37).

Для изготовления штампованных коронок промышленность выпускает стандартные гильзы, изготовленные методом холодной штамповки, толщиной 0,25-0,28 мм и диаметром 6-16 мм. Для изготовления различных ортодонтических аппаратов, гнутых кламмеров, штифтов выпускают проволоку диаметром 0,6; 0,8; 1; 1,2; 1,5 и 2 мм и стандартные кламмера диаметром 1 и 1,2 мм. Литьевая сталь (20Х18Н9С2) выпускается в виде слитков весом от 3,5 до 16 граммов. Температура плавления 1450ºС, коэффициент относительного удлинения 50%, коэффициент усадки до 3,5%.

Основные свойства хромокобальтового сплава .

Хромокобальтовые сплавы (КХС) относятся к высоколегированным сталям. Широкое применение сплавов обусловлено высоким модулем упругости и прочности, хорошей текучестью в жидком состоянии, небольшой усадкой, высокой стойкостью к окислению и коррозии.

В состав хромокобальтового сплава входит: хрома 67%, кобальта 26%, никеля 6%, молибдена и марганца по 0,5%. Кобальт имеет высокие механические свойства, хром вводится для придания твердости и антикоррозионных свойств, никель придает вязкость и пластичность, молибден усиливает прочностные свойства, марганец улучшает жидкотекучесть.

Сплав КХС применяют для изготовления только литых протезов (литые коронки, литые мостовидные протезы, бюгельные протезы). Штамповке он не поддается, так как обладает большой упругостью и твердостью.

Температура плавления 1460ºС, коэффициент относительного удлинения 8%, коэффициент усадки 1,8%.

Из современных отечественных материалов широко используются кобальтохромомолибденовые сплавы: КХС-Е (Екатеринбург) (Co-65, Cr-28, Mo-5; Mn, Ni, Si –остальное); Целит-К (Москва) (Co-69, Cr-23, Mo-5); хромоникелевые сплавы: Целит-Н (Ni-62, Cr-24, Mo-10).

Из современных зарубежных материалов широко используются немецкие хромоникелевые сплавы «Вирон 77»,-88,-99 (Ni-70, Cr-20, Mo-6, Si, Ce, В, С-0,02), кобальтохромомолибденовые «Виробонд» (Co-63, Cr-31, Mo-3; Mn, Si, C-0,07).

    Хромо-никеле­вые сплавы на основе железа

Железоуглеродистый сплав с содержанием углерода до 0,1-0,2%. Применяются марки лигированных сталей 11Х18Н9Т (ЭЯ-1) – гильзы, 20Х18Н9С2 – слитки, проволока (ЭЯ1-Т, ЭИ-95).

Лигированные стали – железоуглеродистые сплавы с минимальным содержанием углерода и с повышенным содержанием специально введенных в сплав элементов (хром, никель, молибден, титан и др.). Стали обладают хорошей ковкостью, пластичностью, упругими свойствами. Температура плавления 1450ºС. Усадка до 3%. Применяются для изготовления деталей несъемных и съемных конструкций протезов методами штамповки и литья отдельных деталей протезов. Выпускается в виде гильз, слитков, проволоки.

    Хромо-кобаль­товые сплавы (КХС)

    хромо-никеле­вые сплавы (НХ-Дент)

Относятся к разряду высоколигированных сплавов, со значительно меньшим количеством углерода. Обладают повышенной упругостью, прочностью, твердостью, малым коэффициентом усадки (1,8%). Находят применение при изготовлении только цельнолитых бюгельных протезов, коронок, мостовидных протезов, шин и аппаратов. Штамповке он не поддается, т.к. обладает большой упругостью и твердостью. НХ-Дент применяют для металлокерамики. Температура плавления 1460С, коэффициент относительного удлинения 8%, коэффициент усадки 1,8%

Контрольные вопросы

    Какие металлы и их сплавы применяются в ортопедической стоматологии?

    Требования к металлам применяемым в стоматологии.

    Какие марки нержавеющей стали применяются в ортопедической стоматологии?

    Какие отличительные свойства кобальто-хромового сплава выделяют его среди сплавов из неблагородных металлов?

Вопросы для самоподготовки

    В чём суть технологии легирования?

    Технологические свойства сплавов титана.

    Взаимосвязь механических, химических и технологических свойств металлов и их сплавов.

Задания для самостоятельной работы (учебно-исследовательская работа):

    Технология лазерной пайки. Преимущества, недостатки по сравнению с традиционной технологией паяния.

    Сплавы металлов, применяемых для изготовления зубных имплантатов.

1. Гаврилов Е.Н., Щербаков А.С. Ортопедическая стоматология: Учебник.-3изд.; перераб. и доп.-М.:Медицина,1984.-576 с., ил.

2. Дойников А.Н., Синицын В.Д. Зуботехническое материаловедение.- 2-е изд., перераб. и доп.-М.: Медицина, 1986.- 208с., ил.

3. Курляндский В.Ю. Ортопедическая стоматология: Учебник.-3-е изд.; перераб. и доп.-М.: Медицина, 1969.-497 с.

4. Материаловедение в стоматологии / Под ред. А.И.Рыбакова.- М.: Медицина, 1984,424 с., ил.

5. Сидоренко Г.И. Зуботехническое материаловедение: Учебное пособие.-К.: Высшая шк. Головное изд-во, 1988.- 184 с.,18 ил.

6. Материалы, применяемые в ортопедической стоматологии: Уч. пособие.-Ижевск,2009. -36с

7. Справочник по стоматологии // Под ред. А.И. Рыбакова. – 3-изд., перераб. и доп. – М.: Медицина, 1993.- 576с.

    Марков Б.П., Лебеденко И.Ю., Еричев ВВ. Руководство к практическим занятиям по ортопедической стоматологии. 4.1. -М.: ГОУ ВУНМЦ МЗ РФ, 2001. - 662 с.

    Марков Б.П., Лебеденко И.Ю., Еричев ВВ. Руководство к практическим занятиям по ортопедической стоматологии. 4.2 - М.: ГОУ ВУНМЦ МЗ РФ, 2001. - 235с.

    Ортопедическая стоматология: Учебник для студентов стоматлогич. фак. мед. вузов. / Под ред. В.Н. Копейкина, М.З. Миргазизова. - 2-е изд. доп. - М.: Медицина, 2001. - 621 с.

    Трезубов В.Н., Штейнгарт М.З., Мишнев Л.М. Ортопедическая стоматология: Прикладное материаловедение: Учебник для мед. вузов. - СПб.: СпецЛит, 2001. - 480 с.

    Трезубов В.Н., Щербаков А.С., Мишнев Л.М. Ортопедическая стоматология: Пропедевтика и основы частного курса: Учебник для мед. вузов. - СПб.: СпецЛит, 2001. -480 с.

    Руководство по ортопедической стоматологии. / Под ред. В.Н. Копейкина. - М.: Триада-X, 1998.-495 с.

Многочисленные фундаментальные и прикладные исследования заявляют, что лучшим материалом для изготовления дентальных имплантатов является титан.

В России для производства различных конструкций используется технически чистый титан марок BT 1-0 и BT 1-00 (ГОСТ 19807−91), а за рубежом применяют так называемый «коммерчески чистый» титан, который делят на 4 марки (Grade 1−4 ASTM, ISO). Также применяется титановый сплав Ti-6Al−4V (ASTM, ISO), являющийся аналогом отечественного сплава BT-6. Все эти вещества различны по химическому составу и механическим свойствам.

Титан марки Grade 1,2,3 – не используется в стоматологии, т.к. слишком мягкий.

Преимущества чистого титана марки Grade 4 (СP4)

  • Лучшая биологическая совместимость
  • Отсутствие в составе токсичного ванадия (V)
  • Лучшая стойкость к коррозии
  • 100% отсутствие аллергических рекаций

По данным исследования научных статей, методических и презентационных публикаций зарубежных компаний, стандартов ASTM, ISO, ГОСТ имеются сравнительные таблицы свойств и состава титана разных марок.

Таблица 1. Химический состав титана по ISO 5832/II и ASTM F 67−89.

** — Данные ISO и ASTM совпадают во многих пунктах, при их расхождении показатели ASTM приведены в скобках.

Таблица 2. Механические свойства титана по ISO 5832/II и ASTM F 67−89.

Таблица 3. Химический состав титановых сплавов по ГОСТ 19807−91.

* В титане марки ВТ 1−00 допускается массовая доля алюминия не более 0,3%, в титане марки ВТ 1−0 — не более 0,7%.

Таблица 4. Механические свойства титановых сплавов по ГОСТ 19807−91.

** Данные приведены по ОСТ 1 90 173−75.
*** В доступной литературе данных не обнаружено.

Самым прочным из рассмотренных материалов является сплав Ti-6Al−4V (отечественный аналог ВТ-6). Увеличение прочности достигается за счет введения в его состав алюминия и ванадия. Однако, данный сплав относится к биоматериалам первого поколения и, несмотря на отсутствие каких-либо клинических противопоказаний, он используется все реже. Это положение приведено в аспекте проблем эндопротезирования крупных суставов.

С точки зрения лучшей биологической совместимости, более перспективными представляются вещества, относящиеся к группе «чистого» титана. Необходимо отметить, что когда говорят о «чистом» титане, имеют в виду одну из четырех марок титана, допущенных для введения в ткани организма в соответствии с международными стандартами. Как видно из приведенных выше данных, они различны по химическому составу, который, собственно, и определяет биологическую совместимость и механические свойства.

Важен также вопрос о прочности этих материалов. Лучшими характеристиками в этом отношении обладает титан класса 4.
При рассмотрении его химического состава можно отметить, что в титане этой марки увеличено содержание кислорода и железа. Принципиальным является вопрос: ухудшает ли это биологическую совместимость?

Увеличение кислорода, вероятно, не будет являться отрицательным. Увеличение содержания железа на 0,3% в титане Grade 4 (по сравнению с Grade 1) может вызвать некоторые опасения, так как, по экспериментальным данным, железно (так же как и алюминий) при имплантации в ткани организма приводит к образованию вокруг имплантата соединительно-тканной прослойки, что является признаком недостаточной биоинертности металла. Кроме того, по тем же данным, железо подавляет рост органической культуры. Однако, как говорилось, приведенные выше данные касаются имплантации «чистых» металлов.

В данном случае важным является вопрос: возможен ли выход ионов железа через слой окиси титана в окружающие ткани, и если возможен, то с какой скоростью и каков из дальнейший метаболизм? В доступной литературе мы не встретили информации по этому поводу.

При сопоставлении зарубежных и отечественных стандартов можно отметить, что разрешенные для клинического применения в нашей стране титановые сплавы ВТ 1−0 и ВТ 1−00 практически соответствуют маркам «чистого» титана Grade 1 и 2. Пониженное содержание кислорода и железа в этих марках приводит к снижению их прочностных свойств, что не может считаться благоприятным. Хотя у титана марки ВТ 1−00 верхняя граница предела прочности на растяжение соответствует аналогичному показателю Grade 4, предел текучести при этом у отечественного сплава почти в два раза ниже. Кроме того, в его состав может входить алюминий, что, как указывалось выше, нежелательно.

При сопоставлении зарубежных стандартов можно отметить, что американский стандарт является более строгим, и стандарты ISO ссылаются на американские в ряде пунктов. Кроме того, делегация США выразила несогласие при утверждении стандарта ISO в отношении титана, используемого в хирургии.

Таким образом, можно утверждать, что:
Лучшим материалом для изготовления дентальных имплантатов, на сегодняшний день, является «чистый» титан класса 4 по стандарту ASTM, так как он:

  • не содержит токсичного ванадия, как, например, сплав Ti-6Al−4V;
  • наличие в его составе Fe (измеряемого в десятых долях %) не может считаться отрицательным, так как даже в случае возможного выхода ионов железа в окружающие ткани воздействие их на ткани не является токсичным, как у ванадия;
  • титан класса 4 обладает лучшими прочностными свойствами по сравнению с другими материалами группы «чистого» титана;

Титан и тантал – «компромиссные» металлы для медицины
Использование в медицине различных металлоизделий практикуется издревле. Сочетание таких полезных свойств металлов и их сплавов, как прочность, долговечность, гибкость, пластичность, упругость, не имеет альтернатив, в частности, при изготовлении ортопедических конструкций, медицинского инструментария, приспособлений для скорейшего сращивания переломов. А в последние десятилетия, благодаря открытию эффекта «памяти формы» и внедрению прочих инноваций металлы стали широко применяться также в сосудистой и нейрохирургии для изготовления шовного материала, сетчатых стентов для расширения вен и артерий, крупных эндопротезов, в офтальмологической и стоматологической имплантологии.

Однако далеко не все металлы пригодны для применения в медицинской сфере, и главными деструктивными причинами здесь выступают подверженность коррозии и вступление в реакцию с живыми тканями – факторы, имеющие разрушительные последствия, как для металла, так и для самого организма.

Конечно, вне конкуренции стоят золото и металлы платиновой группы (платина, иридий, осмий, палладий, родий и т.п.). Тем не менее, возможность использования драгметаллов для массового применения практически отсутствует ввиду их запредельно высокой стоимости, да и сочетание полезных свойств, востребованных в тех или иных конкретных клинических ситуациях, присуще благородным металлам далеко не всегда.

Значительное место в этой сфере по сегодняшний день занимают нержавеющие стали, легированные определенными добавками для получения требуемых характеристик. Но подобные металломатериалы, которые в сотни раз дешевле драгметаллов, недостаточно эффективно противостоят коррозии и другим агрессивным воздействиям, что значительно ограничивает возможность их применения для целого ряда медицинских нужд. Кроме того, препятствием для приживления изделий из нержавеющих сталей, имплантируемых внутрь организма, является их, конфликт с живыми тканями, обуславливающий высокий риск отторжения и других осложнений.

Своеобразным компромиссом между этими двумя полюсами являются такие металлы, как титан и тантал : прочные, ковкие, почти не подверженные коррозии, имеющие высокую температуру плавления, а главное – совершенно нейтральные в биологическом отношении, за счет чего воспринимаются организмом как собственная ткань и практически не вызывают отторжения. Что же касается стоимости, то у титана она не высока, хотя и значительно превосходит аналогичный параметр нержавеющих сталей . Тантал же, будучи достаточно редким металлом, более чем вдесятеро дороже титана, но все равно обходится намного дешевле в сравнении с драгоценными металлами. При сходстве большинства основных эксплуатационных свойств по некоторым из них он все же уступает титану, хотя по некоторым превосходит его, что, собственно, и обуславливает актуальность применения.

Именно в силу данных причин титан и тантал, нередко именуемые «медицинскими металлами», а также ряд их сплавов, получили широчайшее распространение во многих врачебных отраслях. Различаясь по ряду характеристик и, тем самым, взаимно дополняя друг друга, они раскрывают перед современной медициной воистину необъятные перспективы.

Ниже будет более подробно рассказано об уникальных характеристиках титана и тантала, основных сферах их использования в медицине, применении различных форм выпуска данных металлов для изготовления инструментов, ортопедического и хирургического оборудования.

Титан и тантал – определение, актуальные свойства

Титан для медицины


Титан (Ti) – легкий металл серебристого оттенка, внешне напоминающий сталь – является одним из химических элементов Периодической таблицы, размещенным в четвертой группе четвертого периода, атомный № 22 (рис. 1).

Рисунок 1. Титановый самородок.

Имеет атомную массу 47,88 при удельной плотности 4,52 г/см 3 . Температура плавления – 1669°С, температура кипения –3263 °С. В промышленных марках с высокой устойчивостью является четырехвалентным. Характеризуется хорошей пластичностью и ковкостью.

Будучи одновременно легким и обладая высокой механической прочностью, вдвое превышающей аналогичный показатель Fe и вшестеро – Al, титан также имеет низкий коэффициент теплового расширения, что позволяет применять его в широком температурном диапазоне.

Титан характеризуется низким показателем теплопроводности, вчетверо меньшим по сравнению с железом и более чем на порядок меньшем, чем у алюминия. Коэффициент терморасширения при 20°С относительно невелик, но увеличивается по мере дальнейшего нагревания.

Отличается данный материал и весьма высоким показателем удельного электросопротивления, который, в зависимости от наличия посторонних элементов, может варьироваться в диапазоне 42·11 -8 ...80·11 -6 Ом·см.

Титан относится к парамагнитным металлам, имея невысокий показатель электропроводности. И хотя у парамагнитных металлов магнитовосприимчивость, как правило, уменьшается по мере разогревания, титан в данном отношении можно отнести к разряду исключений, поскольку его магнитовосприимчивость, напротив, возрастает с увеличением температуры.

За счет суммы вышеперечисленных свойств титан совершенно незаменим в качестве исходного сырья для различных областей практической медицины и медицинского приборостроения. И все же самым ценным качеством титана для использования с этой целью является его высочайшая устойчивость к коррозионным воздействиям, и, как следствие, гипоаллергенность.

Своей коррозионной стойкостью титан обязан тому, что при температурах вплоть до 530-560 °С поверхность металла покрыта прочнейшей естественной защитной пленкой оксида TiO 2 , совершенно нейтральной по отношению к агрессивным химико-биологическим средам. В отношении устойчивости к коррозии титан сравним с платиной и металлами-платиноидами, и даже превосходит эти благородные металлы. В частности, он исключительно устойчив к воздействию кислото-щелочных сред, не растворяясь даже в столь агрессивном «коктейле», как царская водка. Достаточно отметить, что интенсивность коррозионного разрушения титана в морской воде, имеющей химсостав во многом сходный с человеческой лимфой, не превышает 0,00003 мм/год или 0,03 мм в течение тысячелетия!

Благодаря биологической инертности титановых конструкций к организму человека, при имплантации они не отторгаются и не провоцируют аллергических реакций, быстро обтягиваясь костно-мышечными тканями, структура которых остается постоянной на протяжении всей последующей жизни.

Существенным преимуществом титана является и его ценовая доступность, обуславливающая возможность массового применения.

Марки титана и титановые сплавы
Наиболее востребованными медициной марками титана являются технически чистые ВТ1-0, ВТ1-00, ВТ1-00св. В них почти не присутствуют примеси, количество которых столь незначительно, что колеблется в пределах нулевой погрешности. Так, в марке ВТ1-0 содержится около 99,35-99,75% чистого металла, а в марках ВТ1-00 и ВТ1-00св, соответственно, – 99,62-99,92% и 99,41-99,93%.

На сегодняшний день в медицине используется широкий спектр титановых сплавов, различных по своему химсоставу, и механотехнологическим параметрам. В качестве легирующих добавок в них чаще всего используются Та, Al, V, Mo, Mg, Cr, Si, Sn. К наиболее эффективным стабилизаторам можно причислить Zr, Au и металлы платиновой группы. При введении в титан до 12% Zr его коррозиестойкость увеличивается на порядки. Достичь же наибольшего эффекта удается при добавлении в титан небольшого количества Pt и платиноидов Pd, Rh, Ru. Введение в Ti лишь 0,25% данных элементов позволяет на десятки порядков уменьшить активность его взаимодействия с кипящими концентрированными H 2 SO 4 и HCl.

Широкое распространение в имплантологии, ортопедии и хирургии получил сплав Ti-6Al-4V, значительно превосходящий по эксплуатационным параметрам «конкурентов» на базисе кобальта и нержавеющих сталей. В частности, модуль упругости у титановых сплавов в два раза ниже. Для медицинского применения (имплантаты для остеосинтеза, эндопротезы суставов и т.д.) это является большим преимуществом, так как обеспечивает более высокую механосовместимость имплантата с плотными костными структурами организма, у которых модуль упругости составляет 5¸20 Гпа. Еще более низкими показателями в этом отношении (до 40 ГПа и ниже) характеризуются титано-ниобиевые сплавы, разработка и внедрение которых особенно актуальны. Однако прогресс не стоит на месте, и сегодня на смену традиционному Ti-6Al-4V приходят новые медицинские сплавы Ti-6Al-7Nb, Ti-13Nb-13Zr и Ti-12Mo-6Zr, не содержащие алюминия и ванадия – элементов, оказывающих хотя и незначительное, но все же токсичное воздействие на живые ткани.

В последнее время все более востребованными для медицинских нужд становятся биомеханически совместимые имплантаты, материалом для изготовления которых служит никелид титана TiNi. Причиной роста популярности данного сплава является присущий ему т. наз. эффект запоминания формы (ЭЗФ). Его сущность состоит в том, что контрольный образец, будучи деформированным при пониженных температурах, способен постоянно сохранять вновь обретенные очертания, а при последующем нагревании – восстанавливать изначальную конфигурацию, демонстрируя при этом сверхупругость. Никелид-титановые конструкции незаменимы, в частности, при лечении позвоночных травм и дистрофии опорно-двигательного аппарата.

Тантал для медицины

Определение и полезные характеристики
Тантал (Ta, лат. Tantalum) – тяжелый тугоплавкий металл серебристо-голубоватого «свинцового» оттенка, которому обязан покрывающей его пленке пентаоксида Ta 2 O 5 . Является одним из химических элементов Периодической таблицы, размещенным в побочной подгруппе пятой группы шестого периода, атомный № 73 (рис. 2).

Рисунок 2. Кристаллы тантала.

Тантал имеет атомную массу 180,94 при высокой удельной плотности 16,65 г/см 3 при 20 °C (для сравнения: удельная плотность Fe – 7,87 г/см 3 , Рв – 11,34 г/см 3). Температура плавления – 3017 °С (более тугоплавкими являются только W и Re). 1669°С, температура кипения – 5458 °С. Тантал характеризуется свойством парамагнитности: его удельная магнитовосприимчивость при комнатной температуре составляет 0,849·10 -6 .

Данный конструкционный материал, сочетая в себе высокие показатели твердости и пластичности, в чистом виде хорошо поддается механообработке любыми способами (штамповка, прокатка, ковка, протяжка, скручивание, резание, и т. д.). При низких температурах обрабатывается без сильного наклепа, подвергаясь деформационным воздействиям (ст. сжатия 98,8%) и не нуждаясь при этом в предварительном обжиге. Тантал не утрачивает пластичности даже в случае его заморозки до –198 °C.

Значение модуля упругости тантала составляет 190 Гн/м 2 или 190·102 кгс/мм 2 при 25 °С, благодаря чему он легко перерабатывается в проволоку. Осуществляется также выпуск тончайшего танталового листа (толщина примерно 0,039 мм) и других конструкционных полуфабрикатов.

Своеобразным «двойником» Та является Nb, характеризуемый множеством схожих свойств.

Тантал отличает исключительная стойкость к агрессивным средам. Это является одним из ценнейших его свойств для применения во множестве отраслей, включая медицинскую. Он устойчив к воздействию таких неорганических агрессивных кислот, как HNO 3 , H 2 SO 4 , HCl, H 3 PO 4 , а также органических кислот любых концентраций. По данному параметру его превосходят лишь благородные металлы, да и то не во всех случаях. Так, Та, в отличие от Au, Pt и многих других драгметаллов, «игнорирует» даже царскую водку HNO 3 +3HCl. Несколько меньшая устойчивость тантала наблюдается по отношению к щелочам.

Высокая коррозиестойкость Та проявляется и по отношению к атмосферному кислороду. Процесс окисления начинается только при 285 °С: на металле формируется поверхностная защитная плёнка пентаоксида тантала Ta 2 O 5 . Именно наличие пленки из этого единственно стабильного из всех окислов Та делает металл невосприимчивым к агрессивным реагентам. Отсюда – такая особенно ценная для медицины характеристика тантала, как высокая биосовместимость с организмом человека, воспринимающим вживляемые в него танталовые конструкции как собственную ткань, без отторжения. На этом ценнейшем качестве основано медицинское использование Та в таких сферах, как восстановительная хирургия, ортопедия, имплантология.

Тантал входит в число редких металлов: его запасы в земной коре составляют примерно 0,0002%. Это обуславливает высокую стоимость данного конструкционного материала. Вот почему столь распространено применение тантала в виде наносимых на основной металл тонких пленок защитных антикоррозийных покрытий, имеющих, кстати, в три-четыре раза большую твердость, чем чистый отожженный тантал.

Еще чаще тантал используется в виде сплавов как легирующую добавку в менее дорогостоящие металлы для придания получаемым соединениям комплекса необходимых физико-механических и химсвойств. Стальные, титановые и другие металлические сплавы с добавлением тантала широко востребованы в химико-медицинском приборостроении. Из них, в частности, практикуют изготовление змеевиков, дистилляторов, аэраторов, рентгеновской аппаратуры, устройств контроля и т.д. В медицине тантал и его соединения применяют также с целью изготовления оборудования для операционных.

Примечательно, что в ряде областей тантал, как менее дорогостоящий, но имеющий множество адекватных эксплуатационных характеристик, способен успешно заменять драгметаллы платиноиридиевой группы.

Марки тантала и его сплавы
Основными марками нелегированного титана с содержанием примесей в пределах статистической погрешности являются:

  • ТВЧ: Ta - 99,9%, (Nb) - 0,2%. Прочие примеси, такие как (Ti), (Al), (Co), (Ni), содержатся в тысячных и десятитысячных долях процента.
  • ТВЧ 1: Химический состав указанной марки на 99,9% состоит из Ta. Ниобию (Nb), который всегда присутствует в промышленном тантале, соответствует всего 0,03%.
  • ТЧ: Та – 99,8%. Примеси (не более %): Nb - 0,1%, Fe - 0,005%, Ti, H - по 0,001%, Si - 0,003%, W+Mo, O - по 0,015%, Co - 0,0001%, Ca - 0,002%, Na, Mg, Mn - по 0,0003%, Ni, Zr, Sn - по 0,0005%, Al - 0,0008%, Cu, Cr - по 0,0006%, C, N - по 0,01%.
  • Т: Та – 99,37%, Nb – 0,5%, W – 0,05%, Mo – 0,03%, (Fe) - 0,03%; (Ti) - 0,01%, (Si) - 0,005%.

Высокие показатели твердости Ta позволяют изготавливать на его основе конструкционные твердые сплавы, например, Ta с W (ТВ). Замена сплава TiС танталовым аналогом TaС существенно оптимизирует механические характеристики конструкционного материала и расширяет возможности его применения.

Актуальность применения Та в медицинских целях
На медицинские нужды расходуется примерно 5% производимого в мире тантала. Несмотря на это, значимость его использования в данной отрасли трудно переоценить.

Как уже отмечалось, тантал является одним из лучших металлических биоинертных материалов благодаря самообразующейся на его поверхности тончайшей, но очень прочной и химически стойкой пленки пентаоксида Та 2 О 5 . Благодаря высоким показателям адгезии, облегчающей и ускоряющей процесс сращивания имплантата с живой тканью, наблюдается низкий процент отторжения танталовых имплантатов и отсутствие воспалительных реакций.

Из таких танталовых полуфабрикатов, как лист, пруток, проволока и прочие формы выпуска, изготавливают конструкции, востребованные в пластической, кардио-, нейро- и остеохирургии для наложения швов, сращивания костных обломков, стентирования и клипирования сосудов (рис. 3).

Рисунок 3. Танталовая крепежная конструкция в плечевом суставе.

Применение тонких танталовых пластинчатых и сетчатых конструкций практикуется в челюстно-лицевой хирургии и для лечения черепно-мозговых травм. Волокнами танталовой пряжи замещают ткань мышц и сухожилий. С помощью тантала Хирурги используют танталовое волокно при полостных операциях, в частности, с целью укрепления стенок брюшной полости. Танталовые сетки незаменимы в сфере офтальмопротезирования. Тончайшие танталовые нити используют даже для регенерации нервных стволов.

И, конечно, Та и его соединения, наряду с Ti, повсеместно применяют в ортопедии и имплантологии для изготовления суставных эндопротезов и стоматологического протезирования.

С начала нового тысячелетия обретает все более широкую популярность инновационная сфера медицины, в основу которой заложен принцип использования статических электрополей для активизации в человеческом организме желательных биопроцессов. Научно доказано наличие высоких электретных свойств покрытия из пентаоксида тантала Та 2 О 5 . Титанооксидные электретные пленки ужа получили распространение в сосудистой хирургии, эндопротезировании, создании медицинских инструментов и приборов.

Практическое применение титана и тантала в конкретных отраслях медицины

Травматология: конструкции для сращивания переломов

В настоящее время для скорейшего сращивания переломов все чаще применяют такую инновационную технологию, как металлический остеосинтез. С целью обеспечить стабильное положение костных осколков используют различные фиксирующие конструкции, как наружные, так и внутренние, имплантируемые в тело. Однако применяемые ранее стальные изделия показывают невысокую эффективность ввиду их подверженности коррозии под воздействием агрессивной среды организма и явления гальванизации. В результате наступает как быстрое разрушение самих фиксаторов, так и реакция отторжения, вызывающая воспалительные процессы на фоне сильных болевых ощущений вследствие активного взаимодействия ионов Fe с физиологической средой костно-мышечных тканей в электрическом поле организма.

Избежать нежелательных последствий позволяет изготовление титановых и танталовых фиксаторов-имплантатов, обладающих свойством биосовместимости с живыми тканями (рис. 4).

Рисунок 4. Титановые и танталовые конструкции для остеосинтеза.

Подобные конструкции простых и сложных конфигураций могут быть использованы для продолжительного или даже постоянного внедрения в организм человека. Это особенно важно для пожилых пациентов, поскольку избавляет их от необходимости операции по удалению фиксатора.

Эндопротезирование

Искусственные механизмы, имплантируемые хирургическим путем в костную ткань, называются эндопротезами. Наибольшее распространение получило эндопротезирование суставов – тазобедренного, плечевого, локтевого, коленного, голеностопного и т.д. Процесс эндопротезирования всегда представляет собой сложную операцию, когда часть не подлежащего естественному восстановлению сустава удаляется с последующей ее заменой на имплантат-эндопротез.

К металлическим компонентам эндопротезов предъявляется ряд серьезных требований. Они должны одновременно обладать свойствами жесткости, прочности, эластичности, возможностью создания необходимой поверхностной структуры, стойкостью к коррозионным воздействиям со стороны организма, исключающей риск отторжения, другими полезными качествами.

Для изготовления эндопротезов могут быть использованы различные биоинертные металлы. Ведущее место среди них занимают титан, тантал и их сплавы. Эти долговечные, прочные и удобные в обработке материалы обеспечивают эффективную остеоинтеграцию (воспринимаются костной тканью как естественные ткани организма и не вызывают с его стороны негативных реакций) и быстрое срастание костей, гарантируя стабильность протеза на длительные сроки, исчисляемые десятилетиями. На рис. 5 представлено применение титана в артропластике бедра.

Рисунок 5. Титановый эндопротез тазобедренного сустава.

При эндопротезировании как альтернативу использованию цельнометаллических конструкций широко используют метод плазменного напыления на поверхность неметаллических компонентов протеза защитных биосовместимых покрытий на основе оксидов Ti и Та.

Чистый титан и его сплавы. В сфере эндопротезирования находят широкое применение как чистый Ti (напр. CP-Ti с содержанием Ti 98,2-99,7 %), так и его сплавы. Наиболее распространенный из них Ti-6AI-4V при высоких показателях прочности, характеризуется коррозиестойкостью и биологической инертностью. Сплав Ti-6A1-4V отличается особенно высокой механопрочностью, имея торсионно-аксиальные характеристики, предельно близкие к аналогичным параметрам кости.

К настоящему времени разработан целый ряд современных титановых сплавов. Так, в химическом составе сплавав Ti-5AI-2,5Fe и Ti-6AI-17 Niobium не содержится токсичный V, кроме того, они отличаются низким значением модуля упругости. А сплаву Ti-Ta30 присуще наличие модуля терморасширения, сопоставимого с аналогичным показателем металлокерамики, что обуславливает его устойчивость при длительном взаимодействии с металлокерамическими компонентами имплантата.

Тантало-циркониевые сплавы. В сплавах Та+Zr совмещаются такие важнейшие для эндопротезирования свойства, как биосовместимость с тканями организма на основе коррозионной и гальванической стойкости, поверхностная жесткость и трабекулярная (пористая) структура металлической поверхности. Именно благодаря свойству трабекулярности возможно значительное ускорение процесса остеоинтеграции – наращивания на металлической поверхности имплантата живой костной ткани.

Эластичные эндопротезы из проволочной титановой сетки. Благодаря высокой пластичности и легкости в современной восстановительной хирургии, других медицинских отраслях активно используются инновационные эластичные эндопротезы в виде тончайшей проволочной титановой сетки-«паутины». Упругая, прочная, эластичная, долговечная и сохраняющая свойство биоинертности, сетка является идеальным материалом для эндопротезов мягких тканей (рис. 6).

Рисунок 6. Сетчатый эндопротез из титанового сплава для пластики мягких тканей.

«Паутину» уже успешно опробовали в таких сферах, как гинекология, челюстно-лицевая хирургия и травматология. По мнению специалистов, сетчатые титановые эндопротезы не знают себе равных в плане стабильности при практически нулевом риске побочных проявлений.

Титано-никелевые медицинские сплавы с эффектом запоминания формы

Сегодня в различных сферах медицины находят широкое распространение сплавы из никелида титана, имеющие т. наз. с эффект запоминания формы (ЭЗФ). Данный материал применяют для эндопротезирования связочно-хрящевой ткани опорно-двигательного аппарата человека.

Никелид титана (международный термин нитинол) представляет собой интерметаллид TiNi, который получают путем сплавления в равных пропорциях Ti и Ni. Важнейшей характеристикой никелид-титановых сплавов является свойство сверхупругости, на котором и базируется ЭЗФ.

Сущность эффекта состоит в том, что образец при охлаждении в определенном диапазоне температур легко деформируется, причем деформация самоустраняется при повышении температуры до первоначального значения с возникновением сверхупругих свойств. Другими словами, если пластину из сплава нитинол изогнуть при пониженной температуре, то в этом же температурном режиме она будет сохранять свою новую форму сколь угодно долго. Однако стоит лишь повысить температуру до исходной, пластина вновь выпрямится подобно пружине и обретет первоначальную форму.

Образцы продукции медицинского назначения из сплава нитинол показаны на представленных ниже рис. 7, 8, 9, 10.

Рисунок 7. Набор имплантатов из никелида титана для травматологии (в виде скоб, скреп, фиксаторов и т.д.).

Рисунок 8. Набор имплантатов из никелида титана для хирургии (в виде зажимов, дилататоров, хирургического инструментария).

Рисунок 9. Образцы пористых материалов и имплантатов из никелида титана для вертебрологии (в виде эндопротезов, изделий пластинчатой и цилиндрической конфигурации).

Рисунок 10. Материалы и эндопротезы из никелида титана для челюстно-лицевой хирургии и стоматологии.

Помимо этого, никелид-титановые сплавы, как и большинство изделий на титановой основе, биоинертны вследствие высокой коррозие- и гальваностойкости. Таким образом, это идеальный по отношению к организму человека материал для изготовления биомеханически совместимых имплантатов (БМСИ).

Применение Ti и Та для изготовления сосудистых стентов

Стентами (от англ. stent) - в медицине называют специальные, имеющие вид упругих сетчатых цилиндрических каркасов, металлоконструкции, помещаемые внутрь крупных сосудов (вен и артерий), а также прочих полых органов (пищевод, кишечник, желче- мочевыводящие протоки и др.) на патологически суженных участках с целью их расширения до необходимых параметров и восстановления проходимости.

Наиболее востребовано применение метода стентирования в такой сфере, как сосудистая хирургия, и, в частности, коронарная ангиопластика (рис. 11).

Рисунок 11. Образцы титановых и танталовых сосудистых стентов.

На сегодняшний день научно разработаны и внедрены в реальную практику сосудистые стенты более чем полутысячи различных типов и конструкций. Они различаются между собой по составу исходного сплава, длине, конфигурации отверстий, виду поверхностного покрытия, другим рабочим параметрам.

Требования, предъявляемые к сосудистым стентам, призваны обеспечить их безупречную функциональность, а потому многообразны и весьма высоки.

Данные изделия должны быть:

  • биосовместимыми с тканями организма;
  • гибкими;
  • эластичными;
  • прочными;
  • рентгеноконстрастыми и т.д.

Основными материалами, используемыми сегодня при изготовлении металлостентов являются композиции благородных металлов, а также Та, Ti и его сплавы (ВТ6С, ВТ8, ВТ 14, ВТ23, нитинол), полностью биоинтегрируемые с тканями организма и сочетающие в себе комплекс всех прочих необходимых физико-механических свойств.

Сшивание костей, сосудов и нервных волокон

Периферические нервные стволы, поврежденные в результате различных механических травм или осложнений тех или иных заболеваний, нуждаются для восстановления в серьезном хирургическом вмешательстве. Положение усугубляется тем, что обычно подобные патологии наблюдаются на фоне травмирования сопутствующих органов, таких, как кости, сосуды, мышцы, сухожилия и др. В этом случае разрабатывается комплексная программа лечения с наложением специфических швов. В качестве же исходного сырья для изготовления шовного материала – нитей, скреп, фиксаторов и т.д. – используются титан, тантал и их сплавы, как металлы, обладающие химической биосовместимостью и всем комплексом необходимых физикомеханических свойств.

На представленных ниже рисунках изображены примеры подобных операций.

Рисунок 12. Сшивание кости титановыми скрепами.

Рисунок 13. Сшивание пучка нервных волокон с применением тончайших танталовых нитей.

Рисунок 14. Сшивание сосудов с применением танталовых скрепок.

В настоящее время разрабатываются все более совершенные технологии нейро- остео- и вазопластики, однако применяемые для этого титано-танталовые материалы продолжают удерживать пальму первенства перед всеми прочими.

Пластическая хирургия

Пластической хирургией называют устранение хирургическим путем дефектов органов с целью воссоздания их идеальных анатомических пропорций. Часто при этом подобные реконструкции выполняются с использованием имплантируемых в ткани различных металлических изделий в виде пластин, сеток, пружин и т.д.

Особенно показательна в данном отношении краниопластика – операция по исправлению деформации черепа. В зависимости от показаний в каждой конкретной клинической ситуации краниопластика может выполняться посредством наложения на оперируемый участок жестких титановых пластин или эластичных сеток из тантала. В обоих случаях допускается применение как чистых металлов без легирующих добавок, так и их биоинертных сплавов. Примеры краниопластики с применением титановой пластины и танталовой сетки представлены на приведенных ниже рисунках.

Рисунок 15. Краниопластика с использованием титановой пластины.

Рисунок 16. Краниопластика с применением танталовой сетки.

Титано-танталовые конструкции могут применяться также при косметическом восстановлении лица, груди, ягодиц и многих других органов.

Нейрохирургия (наложение микроклипсов)

Клипированием (англ. clip зажим) называется нейрохирургическая операция на сосудах головного мозга, имеющая целью остановить кровотечение (в частности, при разрыве аневризмы) либо выключить из кровообращения травмированные мелкие сосуды. Сущность метода клипирования заключается в том, что на поврежденные участки накладываются миниатюрные металлические зажимы - клипсы.

Востребованность метода клипирования, прежде всего, в нейрохирургической сфере объясняется невозможность перевязывания мелких мозговых сосудов традиционными способами.

В связи с разнообразием и спецификой возникающих клинических ситуаций, в нейрохирургической практике используется обширная номенклатура сосудистых клипсов, различающихся по конкретному назначению, способу фиксации, размерным и другим функциональным параметрам (рис. 17).

Рисунок 17. Клипсы для выключения аневризм головного мозга.

На фотографиях клипсы кажутся крупными, на самом же деле по размерам они не больше ноготка ребенка и устанавливаются под микроскопом (рис. 18).

Рисунок 18. Операция по клипированию аневризмы сосуда головного мозга.

Для изготовления клипсов, как правило, используют плоскую проволоку из чистого титана или тантала, в некоторых случаях из серебра. Такие изделия абсолютно инертны по отношению к мозговому веществу, не вызывая реакций противодействия.

Стоматологическая ортопедия

Широкое медицинское применение титан, тантал и их сплавы нашли в стоматологии, а именно в сфере протезирования зубов.

Ротовая полость – особенно агрессивная среда, негативно воздействующая на металлические материалы. Даже такие традиционно используемые при дентальном протезировании драгметаллы, такие как золото и платина, в ротовой полости не могут совершенно противостоять коррозии и последующему отторжению, не говоря уже о высокой стоимости и большой массе, вызывающей дискомфорт у пациентов. С другой стороны, легкие ортопедические конструкции из акриловой пластмассы также не выдерживают серьезной критики в силу своей недолговечности. Подлинной революцией в стоматологии стало изготовление отдельных коронок, а также мостовидных и съемных протезов на базисе титана и тантала. Данные металлы, ввиду таких присущих им ценных качеств, как биологическая инертность и высокая прочность при относительной дешевизне успешно конкурируют с золотом и платиной, а по ряду параметров даже превосходят их.

Большой популярностью, в частности, пользуются штампованные и цельнолитые титановые коронки (рис. 19). А коронки с плазменным напылением из нитрида титана TiN по внешнему виду и функциональным свойствам практически неотличимы от золотых (рис. 19)

Рисунок 19. Цельнолитая титановая коронка и коронка с напылением из нитрида титана.

Что же касается протезов, то они могут быть несъемными (мостовидными) для восстановления нескольких рядом стоящих зубов или съемными, используемыми при утрате всего зубного ряда (полная адентия челюсти). Наиболее распространенные протезы – бюгельные (от нем. der Bogen «дуга»).

Бюгельный протез выгодно отличает наличие металлического каркаса, на котором крепится базисная часть (рис. 20).

Рисунок 20. Бюгельный протез нижней челюсти.

Сегодня бюгельная часть протеза и кламмеры выполняются, как правило, из чистого медицинского титана высокой чистоты марки ТВЧ.

Подлинной революцией в стоматологии явилась становящаяся все более востребованной технология имплантационного зубного протезирования. Протезирование на имплантатах – самый надежный способ крепления ортопедических конструкций, которые в этом случае служат десятилетиями или даже пожизненно.

Дентальный (зубной) имплантат – служащая опорой для коронок, а также мостовидных и съемных протезов двусоставная конструкция, базовая часть которой (собственно имплантат) представляет собой конусный штифт с резьбой, ввинчиваемый непосредственно в кость челюсти. На верхнюю платформу имплантата устанавливается абатмент, служащий для фиксации коронки или протеза (рис. 21).

Рисунок 21. Зубной имплантат Nobel Biocare из чистого медицинского титана класса 4(G4Ti).

Чаще всего для изготовления винтовой части имплантата служит чистый медицинский титан с поверхностным тантал-ниобиевым напылением, способствующим активизации процесса остеоинтеграции – сращивания металла с живыми костными и десневыми тканями.

Однако некоторые производители предпочитают изготавливать не двусоставные, а цельные имплантаты, в которых винтовая часть и абатмент имеют не раздельную, а монолитную структуру. При этом, например, немецкая компания Zimmer производит цельные имплантаты из пористого тантала, который, в сравнении с титаном, обладает большей гибкостью и внедряется в ткань кости с практически нулевым риском осложнений (рис. 22).

Рисунок 22. Цельные зубные имплантаты Zimmer из пористого тантала.

Тантал, в отличие от титана – более тяжелый металл, поэтому пористая структура существенно облегчает изделие, не вызывая, к тому же, необходимости в дополнительном внешнем напылении остеоинтегрирующего покрытия.

Примеры имплантационного протезирования отдельных зубов (коронки) и путем установки на имплантаты съемных протезов показаны на рис. 23.

Рисунок 23. Примеры применения титано-танталовых имплантатов в зубном протезировании.

Ныне, в добавление к уже существующим, разрабатываются все новые методики протезирования на имплантатах, показывающие высокую эффективность в различных клинических ситуациях.

Изготовление медицинского инструментария

Сегодня в мировой клинической практике используется сотни разновидностей различных хирургических и эндоскопических инструментов и медицинской аппаратуры, изготавливаемых с применением титана и тантала (ГОСТ 19126-79 «Инструменты медицинские металлические. Общие технические условия». Они выгодно отличаются от прочих аналогов по показателям прочности, пластичности и коррозиестойкости, обуславливающей биологическую инертность.

Титановые мединструменты по легкости почти вдвое превосходят стальные аналоги, являясь при этом более удобными и долговечными.

Рисунок 24. Хирургические инструменты, изготовленные на титано-танталовой основе.

Основными медицинскими отраслями, в которых более всего востребован титаново-танталовый инструментарий, являются офтальмологическая, стоматологическая, отоларингологическая и хирургическая. В составе обширной номенклатуры инструментов представлены сотни наименований шпателей, клипсов, расширителей, зеркал, зажимов, ножниц, щипцов, скальпелей, стерилизаторов, тубусов, долот, пинцетов, всевозможных пластин.

Биохимические и физикомеханические характеристики легких титановых инструментов имеют особую ценность для военно-полевой хирургии и различных экспедиций. Здесь они совершенно незаменимы, поскольку в экстремальных условиях буквально каждые 5-10 граммов лишнего груза являются существенной обузой, а устойчивость к коррозии и максимум надежности – обязательные требования.

Титан, тантал и их сплавы в виде монолитных изделий или тонких защитных покрытий активно применяют в медицинском приборостроении. Их используют при изготовлении дистилляторов, насосов для перекачки агрессивных сред, стерилизаторов, компонентов наркозо-дыхательной аппаратуры, сложнейших устройств для дублирования работы жизненно важных органов типа «искусственное сердце», «искусственное легкое», «искусственная почка» и др.

Титановые головки аппаратов для УЗИ имеют самый продолжительный эксплуатационный ресурс, при том, что аналоги из прочих материалов даже при нерегулярном воздействии ультразвуковых колебаний быстро приходят в негодность.

В дополнение к выше сказанному можно отметить, что титан, как и тантал, в отличие от многих других металлов, имеют способность к десорбированию («отталкиванию») излучения радиоактивных изотопов, в связи с чем активно применяются в производстве различных защитных устройств и радиологической аппаратуры.

Заключение

Разработка и производство изделий медицинского назначения – одно из наиболее интенсивно развивающихся направлений научно-технического прогресса. С началом третьего тысячелетия медицинская наука и техника вошли в число основных движущих сил современной мировой цивилизации.

Значение металлов в человеческой жизнедеятельности неуклонно возрастает. Революционные изменения происходят на фоне интенсивного развития научного материаловедения и практической металлургии. И вот уже в последние десятилетия «на щит истории» подняты такие промышленные металлы, как титан и тантал, которые со всеми на то основаниями можно назвать конструкционными материалами нового тысячелетия.

Значение титана в современном врачевании просто невозможно переоценить. Несмотря на относительно непродолжительную историю использования в практических целях, он стал одним из лидирующих материалов во множестве медицинских отраслей. Титан и его сплавы обладают для этого суммой всех необходимых характеристик: коррозиестойкостью (и, как следствие, биоинертностью), а также легкостью, прочностью, твёрдостью, жёсткостью, долговечностью, гальванической нейтральностью и т.д.

Не уступает титану в плане практической значимости и тантал. При общем сходстве большинства полезных свойств по некоторым качествам они уступают, а по некоторым – превосходят друг друга. Вот почему трудно, да и вряд ли разумно объективно судить о приоритетности какого-то одного из этих металлов для медицины: они, скорее, органично дополняют друг друга, чем конфликтуют между собой. Достаточно отметить, что ныне активно разрабатываются и находят реальное применение медицинские конструкции на основе титано-танталовых сплавов, объединяющих в себе все преимущества Ti и Та. И далеко не случайно в последние годы предпринимаются все более успешные попытки создания имплантируемых непосредственно в организм человека полноценных искусственных органов из титана, тантала и их соединений. Близится время, когда, скажем, понятия «титановое сердце» или «танталовые нервы» уверенно перейдут из разряда фигур речи в сугубо практическую плоскость.

Сплавы образуются при смешивании химических элементов. Один из компонентов сплава обязательно должен быть металлом или химическим соединением, имеющим металлические свойства. Основным компонентом титанового сплава является сам титан, в который добавлены легирующие элементы.

Легирующие элементы придают сплавам различные свойства. В качестве легирующих элементов при получении титановых сплавов используют алюминий, молибден, марганец, хром, медь, железо, олово, цирконий, кремний, никель, и другие.

Аллотропные модификации титана

В периодической системе Д.И.Менделеева титан имеет номер 22. Внешне титан похож на сталь.

Известно, что некоторые химические элементы могут существовать в виде двух или более простых веществ, отличающихся по строениям и свойству. Обычно вещество переходит из одной аллотропной модификации в другую при постоянной температуре. Титан имеет две такие модификации. Альфа-модификация титана существует при температуре до 882,5 ° С. Высокотемпературная бета-модификация может быть устойчивой от 882,5 °С до температуры плавления.

Легирующие добавки по-разному ведут себя в различных аллотропных модификациях титана. Изменяют они и температуру, при которой происходит α/β-переход. Так, увеличение концентрации алюминия, кислорода и азота в сплаве титана повышает это температурное значение. Область существования α-модификации расширяется. А эти элементы называют α-стабилизаторами .

Олово и цирконий не изменяют температуру α/β-превращений. Поэтому их считают нейтральными упрочнителями титана.

Все остальные легирующие добавки к титановым сплавам считаются β-стабилизаторами. Растворимость их в модификациях титана зависит от температуры. А это даёт возможность повышать прочность титановых сплавов с этими добавками с помощью закалки и старения. Используя разные типы легирующих добавок, получают титановые сплавы с самыми различными свойствами.

Титановые сплавы в медицине

Организм человека хорошо переносит конструкции из титанового сплава. Уже много лет такие сплавы применяются в медицине. Они устойчивы к коррозии в агрессивных средах человеческого тела. На их поверхности образуется оксидная плёнка, которая препятствует выходу ионов имплантата в организм. Ткани вокруг таких имплантатов не изменяются. Титановые сплавы очень прочные, способны выдерживать большую нагрузку. Они прочнее, чем хром, никель, нержавеющие стали. При стерилизации медицинских инструментов из таких сплавов спиртом, обжиганием, парами формалина и т.д. поверхности титановых сплавов не разрушаются. И самое важное – титановые сплавы не вызывают аллергии.

Хирургические имплантаты

Сетчатый эндопротез из титанового сплава

Часто говорят, что титан – металл хирургов. Действительно, в хирургической практике титановые сплавы применяются для изготовления различных костных имплантатов. Протез тазобедренного сустава из титанового сплава способен выдерживать усилие до трёх тысяч кг. В организме титановый сплав стоек. Поэтому ткани, прилегающие к нему, не воспаляются. Кроме того, изготавливаются титановые имплантаты быстро. И стоимость их значительно ниже стоимости имплантатов из других сплавов.

Высокая пластичность титановых сплавов позволяет получать из них проволочную сетку и фольгу. Проволочная сетка применяется для пластики мягких тканей. Подшивается такая сетка атравматической иглой с титановой нитью. Титановая мононить иногда используется в офтальмологии.

Титановые сплавы в стоматологии

Зубные имплантаты

В стоматологии применение титановых сплавов также оказалось очень успешным. Титановые сплавы легко соединяются с фарфором и композиционными цементами. Из них делают литые каркасы зубных протезов, стоматологические мосты и коронки. Титановые каркасы легко облицовываются керамикой. Такие протезы долговечны и служат 10-15 лет.

Титановые сплавы и медицинские инструменты

Хирургические инструменты

Применяются титановые сплавы и при изготовлении медицинских инструментов – скальпелей, крючков, пластинчатых пинцетов, зажимов. Эти инструменты гораздо легче инструментов из нержавеющей стали.

Нашли применение титановые сплавы в производстве инвалидных колясок, наружных ортопедических протезов.

Титановые сплавы прочные и пластичные, как сталь, лёгкие, как алюминий, и стойкие к коррозии, как углепластик. Они незаменимы в хирургии, стоматологии, офтальмологии, ортопедии.

Установка титанового имплантата

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

240 руб. | 75 грн. | 3,75 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Автореферат - 240 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Мушеев Илья Урьеевич. Применение сплавов титана в клинике ортопедической стоматологии и имплантологии (экспериментально-клиническое исследование) : диссертация... доктора медицинских наук: 14.00.21 / Мушеев Илья Урьеевич; [Место защиты: ГОУ "Институт повышения квалификации федерального медико-биологического агентства"].- Москва, 2008.- 216 с.: ил.

Введение

Глава 1. Обзор литературы

1.1. Сплавы металлов, используемые при изготовлении зубных протезов 12

1.2. Применение имплантатов при ортопедической реабилитации больных с дефектами зубного ряда 25

1.3. Титан и его сплавы: свойства и применение 31

1.4. Клинические токсико-химические и аллергические реакции при использовании стоматологических сплавов 41

1.5. Теория коррозионных процессов 53

Глава 2. Материал и методы исследования

2.1. Методы исследования состава, структуры и физико-механических характеристик стоматологических сплавов 75

2.2.1. Исследование механических свойств методом наноиндентирования 75

2.1.2. Трибологические исследования износостойкости сплавов 77

2.1.3. Методы сравнения литого и фрезерованного титана 79

2.1.4. Методика изучения состава, структуры и физико-механических свойств сплава после переплава 80

2.2. Методы изучения электрохимических параметров стоматологических сплавов 83

2.2.1. Измерение базовых электродных потенциалов стоматологических сплавов 83

2.2.2. Термическая обработка стоматологических сплавов при электрохимических исследованиях 85

2.2.3. Измерение ЭДС и плотности тока контактных пар стоматологических сплавов 86

2.2.4. Изучение влияния обновления поверхности стоматологического сплава 87

2.2.5. Изучение влияния особенностей коррозионной среды и нагрузки на электропотенциалы сплава 87

2.2.6. Оценка скорости коррозии в стационарных условиях по результатам измерения токов контактных пар 91

2.3. Методы изучения реакции мезенхимальных стволовых клеток человека на стоматологические сплавы 92

2.4. Характеристика клинического материала и методы клинических исследований 96

2.5. Статистическая обработка результатов исследования 97

Глава 3. Результаты собственных исследований

3.1. Сравнительное исследование структурных, механических и трибологических свойств стоматологических сплавов98

3.1.1. Сравнительная оценка механических свойств стоматологических сплавов 98

3.1.2. Сравнительное исследование износостойкости стоматологических сплавов 103

3.1.3. Сравнительное исследование структуры и свойств фрезерованного и литого титана 114

3.1.4. Влияние термоциклирования и переплава на структуру сплава... 120

3.2. Сравнительные электрохимические характеристики стоматологических сплавов в разных условиях функционирования протезов 131

3.2.1. Кинетика установления стационарных электропотенциалов стоматологических сплавов 131

3.2.2. Электрохимические характеристики сплавов после термической обработки при нанесении керамических покрытий 141

3.2.3. Влияние рН, температуры и аэрации коррозионной среды на электрохимическое поведение стоматологических сплавов 146

3.2.4. Влияние действия циклической динамической нагрузки на коррозионное поведение титанового сплава 166

3.3. Электрохимическое взаимодействие стоматологических сплавов с дентальными имплантатами 181

3.3.1. Электрохимические характеристики контактных пар «титановый имплантат-каркас протеза» 181

3.3.1.1. Измерение ЭДС и токов контактных пар 181

3.3.1.2. Измерение импульсов потенциалов и контактных токов при обновлении поверхности элементов контактных пар и изучение кинетики репассивации обновленной поверхности при использовании титановых имплантатов 183

3.3.2. Электрохимические характеристики контактных пар «никелидтитановый имплантат-каркас протеза» 190

3.3.2.1. Измерение ЭДС и токов контактных пар 190

3.3.2.2. Измерение импульсных токов при обновлении поверхности элементов контактных пар и изучение кинетики репассивации обновленной поверхности при использовании никелидтитановых имплантатов 194

3.4. Экспериментальная оценка пролиферации мезенхимальных стволовых клеток человека на металлических сплавах 206

3.4.1. Оценка цитотоксичности образцов с помощью МТТ- теста 206

3.4.2. Исследование влияния изучаемых образцов на эффективность пролиферации МСК 207

3.5. Клиническая оценка ортопедических конструкций на металлических каркасах 211

Глава 4. Обсуждение результатов исследования 222

Список литературы 242

Введение к работе

Актуальность исследования. В современной ортопедической

стоматологии широко применяются сплавы металлов в качестве цельнолитых каркасов несъемных и съемных протезов. В России в качестве металлических конструкционных материалов распространены кобальтхромовые и никельхромовые сплавы; применение золотосодержащих сплавов незначительно. Биоинертные титановые сплавы используются значительно реже, поскольку для литья титана требуется специальное оборудование; клинического и технологического опыта работы с титановыми сплавами недостаточно.

Между тем общеизвестны превосходные свойства биосовместимости титана, легкость и прочность конструкций из титана; возможна облицовка титановых каркасов керамикой . Востребованность титаносодержащих сплавов для зубных протезов увеличивается параллельно нарастанию темпов применения дентальных имплантатов, изготавливаемых в подавляющем большинстве из титана .

В последнее время кроме литья появилась возможность фрезерования титана на CAD/САМ - оборудовании после сканирования модели и виртуального моделирования протеза. В литературе недостаточно сведений о клинической эффективности технологии CAD/САМ в сравнении с методом литья титана .

Эксплуатация зубных протезов из сплавов металлов сопряжена с
возможными электрохимическими коррозионными процессами, поскольку
слюна обладает свойствами электролита .
Относительно титана эти процессы мало изучены. Контактное
электрохимическое взаимодействие дентальных титановых имплантатов с
другими стоматологическими сплавами анализировалось в

немногочисленных исследованиях с применением стандартных методик . В последнее время появились новые возможности и методические подходы при оценке антикоррозионной устойчивости сплавов металлов,

например, при трибологических исследованиях износостойкости; измерении электрохимических показателей при обновлении поверхности, при изменении характеристик искусственной слюны, при термоциклировании и, особенно, динамической нагрузке металлических конструкций . Появилась возможность изучения реакции клеточных культур человека на разные стоматологические сплавы .

Вызывает большой интерес сплав титана с эффектом формовосстановления - никелид титана, из которого можно изготавливать несъемные и съемные протезы и имплантаты . Его свойства применительно к целям ортопедической стоматологии и имплантологии не до конца изучены, особенно в сравнительном аспекте. С позиций электрохимии не проводилось обоснование выбора оптимальных сплавов для зубных протезов с опорой на имплантаты из никелида титана с эффектом формовосстановления.

Цель исследования: клинико-лабораторное обоснование применения сплавов титана и технологий их обработки в клинике ортопедической стоматологии и имплантологии.

Задачи исследования:

    Сравнить физико-механические и трибологические свойства (износостойкость) стоматологических сплавов и сплавов титана.

    Сравнить состав, структуру и свойства титанового сплава для фрезерования протезов по технологии CAD/САМ и литьевого титана, а также свойства сплавов после переплава.

    Выявить влияние стоматологических сплавов на пролиферативные характеристики культуры мезенхимальных стволовых клеток человека.

    Изучить в лабораторных условиях показатели коррозионной устойчивости цельнолитых и металлокерамических протезов при использовании распространенных стоматологических сплавов и сплавов титана.

    Установить электрохимические особенности использования имплантатов из титана и никелида титана, в том числе при нарушении (обновлении) поверхности протезов и имплантатов в процессе их эксплуатации.

    Установить различия электрохимического поведения стоматологических сплавов при экспериментальном изменении характеристик электро-коррозионной среды (рН, степень аэрации).

    Изучить влияние динамической нагрузки протезов и имплантатов из титана на их электрохимические показатели.

    Провести субъективную и объективную оценку протезных конструкций из разных стоматологических сплавов, в том числе на имплантатах и изготовленных по технологии CAD/САМ, в отдаленные сроки после окончания ортопедического лечения.

Научная новизна исследования. Впервые методом

наноиндентирования изучены в аналогичных экспериментальных условиях основные механические свойства: твердость, модуль упругости, процент восстанавливаемой деформации - распространенных стоматологических сплавов, сплавов титана и никелида титана. При этом впервые проведены трибологические исследования стоматологических сплавов, в том числе, титансодержащих; проведено сравнение их износостойкости и характер разрушения сплавов по данным микрофотографии.

Впервые проведено сравнение состава, структуры, физико-механических характеристик стандартных титановых заготовок для литья и фрезерования (по технологии CAD/САМ) с помощью металлографического, рентгеноструктурного анализа и измерительного наноиндентирования. Впервые с помощью локального энерго-дисперсионного анализа и полуколичественного определения химического состава, металлографии и рентген-структурного фазового анализа выявлено влияние повторного переплава стоматологического сплава на его свойства.

Впервые изучены в динамике электропотенциалы сплавов титана и никелида титана в сравнении с неблагородными и благородными стоматологическими сплавами в искусственной слюне, в том числе, после их термоциклирования при керамической облицовке протезов. Впервые установлено изменение электропотенциалов сплавов при изменении параметров (рН, аэрация) искусственной слюны и при динамической нагрузке металлических конструкций.

Впервые в сравнении исследованы электрохимические показатели контактных пар «каркас протеза - опорный имплантат» при использовании никелид титановых и титановых имплантатов и основных конструкционных сплавов для зубных протезов. Впервые при этом проведены расчеты коррозионных потерь в случае нарушения поверхности никелид титановых и титановых имплантатов, а также металлических каркасов фиксируемых на них зубных протезов.

Впервые в культуре мезенхимальных стволовых клеток человека изучена токсичность стоматологических сплавов по показателям клеточной пролиферации, адгезии и жизнеспособности.

Впервые проведено клиническое сравнение коррозионных проявлений протезов из неблагородных сплавов, литого и фрезерованного по технологии CAD/САМ титана.

Практическая значимость исследования.

Установлена идентичность состава, структуры и основных физико-механических свойств сертифицированных титановых заготовок для литья и фрезерования протезов по технологии CAD/САМ; выявлены определенные металлургические дефекты стандартных титановых заготовок. На примере неблагородного стоматологического сплава подтверждено негативное влияние повторного переплава на его структуру и физико-механические свойства при сохранении состава.

Даны основные физико-механические характеристики

стоматологических сплавов, сплавов титана и никелида титана по

результатам идентичных стендовых испытаний. Показаны важные для клиники различия в степени и характере износа исследованных стоматологических сплавов. Подтверждено важное для имплантологии свойство никелида титана - высокое значение упругого восстановления при его нагружении.

С позиций электрохимии показаны преимущества и недостатки различных стоматологических сплавов (включая титансодержащие) в разных условиях эксплуатации: при наличии цельнолитых или металлокерамических протезов, в том числе опирающихся на титановые или никелидтитановые имплантаты, и при нарушении их поверхности. Показана целесообразность металлокерамических протезов с полной облицовкой металлических каркасов для снижения риска развития электрохимических реакций в полости рта и уменьшения эксплуатационных ресурсов протезов.

Продемонстрирована индифферентность всех стоматологических сплавов относительно клеточной культуры мезенхимальной ткани человека, а также определенные различия в реакции мезенхимальных стволовых клеток.

Дана статистика снижения функционально-эстетических свойств зубных протезов на основе металлических каркасов из разных стоматологических сплавов, а также токсико-химических осложнений. Клинически обоснована эффективность применения протезов на литых и фрезерованных титановых каркасах при замещении дефектов зубных рядов и при использовании титановых имплантатов.

Основные положения, выносимые на защиту.

1. С позиций электрохимии и профилактики токсико-химических воздействий на ткани полости рта наиболее оптимальными для протезирования на титановых и никелидтитановых имплантатах являются несъемные протезы с полной керамической облицовкой на каркасах из любого стоматологического сплава; изготовление цельнолитых необлицованных протезов на титановых имплантатах целесообразно при

использовании титан- и золотосодержащих сплавов, а на никелидтитановых имплантатах - никелидтитанового или хромкольбальтового сплавов.

    Факторами снижения коррозионной устойчивости стоматологических сплавов являются изменение РН и деаэрация слюны, низкая износостойкость и нарушение целостности поверхности протеза при его эксплуатации, а также повторный переплав сплава.

    Функциональное нагружение металлических протезов и имплантатов вызывает значительные колебания электрохимических показателей стоматологических сплавов, как результат нарушения сплошности поверхностных оксидных пленок.

    Состав и свойства титановых сплавов для литья и фрезерования аналогичны; титановые протезы, изготовленные по технологии CAD/CAM, имеют технологические и клинические преимущества.

    Распространенные стоматологические сплавы, сплавы титана и никелид титана не оказывают токсического воздействия на мезенхимальные стволовые клетки человека.

    По данным клиники токсико-химические объективные и субъективные проявления при использовании неблагородных стоматологических сплавов встречаются чаще в сравнении с титансодержащими сплавами; наличие титановых имплантатов в качестве опор зубных протезов не приводит к клиническим проявлениям контактной коррозии при соблюдении тщательной гигиены полости рта.

Апробация результатов исследования. Результаты исследования доложены на Всероссийской конференции «Сверхэластичные сплавы с памятью формы в стоматологии», I Всероссийском конгрессе «Дентальная имплантация» (Москва, 2001); на I съезде Европейской конференции по

проблемам стоматологической имплантологии (Львов, 2002); на VIII Всероссийской научной конференции и VII съезде СтАР России (Москва, 2002); на 5-м Российском научном форуме «Стоматология - 2003» (Москва, 2003); на Международной конференции «Современные аспекты реабилитации в медицине» (Ереван, 2003); на VI Российском научном форуме «Стоматология 2004», (Москва); на International Conference on Shape memory medical materials and new Technologies in medicine (Tomsk, 2007); на научно-практической Конференции, посвященной 35-летию образования ЦМСЧ № 119 (Москва, 2008); на V Всероссийской научно-практической конференции «Образование, наука и практика в стоматологии» по тематике «Имплантология в стоматологии» (Москва, 2008); на совещании сотрудников кафедры клинической стоматологии и имплантологии Института повышении квалификации ФМБА России (Москва, 2008).

Внедрение результатов исследования. Результаты исследования внедрены в практику работы Клинического центра стоматологии ФМБА России, Центрального НИИ стоматологии и челюстно-лицевой хирургии, национального медико-хирургического центра, клиники «КАРАТ» (Новокузнецк), клиники «ЦСП-Люкс» (Москва); в учебный процесс кафедры клинической стоматологии и имплантологии Института повышения квалификации ФМБА России, кафедры стоматологии общей практики с курсом зубных техников МГМСУ, Лаборатории материалов медицинского назначения МИСиС.

Объем и структура диссертации. Работа изложена на 265 листах машинописного текста, состоит из введения, обзора литературы, трех глав собственных исследований, выводов, практических рекомендаций, указателя литературы. Диссертация иллюстрирована 78 рисунками и 28 таблицами. Указатель литературы включает 251 источника, из которых 188 отечественных и 63 зарубежных.

Сплавы металлов, используемые при изготовлении зубных протезов

Между этими двумя группами существуют фундаментальные различия химических и физических свойств. В процессе зуботехнической работы следует учитывать эти различия. Чистый титан занимает двойственное положение. С химической точки зрения и в плане зуботехнической обработки он, принадлежа к сплавам неблагородных металлов, имеет механические свойства, которые больше свойственны сплавам благородных металлов .

В состав золотосодержащих сплавов входит золото (39-98%), платина (до 29%), палладий (до 33%), серебро (до 32%), медь (до 13%) и незначительное количество легирующих элементов. В состав палладиевых сплавов входит (35-86%) палладия, до 40% серебра, до 14% меди, до 8% индия и др. Серебросодержащие сплавы содержат 36-60% серебра, 20-40% палладия, до 18% меди и др.

В состав неблагородных сплавов, в частности, кобальтхромовых, входит 33-75% кобальта, 20-32% хрома, до 10% молибдена и другие добавки. Никельхромовые сплавы содержат 58-82% никеля, 12-27% хрома, до 16% молибдена. Никелид титана содержит примерно поровну никеля и титана. Железосодержащие сплавы (стали) содержат до 72% железа, до 18% хрома, до 8 % никеля, до 2% углерода. Титановые сплавы содержат не менее 90% титана, до 6% алюминия, до 4% ванадия и менее 1% железа, кислорода и азота.

Практически все кобальтовые сплавы имеют примеси никеля. Но содержание никеля в них должно находиться на уровне, не представляющим опасности. Так содержание никеля в бюгельном протезе, который изготовлен из высококачественного кобальтохромового сплава, приблизительно соответствует количеству никеля, ежедневно потребляемого с пищей.

В настоящее время безуглеродистые кобальтохромовые сплавы нашли широкое применение для изготовления металлокерамических коронок и мостовидных протезов, например, западные фирмы выпускают: фирма KRUPP - сплав «Bondi-Loy», BEGO - «Wirobond», DENTAURUM - сплав «CD». В США фирма MINEOLA A.ROSENS ON INC изготавливает сплав «Arobond». В России выпускаются аналогичные сплавы «КХ-ДЕНТ» и «Целлит-К».

В настоящее время для металлокерамических работ.наряду с кобальтохромовыми сплавами широко используются никелехромовые сплавы. Прототипом этих сплавов явился жаростойкий сплав «НИХРОМ» -Х20Н80, использующийся в промышленности для изготовления нагревательных элементов. Для большей жесткости он легируется молибденом или ниобием, для улучшения литейных качеств - кремнием.

Наиболее популярным из этих сплавов является сплав «Wiron 88» фирмы BEGO, в России выпускаются аналогичные сплавы: «Dental NSAvac», «НХ-ДЕНТ NSvac», «Целлит-Н».

Титан - это элемент, который наиболее трудно получить в абсолютно чистом виде. На основе своей высокой реактивности он связывает некоторые элементы, в первую очередь, кислород, азот и железо. Поэтому чистый титан (называемый нелегированным) разделяется на различные группы очистки (от 1-й категории до 4-й). В силу механических свойств не всегда целесообразно использовать металл высшей категории. Титан, содержащий примеси, имеет лучшие механические свойства .

Разработчиками сплавов рекомендуется изготовление тех или иных ортопедических конструкций из различных стоматологических сплавов. Так для изготовления вкладок рекомендуется золото с ссылкой производителя - «отлично подходят»; с ссылкой «возможно применение» называются сплавы на основе палладия, серебра, кобальта, никеля и титана. Для изготовления коронок и мостовидных протезов с пластмассовой облицовкой «отлично подходят» сплавы золота, палладия, серебра, кобальта, никеля и титана, а с керамической облицовкой - золота, палладия, кобальта, никеля, титана (возможно применение сплавов на основе серебра). Для бюгельных протезов «отлично подходят» сплавы на основе кобальта и «возможно применение» сплавов на основе золота, палладия, кобальта, никеля и титана. По мнению производителей, имплантаты отлично подходят для изготовления из титана, но возможно - из кобальтхромового сплава. Супраконструкции рекомендуется изготавливать с маркировкой «отлично подходит» из золота, палладия, кобальта, никеля, титана . По поводу материалов для использования для имплантатов и супраструктур автор данного диссертационного исследования не согласен, поскольку считает правильным использовать в имплантологии принцип монометалла (титана).

Помимо физико-механических характеристик для выбора сплава важна его биологическая совместимость. Эталоном биологической безопасности является коррозионное поведение материала . В сплавах благородных металлов содержание самих благородных металлов (золото, платина, палладий и серебро) должно быть как можно выше. Рассматривая коррозионное поведение сплавов неблагородных металлов (кобальто-хромовые и никелиево-хромовые сплавы), следует учитывать содержание хрома. Содержание хрома должно быть выше 20 % для обеспечения достаточной стабильности в оральной среде. Содержание менее 20 (15 %) может вызвать высокое освобождение ионов. Хорошо известно, что существуют различия между биологическими функциями металла. Это так называемые существенные элементы, несущественные элементы и токсичные металлы. Элементы первой группы необходимы человеческому организму для его функционирования. Такие элементы являются компонентами ферментов, витаминов (например, кобальт для витамина В12) или других важных молекул (напр., железо в гемоглобине для транспортировки кислорода). Несущественные элементы не наносят вреда организму, но организм не нуждается в них. Последняя группа - это элементы, опасные для организма. Такие металлы не должны применяться в стоматологических сплавах.

Клинические токсико-химические и аллергические реакции при использовании стоматологических сплавов

Актуальность проблемы токсико-химических и аллергических реакций при использовании стоматологических сплавов не исчезает .

Так Dartsch Р.С., Drysch К., Froboess D. изучили токсичность производственной пыли в зуботехнической лаборатории, в частности, содержащей сплавы благородных и неблагородных стоматологических сплавов . Для исследования использовались клеточные культуры L-929 (фибробласты мышей) для определения количества живых клеток и расчета коэффициента роста клеток в присутствии пыли металлов в течение трех дней. При этом моделировалось три варианта воздействия: при попадании пыли в рот (раствор синтетической слюны по EN ISO 10271 - рН 2.3), при попадании на кожу рук (кислый раствор синтетического пота по EN ISO 105-Е04 - рН 5,5), при воздействии моющих растворов для мытья рук (кислый раствор синтетического пота по EN ISO 105-Е04 - рН 5,5) в сочетании с добавками антибиотиков (Penicilin/Streptomycin).

В то время как для контрольной клеточной культуры коэффициент роста составил 1,3 удвоения популяции (т.е. каждая клетка колонии делилась надвое примерно 1,3 раза в сутки), уровень снижения коэффициента роста клеток с экстрактами образцов зависел от степени их разбавления. Максимальной токсичностью обладает образец, собранный непосредственно на рабочем месте техника, состав которого входит пыль благородных и неблагородных металлов. Это означает, что обработка сплавов при производстве металлокерамики связана с очевидным риском для здоровья. Это в полной мере относится и к образцу, взятому из центральной вентиляционной системы лаборатории.

Непереносимость конструкционных стоматологических материалов базируется на особенностях реакции организма к их составу; для диагностики этих состояний предложены различные методы. Цимбалистов А.В., Трифонов Б.В., Михайлова Е.С., Лобановская А.А. перечисляют: анализ рН слюны, исследование состава и параметров слюны, исследование крови, использование метода акупунктурнои диагностики по Р.Фоллю, непрерывная точечная диагностика, измерение индекса биоэлектромагнитной реактивности тканей, экспозиционная и провокационная пробы, лейкопеническая и тромбопеническая пробы, эпикутанные пробы, иммунологические методы исследования. Авторы разработали внутриротовые эпимукозные аллергологические тесты, при которых оценивается состояние микроциркуляторного русла с помощью контактной биомикроскопии при помощи микроскопа МЛК-1 . Для обработки качественных и количественных характеристик микроциркуляции микроскоп дополнен цветной аналоговой видеокамерой и персональным компьютером.

Маренкова М.Л., Жолудев С.Е., Новикова В.П. провели исследование уровня цитокинов в ротовой жидкости у 30 пациентов с зубными протезами и проявлениями непереносимости к ним . Использовался твердофазный иммуноферментный анализ с соответствующими наборами реагентов ЗАО «Вектор-Бест». Установлено повышение содержания в слюне провоспалительных цитокинов у пациентов с явлениями непереносимости протезов, активация клеточного иммунного ответа без активации аутоиммунизации и аллергических процессов. Таким образом, у лиц с непереносимостью зубных протезов выявляется неспецифический воспалительный процесс и диструктивные изменения слизистой оболочки полости рта.

Олешко В.П., Жолудев С.Е., Баньков В.И. предложили диагностический комплекс «СЭДК» для определения индивидуальной толерантности конструкционных материалов . Физиологический механизм диагностики основан на анализе изменений параметров наиболее адекватных живому организму слабых импульсных, сложно модулированных электромагнитных полей низкой частоты. Особенностью комплекса является обработка ответного сигнала с датчика на несущих частотах с 104 Гц по 106 Гц. В ответном сигнале с датчика всегда содержится информация о микроциркуляции и обмене веществ в ткани на клеточном уровне. Исследуемый образец стоматологического материала устанавливается между губами пациента, что вызывает химическую микрореакцию и изменение химического состава среды на границы раздела. Появление компонентов, неадекватных химическому составу ротовой среды, раздражает рецепторы слизистой губ, что отражалось на показаниях прибора. Кроме того, в приборе предусмотрены 2 световода; в исходном состоянии горит световод, соответствующий отсутствию гальванических процессов.

Лебедев К.А., Максимовский Ю.М., Саган Н.Н., Митронин А.В. описывают принципы определения гальванических токов в полости рта и их клиническое обоснование . Авторы обследовали 684 пациента с различными металлическими включения в полости рта и признаками гальванизма в сравнении с 112 лицами с протезами и без признаков гальванизма; контрольная группа из 27 человек не имела металлических включений. Разность потенциалов в полости рта измеряли цифровым вольтаметром АРРА-107.

Методы исследования состава, структуры и физико-механических характеристик стоматологических сплавов

Непрерывное индентирование сплавов для изучения механических свойств проводилось на автоматизированном приборе Nano-Hardness Tester (CSM Instr.) при нагрузках 5 и 10 мН на воздухе алмазным индентором Виккерса (рис. 1) . При столь малых нагрузках метод можно считать неразрушающим в макромасштабе, поскольку глубина внедрения индентора не превышала 0,5 мкм, что позволило провести испытания износостойкости на тех же образцах. Преимущество метода наноиндентирования состоит в том, что анализ серии экспериментальных кривых «нагружение-разгружение», позволяет количественно оценить механические свойства как относительно мягких, так и сверхтвердых (больше 40 ГПа) материалов, используя образец простой геометрии с плоской площадкой площадью несколько мм2. Расчеты твердости и модуля упругости проводили по методу Оливера-Фарра, используя расчетно-управляющую программу "Indentation 3.0". По экспериментальным данным также рассчитано упругое восстановление материала как отношение упругой деформации к общей R=(hm-hf)/hm-100%, где hm - наибольшая глубина погружения, hf- глубина отпечатка после снятия нагрузки. Каждое значение усредняли по 6-12 измерениям.

Общий вид установки «Nano-Hardness Tester». Исследуемый образец помещается на предметный столик, затем на поверхность образца опускается сапфировое кольцо, которое остается в контакте с исследуемым материалом во время нагрузочно-разгрузонного цикла (рис. 2). Нормальная нагрузка прикладывается посредством электромагнита и передается индентору через вертикальный стержень. Перемещение стержня относительно положения кольца измеряется емкостным датчиком, который связан с компьютером через плату сопряжения.

Схема испытания при наноиндентировании Нагрузочно-разгрузочный цикл проходит с определенной скоростью и выдержкой. Результирующие данные представлены в виде графика зависимости нагрузки от глубины вдавливания (рис.3).

Для калибровки нанотвердомера испытания сначала проводят на стандартном образце, а уже потом на исследуемом материале. В качестве стандартного образца берется плавленый кварц с известной твердостью и модулем Юнга (Е = 72 ГПа, Н = 9,5 ГПа).

Трибологические исследования износостойкости сплавов.

Испытания на износостойкость по схеме «стержень-диск» проводили на автоматизированной установке «Tribometer» (CSM Instr.) (в среде биологического раствора (рис. 4, 5, табл. 2) . Данная схема позволяет приблизить лабораторные исследования к реальному взаимодействию литого изделия с зубной эмалью. Неподвижным контртелом служил сертифицированный шарик диаметром 3 мм из оксида алюминия (модуль Юнга Е=340 ГПа, коэффициент Пуассона 0,26, твердость 19 ГПа). Оксид алюминия был выбран как неметаллический, непроводящий материал, схожий по строению с зубной эмалью, твердость которого превосходит твердость изучаемых сплавов. Шарик фиксировали держателем из нержавеющей стали, который передавал шарику заданную нагрузку и был связан с датчиком силы трения. Зона контакта находилась внутри кюветы, заполненной биологическим раствором.

Комплексное трибологическое исследование включало непрерывную запись коэффициента трения (к.т.) при испытании по схеме «неподвижный стержень - вращающийся диск» на автоматизированной установке Tribometer (CSM Instr.), а также фрактографическое исследование бороздки износа (включая измерения профиля бороздки) и пятна износа на контртеле, по результатам которого был проведен расчет износа образца и контртела. Строение бороздок износа (на дисках) и диаметр пятен износа (на шариках) изучали при наблюдении в оптическом микроскопе AXIOVERT СА25 (Karl Zeiss) при увеличении х (100-500) и стереомикроскопе МБС-10 (ЛЗОС) при увеличении х (10-58).

Измерения вертикального сечения бороздок проводили в 2-4-х диаметрально и ортогонально противоположных точках на профилометре Alpha-Step200 (Tensor Instr.) при нагрузке 17 мг и определяли среднее значение площади сечения и глубины бороздки износа. Количественную оценку износа образца и контртела проводили следующим образом. Износ шарика рассчитывали по следующей формуле: V= 7i h2(r l/3h), где И =г-(-[(Ш]2)1/2, d - диаметр пятна износа, г - радиус шарика, h - высота сегмента. Износ образца рассчитывали по формуле: V= S% где / - длина окружности, 5 - площадь сечения бороздки износа. Результаты испытаний и фрактографических наблюдений были обработаны с помощью компьютерной программы InsrtumX for Tribometer, CSM Instr.

Методы сравнения литого и фрезерованного титана.

Проведено сравнение структуры и свойств стандартных заготовок для фрезерования титановых каркасов протезов по технологии CAD/САМ и титана, полученного методом литья по выплавляемым моделям .

Анализ макро и микроструктуры образцов титановых сплавов в виде пластин толщиной 2-3 мм был проведен при использовании современных методов цифровой макро и микро фотосъемки МБС-10 (ЛЗОС) и AXIOVERT25CA (Karl Zeiss). Исследования были проведены на полированных шлифах, которые для выявления микро и макроструктуры обрабатывали травителем состава 2%HF + 2%НЖ)з + Вода дистиллированная (ост.).

Оценка механических свойств (твердости и модуля Юнга) была сделана методом Оливера-Фарра по данным измерительного наноиндентирования (ISO 14577), проведенного на прецизионном твердомере NanoHardnessTester (CSM Instr.) при нагрузках 10 и 20 мН, используя алмазный индентор Берковича . По экспериментальным данным также было рассчитано упругое восстановление материала R, как отношение упругой деформации к общей R-(hm-hf)/hm-100%, где hm - наибольшая глубина погружения индентора, h/ - глубина отпечатка после снятия нагрузки. Результаты расчетов усредняли по 6-12 измерениям методом дисперсионного анализа.

Электрохимические характеристики контактных пар «титановый имплантат-каркас протеза»

Типичные экспериментальные кривые, отражающие сопротивление сплавов внедрению алмазного индентора, при нарастании (верхняя ветвь) и снижении (нижняя ветвь) приложенной нагрузки ЮмН представлены на рисунке 11, а результаты расчета механических свойств сплавов приведены в таблице 6.

Твердость стоматологических сплавов по результатам наноиндентирования лежит в пределах 2,6 - 8,2 ГПа (рис. 12, табл.6). Наиболее близкими по свойствам к зубной эмали (по литературным данным Н=3,5-4,5 ГПа) являются сплавы, содержащие титан, в том числе, никелид титана (4,2-5,2 ГПа), а также сплав на основе никеля Целлит Н.

Твердость циркониевого и золотоплатинового сплавов почти в 2 раза ниже (до 2,6 ГПа), а кобальтхромовых сплавов и никельхромового сплава Remanium 2000 почти вдвое выше (до 8,2 ГПа).

Модуль упругости зубной эмали составляет около 100 ГПа, у стоматологических сплавов - от 65,9 до 232,2 ГПа. Близкие свойства у циркония, чуть выше у легированного титана и золотоплатинового сплава. Все остальные сплавы, кроме никелида титана, имеют более высокий модуль упругости.

Как известно, для кости он значительно меньше и составляет Е=10 -г 40 ГПа.

Судя по весьма низкому значению Е (65,9±2,5 ГПа), сплав никелид титана при условиях испытания находится вблизи интервала мартенситного превращения в особом структурном состоянии, для которого характерен

Остальные сплавы проявляют характерные для металлов значения упругого восстановления 10-20 %. Небольшое превышение этого уровня для кобальтхромовых сплавов, легированного титана и никельхромового сплава Remanium 2000 и повышенные значения модуля упругости могут быть связаны с образованием интерметаллидных фаз (упорядочение), текстурой или полями остаточных внутренних напряжений после литья или прокатки.

Таким образом, базовые физико-механические параметры титановых сплавов занимают среднее положение среди распространенных стоматологических сплавов другого состава. Вызывает интерес сплав никелид титана ввиду особенно высокого значения упругого восстановления. Данные наноиндентирования сплавов важны для выбора конструкционных материалов зубных протезов и имплантатов.

Комплексное трибологическое исследование, фрактография бороздки износа легли в основу износостойкости стоматологических сплавов. Измерения модуля упругости позволили оценить напряжения Герца в паре трения.

На рисунке 14 представлены расчетные значения давления, возникающего при контакте плоского образца изучаемого сплава со сферическим индентором диаметром 3 мм из окиси алюминия (обозначения сплавов соответствуют их составу в соответствии с таблицей 1).

1 По значениям контактных напряжений могут быть выделены 2 группы сплавов. В первую входят никель- и кобальтхромовые сплавы, для которых характерны величины 1,36-1,57 ГПа, что соответствует величине модуля Юнга 167-232 ГПа. Все эти сплавы отличаются высокой износостойкостью (6,75106 мм3/Н/м), а изнашивание, по-видимому, проходит по одному механизму.

Другую группу со значениями контактных напряжений (1,07-1,28) составляют титановые и циркониевый сплавы, проявившие значительный износ (3,245-10"4 мм3/Н/м). Вне этой классификации находятся никелидтитановый и золото платиновый сплавы, которые формально могут быть отнесены ко второй группе. Эти сплавы имеют свой собственный механизм износа. Образцы кобальтхромовых, никельхромовых и золотоплатиновых сплавов выдержали испытание при заданных условиях, для остальных тест

Как видно из иллюстраций на рисунках 16-17 и в таблице 7, наименьший износ (2,45-10" мм /Н/м) наблюдается у золотоплатинового сплава, а также у кобальтхромового сплава Remanium 2000 - 1,75-Ю-6 мм /Н/м. Наибольший износ показали образцы Rematitan и циркония -8,244-10-4и8,465-10"4 мм /Н/м, соответственно.

При сопоставлении рисунков 16-20 можно сделать вывод об особом механизме износа для золотоплатинового сплава и никелида титана. Самый износостойкий золотоплатиновыи сплав имеет особый механизм износа, связанный с его химически инертной поверхностью в среде биораствора.

Несмотря на невысокий модуль упругости, он проявляет рекордно низкий износ и минимальные значения начального и конечного коэффициента трения. Также особый механизм износа у образца никелида титана, в котором наблюдается один из самых низких начальный коэффициент трения (к.т.) (0,107) и максимальный конечный к.т. (0,7), что связано с протеканием обратимого мартенситного превращения в никелиде титана, инициированного внешней нагрузкой. Об этом свидетельствует большая амплитуда к.т. и его возрастание к концу испытания в 7 раз.

Следует отметить, что повышенный износ сплавов, содержащих титан, связан с налипанием металла на поверхность шарика, что приводит к изменению геометрии контакта (площадь контакта уменьшается) и свойств контртела (образование интерметаллида типа ТІА1, обладающего высоким модулем Юнга), что в итоге приводит к резкому увеличению контактных напряжений по сравнению с расчетными.

Таким образом, проведенные испытания на износостойкость стоматологических сплавов в среде биологического раствора показали, что наибольший износ проявляют чистые металлы титан (DA2) и цирконий (DA7) (8,24-8,47- 10"4мм3/Н/м), а также никелид титана (DA1) (5,09-10" 4мм3/Н/м). Легирование титана (DA8 и DA9) повышает износостойкость: износ сплавов ВТ5 (система Ti-Al-Sn) и ВТ 14 (Ti-Al-Mo-V) уменьшается приблизительно в 2,5 раза по сравнению с чистым титаном.

Наиболее износостойким является сплав DA10 на основе Au-Pt (2,45-10 7мм3/Н/м).

Достаточно высокую износостойкость, но на порядок хуже, чем золотоплатиновый, проявил сплав DA5 (Remanium 2000) на основе системы Co-Cr-Mo-Si, (1,7540-6 мм3/Н/м). Остальные сплавы DA2, DA4, DA11 (никельхромовые и Целлит К) имеют удовлетворительную износостойкость в пределах (4,25-7,35)-10"6 мм3/Н/м.



© dagexpo.ru, 2024
Стоматологический сайт