Ph крови человека — норма в венозной и артериальной крови. Методы определения в домашних условиях. Форменные элементы крови

08.04.2019

Раздел III

ВНУТРЕННЯЯ СРЕДА ОРГАНИЗМА. СИСТЕМЫ, ОРГАНЫ И ПРОЦЕССЫ, УЧАСТВУЮЩИЕ В ПОДДЕРЖАНИИ ЕЕ ПОСТОЯНСТВА

ВВЕДЕНИЕ

На заре эволюции жизнь зародилась и возникла в водной среде. С появлением многоклеточных организмов большинство клеток утратило непосредственный контакт с внешней средой. Они существуют, окруженные внутренней средой - межклеточной жидкостью. Благодаря наличию системы крово- и лимфообращения, а также действию органов и систем, обеспечивающих поступление различных веществ из внешней во внут­реннюю среду организма (органы дыхания и пищеварения), и органов, обеспечивающих выведение во внешнюю среду продуктов обмена, у многоклеточных организмов возникла возможность поддерживать постоянство состава внутренней среды организма.

Вследствие этого клетки организма существуют и выполняют свои функции в относи­тельно постоянных (стабильных) условиях. Благодаря деятельности ряда регуляторных механизмов организм способен сохранить постоянство внутренней среды при резких изменениях различных характеристик внешней среды - больших перепадах температур, давлений, влажности, освещения, перебоях в получении питательных веществ. Чем точ­нее и надежнее регулируется постоянство внутренней среды, тем в меньшей степени организм зависит от изменений внешних условий, тем шире ареал его обитания, тем более свободен он в выборе той или иной внешней экологической среды для существо­вания.

«Постоянство внутренней среды-условие свободной жизни»,-так сформулиро­вал это положение крупный французский физиолог и патолог Клод Бернар. Способность сохранять постоянство внутренней среды получила название гомеостаэа. В основе его лежат не статические, а динамические процессы, так как постоянство внутренней среды непрерывно нарушается и столь же непрерывно восстанавливается. Весь комплекс про­цессов, направленных на поддержание постоянства внутренней среды, получил название гомеокинеза.

По классификации, предложенной еще в начале прошлого столетия известным французским анатомом и физиологом Биша, их относят к так называемым вегетативным процессам, или вегетативным функциям организма (от лат. vegetos - растение). Имеет­ся в виду, что характер всех этих процессов: обмен веществ, рост, размножение, обеспече­ние условий для сохранения структуры и осуществления процессов жизнедеятельности организма - представляет собой нечто общее, имеющее место как в организме живот­ных, так и в организме растений. В отличие от этого под анимальными функциями (от лат. animos -- животное) Биша понимал те функции и процессы, которые принципи­ально отличают животное от растения, а именно способность к активному, свободному и независимому передвижению за счет внутренних энергетических ресурсов, способность к различным по сложности формам активных двигательных действий, т.е. к поведенче­ским реакциям, иными словами - способность к активной деятельности в окружающей среде.

Хотя противопоставление анимальных и вегетативных функций не являетсяабсолют-ным, все же классификация Биша оказалась полезной и сохранилась до наших дней. В настоящем III разделе будут рассмотрены вегетативные функции организма.

Главной вегетативной функцией многоклеточного животного организма является поддержание постоянства его внутренней среды. В настоящем разделе будут описаны органы, системы и процессы, обеспечивающие поступление в организм из внешней среды нужных для жизнедеятельности веществ (органы пищеварения и дыхания) и удаление из организма продуктов обмена (почки, кожа, кишечник). Кроме того, будет изложен материал о системах транспорта веществ в организме (кровь, кровообращение, движе­ние лимфы), а также барьерных функциях и, кроме того, тех процессах обмена веществ и. энергии, которые традиционно изучаются в курсе физиологии, т. е. на уровне органов, систем и целостного организма.

Глава 9 ФИЗИОЛОГИЯ СИСТЕМЫ КРОВИ

Кровь, лимфа и тканевая жидкость образуют внутреннюю среду организма, омы­вающую все клетки и ткани тела. Внутренняя среда имеет относительное постоянство состава и физико-химических свойств, что создает приблизительно одинаковые условия существования клеток организма (гомеостаз). Это достигается деятельностью ряда орга­нов, обеспечивающих поступление в кровь необходимых организму веществ и удаление из крови продуктов распада.

Представление о крови как системе создал наш соотечественник Г. Ф. Ланг в 1939 г. В эту систему он включил 4 части: 1) периферическую кровь, циркулирующую по сосу­дам; 2) органы кроветворения (красный костный мозг, лимфатические узлы и селезенку);

3) органы кроверазрушения; 4) регулирующий нейрогуморальный аппарат.

Система крови представляет собой одну из систем жизнеобеспечения организма и выполняет множество функций:

1. Транспортная функция. Циркулируя по сосудам, кровь осуществляет транспорт­ную функцию, которая определяет ряд других.

2. Дыхательная функция. Эта функция заключается в связывании и переносе Ог и СОг.

3. Трофическая (питательная) функция. Кровь обеспечивает все клетки организма питательными веществами: глюкозой, аминокислотами, жирами, витаминами, минераль­ными веществами, водой.

4. Экскреторная функция. Кровь уносит из тканей «шлаки жизни» - конечные про­дукты метаболизма: мочевину, мочевую кислоту и другие вещества, удаляемые из орга­низма органами выделения.

5. Терморегуляторная функция. Кровь охлаждает энергоемкие органы и согревает органы, теряющие тепло.

6. Кровь поддерживает стабильность ряда констант гомеостаза - рН, осмотическое давление, изоионию и др.

7. Кровь обеспечивает водно-солевой обмен между кровью и тканями. В артериаль­ной части капилляров жидкость и соли поступают в ткани, а в венозной части капил­ляров возвращается в кровь.

8. Защитная функция. Кровь выполняет защитную функцию, являясь важнейшим фактором иммунитета, т. е. защиты организма от живых тел и генетически чуждых ве­ществ. Это определяется фагоцитарной активностью лейкоцитов (клеточный иммунитет) и наличием в крови антител, обезвреживающих микробы и их яды (гуморальный иммуни­тет). Эту задачу выполняет также бактерицидная пропердиновая-система.

9. Гуморальная регуляция. Благодаря своей транспортной функции кровь обеспечи­вает химическое взаимодействие между всеми частями организма, т.е. гуморальную регу­ляцию. Кровь переносит гормоны и другие физиологически активные вещества от кле­ток, где они образуются, к другим клеткам.

10. Осуществление креаторных связей. Макромолекулы, переносимые плазмой и форменными элементами крови, осуществляют межклеточную передачу информации, обеспечивающую регуляцию внутриклеточных процессов синтеза белков, сохранение сте­пени дифференцированности клеток, восстановление и поддержание структуры тканей.

СОСТАВ, КОЛИЧЕСТВО И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА КРОВИ

СОСТАВ И КОЛИЧЕСТВО КРОВИ

Кровь состоит из жидкой части - плазмы и взвешенных в ней клеток (формен­ных элементов): эритроцитов (красных кровяных телец), лейкоцитов (белых кровяных телец) и тромбоцитов (кровяных пластинок).

Между плазмой и форменными элементами крови существуют определенные объем­ные соотношения. Их определяют с помощью гематокрита - специального стеклянного капилляра, разделенного на 100 равных частей. При центрифугировании крови в гема-токрите более тяжелые форменные элементы отбрасываются центробежными силами от оси вращения, а ближе к ней располагается плазма. Таким путем установлено, что на долю форменных элементов приходится 40-45 % крови, а на долю плазмы - 55-60%.

Общее количество крови в организме взрослого человека в норме составляет 6-8% массы тела, т.е. примерно 4,5-6 л.

Объем- циркулирующей крови относительно постоянен, несмотря на непрерывное всасывание воды из желудка и кишечника. Это объясняется строгим балансом между поступлением и выделением воды из организма. Если в кровь сразу поступает большое количество воды (например, при введении в сосуды кровезамещающей жидкости), часть ее выводится почками немедленно, а большая часть переходит в ткани, откуда постепенно возвращается в кровь и выделяется почками. При недостаточном потреблении жидкости вода из тканей переходит в кровь, а образование мочи уменьшается. Резкое уменьшение массы крови в результате обильного кровотечения, например потеря "/з ее объема, может привести к гибели. В таких случаях необходимо срочное переливание крови или крове-заменяющей жидкости.

ВЯЗКОСТЬ И ОТНОСИТЕЛЬНАЯ ПЛОТНОСТЬ КРОВИ

Если вязкость воды принять за единицу, то вязкость плазмы крови равна 1,7-2,2, а вязкость цельной крови - около 5. Вязкость крови обусловлена наличием белков и осо­бенно эритроцитов, которые при своем движении преодолевают силы внешнего и внутрен­него трения. Вязкость увеличивается при сгущении крови, т.е. потере воды (например, при поносах или обильном потении), а также при возрастании количества эритроцитов в крови. . -

Относительная плотность (удельный вес) цельной крови равен 1,050-1,060, эритро­цитов-1,090, плазмы-1,025-1,034.

ОСМОТИЧЕСКОЕ ДАВЛЕНИЕ КРОВИ

Если два раствора разной концентрации разделить полупроницаемой перепонкой, пропускающей только растворитель (например, воду), то вода переходит в более кон­центрированный раствор. Сила, определяющая движение растворителя через полупро­ницаемую мембрану, называется осмотическим давлением.

Осмотическое давление крови, лимфы и тканевой жидкости определяет обмен воды между кровью и тканями. Изменение осмотического давления жидкости, окружающей клетки, ведет к нарушениям в них водного обмена. Это видно на примере эритроцитов, которые в гипертоническом растворе NaCI теряют воду и сморщиваются. В гипотони­ческом растворе NaCI эритроциты, наоборот, набухают, увеличиваются в объеме и могут разрушиться!

Осмотическое давление крови можно определить криоскопически, т.е. измерением температуры замерзания. Она, как известно, тем ниже, чем выше в растворе суммарная концентрация мелких молекул и ионов. У человека температура замерзания крови ниже нуля на 0,56-0,58 °С. При таком понижении температуры замерзания раствора его осмотическое давление равно 7,6 атм. Около 60 % этого давления приходится на долю NaCl. Величина осмотического давления эритроцитов и всех других клеток организма такая же, как окружающей их жидкости.

Осмотическое давление крови млекопитающих и человека довольно постоянное, не­смотря на небольшие его колебания вследствие перехода из крови в ткани крупномоле-кулярных веществ (аминокислот, жиров, углеводов) и поступления из тканей в кровь низкомолекулярных продуктов клеточного метаболизма.

В регуляции осмотического давления участвуют органы выделения, главным обра­зом почки и потовые железы. Благодаря им вода, поступающая в организм, и продукты обмена, образующиеся в организме, выводятся с мочой и потом, не вызывая существен­ных сдвигов осмотического давления. Осморегулирующая деятельность выделительных органов регулируется сигналами от осморецепторов, т. е. специализированных обра­зований, которые активируются при изменении осмотического давления крови и тканевой жидкости. В отличие от крови осмотическое давление мочи и пота колеблется в довольно широких пределах. Температура замерзания пота на 0,18-0,6 ° ниже нуля, а мочи - на 0,2-2,2 °

РЕАКЦИЯ КРОВИ И ПОДДЕРЖАНИЕ ЕЕ ПОСТОЯНСТВА

Активная реакция крови (рН), обусловленная соотношением в ней водородных (Н" 1 ") и гидроксильных (ОН~) ионов, является одним из жестких параметров гомео-

стаза, так как только при определенном РН возможно оптимальное течение обмена ве­ществ.

Кровь имеет слабо щелочную реакцию. рН артериальной крови равен 7,4; рН веноз­ной крови вследствие большого содержания в ней углекислоты составляет 7,35. Внутри клеток рН несколько ниже (7,0-7,2), что зависит от образования в них при метаболизме кислых продуктов. Крайними пределами изменений рН, совместимыми с жизнью, являют­ся величины от 7,0 до 7,8. Смещение рН за эти пределы вызывает тяжелые нарушения и может привести к смерти. У здоровых людей рН крови колеблется в пределах 7,35-7,40. Длительное смещение рН у человека даже на 0,1-0,2 может оказаться гибельным.

В процессе метаболизма в кровь непрерывно поступают углекислота, молочная кис­лота и другие продукты обмена, изменяющие концентрацию водородных ионов. Однако рН крови сохраняется постоянным, что объясняется буферными свойствами плазмы и эритроцитов, а также деятельностью легких и органов выделения, удаляющих из орга­низма избыток СОг, кислот и щелочей.

Буферные свойства крови обусловлены тем, что в ней содержатся: 1) буферная система гемоглобина. 2) карбонатная буферная система. 3) фосфатная буферная сис­тема и 4) буферная система белков плазмы..

Буферная система гемоглобина самая мощная. На ее долю приходится 75 % буфер­ной емкости крови. Эта система состоит из восстановленного гемоглобина (ННв) и его калиевой соли (КНв). Буферные свойства ННв обусловлены тем, что он, будучи более слабой кислотой, чем НгСОз, отдает ей ион К 4 ", а сам, присоединяя ионы Н 4 ", становится очень слабо диссоциирующей кислотой. В тканях система гемоглобина крови выполняет функции щелочи, предотвращая закисление крови вследствие поступления в нее СОг и Нойонов. В легких гемоглобин крови ведет себя как кислота, предотвращая защелачи-ванне крови после выделения из нее углекислоты.

Карбонатная буферная система (НаСОз+МаНСОз) по своей мощности занимает второе место после системы гемоглобина. Она функционирует следующим образом:

NaHCOa диссоциирует на ионы Na^ и НСОз~. При поступлении в кровь более сильной кислоты, чем угольная, происходит реакция обмена ионами Na" 1 " с образованием слабо-диссоциирующей и легкорастворимой НаСОз. Таким образом предотвращается повыше­ние концентрации Н 4 -ионов в крови. Увеличение в крови содержания угольной кислоты приводит к тому, что ее ангидрит - углекислый газ - выделяется легкими. В результате этих процессов поступление кислоты в кровь приводит лишь к небольшому временному повышению содержания нейтральной соли без сдвига рН. В случае поступления в кровь щелочи она реагирует с угольной кислотой, образуя бикарбонат NaHCOs и воду. Возни­кающий при этом дефицит угольной кислоты немедленно компенсируется уменьшением выделения СС>2 легкими.

Хотя в исследованиях in vitro удельный вес бикарбонатного буфера по сравнению с гемоглобином слабее, в действительности.же его роль в организме весьма ощутима. Это обусловлено тем, что связанное с действием этой буферной системы усиленное выве­дение С02 легкими и выделение NaCI мочой - весьма быстрые процессы, почти мгно­венно восстанавливающие рН крови.

Фосфатная буферная система образована дигидрофосфатом (NaHsPCli) и гидро­фосфатом (Na2HPC>4) натрия. Первое соединение слабо диссоциирует и ведет себя как слабая кислота. Второе соединение обладает щелочными свойствами. При введении в кровь более сильной кислоты она реагирует с МаНгР04, образуя нейтральную соль и увеличивая количество малодиссоциирующего дигидрофосфата натрия. В случае вве­дения в кровь сильной щелочи она реагирует с дигидрофосфатом натрия, образуя слабо щелочной гидрофосфат натрия. рН крови изменяется при этом незначительно. В обоих случаях избыток дигидрофосфата или гидрофосфата натрия выделяется с мочой.

Белки плазмы играют роль буферной системы благодаря своим амфотерным свойст­вам. В кислой среде они ведут себя как"щелочи, связывая кислоты. В щелочной среде белки реагируют как кислоты, связывающие щелочи.

В поддержание рН крови, помимо легких, участвуют почки, удаляющие из организма избыток как кислот, так и щелочей. При сдвиге рН крови в кислую сторону почки выделяют с мочой увеличенное количество кислой соли NaHaP04. При сдвиге в щелоч­ную сторону почки увеличивают выделение щелочных солей: NaaHPOt и NaaCOs. В пер­вом случае моча становится резко кислой, во втором-щелочной (рН мочи в норме колеблется от 4,7 до 6,5, а при нарушениях кислотно-щелочного равновесия крови может изменяться в пределах 4,5-8,5).

Выделение небольшого количества молочной кислоты осуществляется также пото­выми железами.

Буферные системы имеются и в тканях, где они сохраняют рН на относительно постоянном уровне. Главными буферами тканей являются клеточные белки и фосфаты. В процессе метаболизма кислых продуктов образуется больше, чем щелочных, поэтому опасность сдвига рН в сторону закисления более велика. В соответствии с этим буферные системы крови и тканей более устойчивы к действию кислот, чем щелочей. Так, для сдвига рН плазмы крови в щелочную сторону требуется прибавить к ней в 40-70 раз больше NaOH, чем к чистой воде. Для сдвига же рН в кислую сторону необходимо добавить к плазме в 300-350 раз больше НС1, чем к воде. Щелочные соли слабых кислот, содержа­щиеся в крови, образуют так называемый щелочной резерв крови. Величину его опреде­ляют по тому количеству миллилитров углекислоты, которое может быть связано 100 мл крови при давлении СОа, равном 40 мм рт.ст., т.е. примерно соответствующем его давле­нию в альвеолярном воздухе.

Постоянное соотношение между кислотными и щелочными эквивалентами позволяет говорить о кислотно-щелочном равновесии крови.

Несмотря на наличие буферных систем и хорошую защищенность организма от воз­можных изменений рН, все же иногда при некоторых условиях наблюдаются небольшие сдвиги активной реакции крови. Сдвиг рН в кислую сторону называется ацидозом, сдвиг в щелочную сторону - алкалозом.

Изменения щелочного резерва крови и небольшие колебания ее рН всегда происхо­дят в капиллярах большого и малого кругов кровообращения. Так. поступление С02 в кровь тканевых капилляров закисляет венозную кровь на 0,01-0,05 по сравнению с артериальной кровью. Противоположный сдвиг рН наблюдается в легочных капиллярах вследствие перехода СОг в альвеолярный воздух.

СОСТАВ ПЛАЗМЫ КРОВИ

Плазма крови содержит 90-92 % воды и 8-10 % сухого вещества, главным обра­зом белков и солей. В плазме находится ряд белков, отличающихся по своим свой­ствам и функциональному значению: альбумины (около 4,5%), глобулины (2-3%) и фибриноген (0,2-0,4%).

Общее количество белка в плазме крови человека составляет 7-8 %. Остальная часть плотного остатка плазмы приходится на долю других органических соединений и минеральных солей.

В плазме находятся также небелковые азотсодержащие соединения (аминокислоты и полипептиды), всасывающиеся в пищеварительном тракте и используемые клетками для синтеза белков. Наряду с ними в крови находятся продукты распада белков и нукле­иновых кислот (мочевина, креатин, креатинин, мочевая кислота), подлежащие выведе­нию из организма.

Половина общего количества небелкового азота в плазме - так называемого оста­точного азота приходится на долю мочевины. При недостаточности функции почек содер­жание остаточного азота в плазме крови увеличивается.

В плазме находятся также безазотистые органические вещества: глюкоза 4,4-6,7 ммоль/л, или (80-120 мг %), нейтральные жиры и липоиды.

Минеральные вещества плазмы крови составляют около 0,9 %. Они представлены преимущественно катионами Na" 1 ", K + , Ca 2 " 1 ", и анионами С1~, HCOf, HPOi~.

Значение минерального состава плазмы и кровезамещающие растворы

Искусственные растворы, имеющие одинаковое с кровью осмотическое давление, называются изоосмотическими, или изотоническими. Для теплокровных животных и человека изотоническим раствором является 0,9 % раствор NaCl. Такой раствор называ­ют физиологическим. Растворы, имеющие большее осмотическое давление, чем кровь, называются гипертоническими, а меньшее - гипотоническими.

Изотонический раствор NaCl может некоторое время поддерживать жизнедеятель­ность отдельных органов, например изолированного (вырезанного из организма) сердца лягушки. Однако этот раствор не является полностью физиологическим. Разработаны рецепты растворов, соответствующие своим составом содержанию отдельных солей в плазме. Они являются в большей мере физиологическими, чем изотонический раствор NaCl. Наибольшее распространение получили растворы Рингера, Рингера-Локка и Тиро-де (табл. 10).

Таблица 10

Состав различных физиологических растворов

Название раствора

в граммах на 1 л дистиллированной воды

Раствор Рингера для хо­лоднокровных животных Раствор Рингера - Локка

для теплокровных жи­вотных

Раствор Тироде

Для поддержания деятельности изолированных органов теплокровных животных физиологические растворы насыщают кислородом и добавляют к ним глюкозу. Однако указанные растворы не содержат коллоидов (которыми являются белки плазмы) и быст­ро выводятся из кровеносного русла, т.е. восполняют объем потерянной крови на очень короткое время. Поэтому в последние годы созданы синтетические коллоидные крове­заменители (реополиглюкин, желатиноль, гемодез, полидез, неокомпенсан и Др.), кото­рые вводят человеку после кровопотери и по другим показаниям для нормализации объема крови и артериального давления. Однако идеального кровезаменителя типа «искусственная кровь» пока не создано.

БЕЛКИ ПЛАЗМЫ КРОВИ

Значение белков плазмы крови многообразно: 1) они обусловливают онкотическое давление, которое определяет обмен воды между кровью и тканями; 2) обладая буфер­ными свойствами, поддерживают рН крови; 3) обеспечивают вязкость плазмы крови, имеющую важное значение в поддержании артериального давления; 4) препятствуют оседанию эритроцитов; 5) участвуют в свертывании крови; 6) являются необходимыми факторами иммунитета; 7) служат переносчиками ряда гормонов, минеральных веществ, липидов, холестерина; 8) представляют собой резерв для построения тканевых белков;

9) осуществляют креаторные связи, т.е. передачу информации, влияющей на генетиче­ский аппарат клеток и обеспечивающей процессы роста, развития, дифференцировки и поддержания структуры организма (примерами таких белков являются так называе­мые «фактор роста нервной ткани», эритропоэтины и т.д.). -,

Молекулярная масса, сравнительные размеры и форма белковых молекул крови приведены на рис. 111. Как видно из рисунка, размеры молекулы альбумина близки к размерам гемоглобина. Молекула глобулина обладает большими размерами и массой, а наибольшую молекулярную массу имеет комплекс белка с липидами - липопротеиды. Изменение свойств и структуры липопротеидов играет важную роль в развитии «ржав­чины жизни» - атеросклероза. Молекула фибриногена имеет удлиненную форму, что об­легчает образование длинных нитей фибрина при свертывании крови.

В плазме крови содержится несколько десятк&в различных белков, которые состав­ляют 3 основные группы: альбумины, глобулины и фибриноген. Для разделения белков плазмы применяют метод электрофореза, основанный на неодинаковой скорости движе­ния разных белков в электрическом поле. С помощью этого метода глобулины разделены на несколько фракций: cii-, аг-, р-, у-глобулины. Электрофореграмма белков плазмы приведена на рис. 112.

В последние годы применяют более тонкий метод разделения белков плазмы крови - иммуноэлектрофорез, при котором в электрическом поле передвигаются не нативные белки, а комплексы белковых молекул, связанных со специфическими антителами. Это позволило выделить гораздо большее количество белковых фракций.

Онкотическое давление плазмы крови

Осмотическое давление, создаваемое белками, (т.е. их способностью притягивать воду), называется онкотическим давлением.

Абсолютное количество белков плазмы крови равно 7-8 % и почти в 10 раз прево­сходит количество кристаллоидов, но создаваемое ими онкотическое давление составляет лишь "/2оо осмотического давления плазмы (равного 7,6 атм), т.е. 0,03-0,04 атм (25-30 мм рт. ст.). Это обусловлено тем, что молекулы белков очень велики и число их в плазме во много раз меньше числа молекул кристаллоидов.

В наибольшем количестве содержатся в плазме альбумины. Величина их молекулы меньше чем молекулы глобулинов и фибриногена, а содержание заметно больше, поэтому онкотическое давление плазмы более чем на 80 % определяется альбуминами.

Несмотря на свою малую величину, онкотическое давление играет решающую роль в обмене воды между кровью и тканями. Оно влияет на процессы образования тканевой жидкости, лимфы, мочи, всасывания воды в кишечнике. Крупные молекулы белков плаз­мы, как правило, не проходят через эндотелий капилляров. Оставаясь в кровотоке, они удерживают в крови некоторое количество воды (в соответствии с величиной их онкотиче-ского давления).

При длительной перфузии изолированных органов растворами Рингера или Рингера-Локка наступает отек тканей. Если заменить физиологический раствор кристаллоидов кровяной сывороткой, то начавшийся отек исчезает. Именно поэтому в состав кровезаме-щающих растворов необходимо вводить коллоидные вещества. При этом онкотическое давление и вязкость подобных растворов подбирают так, чтобы они были равны этим параметрам крови.

СВЕРТЫВАНИЕ КРОВИ

Жидкое состояние крови и замкнутость (целостность) кровеносного русла являются необходимыми условиями жизнедеятельности. Эти условия создает система свертывания крови (система гемокоагуляции), сохраняющая циркулирующую кровь в жидком состоя­нии и восстанавливающая целостность путей ее циркуляции посредством образования кровяных тромбов (пробок, сгустков) в поврежденных сосудах.

4. изменение онкотического давления

6. Гомеостаз - это:

1. разрушение эритроцитов

2. соотношение плазмы крови и форменных элементов

3. образование тромба

Постоянство показателей внутренней среды

7. К функциям крови не относится

1. трофическая

2. защитная

Синтез гормонов

4. дыхательная

8. Количество минеральных веществ в плазме крови равно:

3. 0,8-1 %

9. Ацидоз это:

1. сдвиг реакции крови в кислую сторону

2. сдвиг реакции крови в щелочную сторону

3. изменение осмотического давления

4. изменение онкотического давление.

10. Количество крови в организме:

1. 6-8 % от веса тела

2. 1-2 % от веса тела

3. 8-10 литров

4. 1-2 литра

11. Вязкость крови это взаимодействие:

1. эритроцитов с солями плазмы

Клеток крови и белков между собой

3. клеток сосудистого эндотелия

4. кислот и оснований в плазме крови

12. Белки плазмы крови не выполняют функцию:

1. защитную

2. трофическую

Транспорт газов

4. пластическую

13. Физиологический раствор это:

1. 0,9 % NaCl

14. Укажите бикарбонатный буфер:

1. NaH 2 PO 4 3. HHb

Na 2 HPO 4 KHbO 2

2. H 2 CO 3 4. Рt CООН

NaHCO 3 NН 2

15. Гематокритвнормеравен:

4. 40-45 %

16. Вязкость крови зависит от:

Количества белков и клеток крови

2. кислотно-основного состояния

3. объема крови

4. осмотичности плазмы

17. Гемолиз происходит в растворе:

1. гипертоническом

Гипотоническом

3. изоионическом

4. физиологическом

18. Онкотическое давление крови определяет обмен воды между:

Плазмой крови и тканевой жидкостью

2. плазмой крови и эритроцитами

3. кислотами и основаниями плазмы

4. эритроцитами и лейкоцитами

19. Наибольшей буферной емкостью обладает буфер:

1. карбонатный

2. фосфатный

Гемоглобиновый

4. белковый

20. Основными органами депо крови являются:

1. кости, связки

Печень, кожа, селезенка

3. сердце,лимфатическая система

4. центральная нервная система

21. Вязкость и плотность цельной крови раны:

3. 5 и 1,05

22. Плазмолиз эритроцитов происходит в растворе:

Гипертоническом

2. гипотоническом

3. физиологическом

4. изоионическом

23. Активная реакция крови определяется соотношением:

1. лейкоцитов и эритроцитов

Кислот и оснований

3. минеральных солей

4. фракций белков

24. Осмотическое давление крови это сила:

1. взаимодействия форменных элементов друг с другом

2. взаимодействие клеток крови со стенкой сосудов



Обеспечивающая движение молекул воды через полупроницаемую мембрану

4. обеспечивающая движение крови

25. В состав гистогематического барьера входит:

1. только ядро клетки

2. только митохондрии клетки

3. мембрана митохондрий и включений

Мембрана клетки и сосудистая стенка

26. Относительное, динамическое постоянство внутренней среды называется:

1. гемолиз

2. гемостаз

Гомеостаз

4. гемотрансфузия

27. К белкам плазмы крови не относятся:

1. альбумины

2. глобулины

3. фибриноген

Гемоглобин

28. Активная реакция крови (рН) в норме равна:

29. Изоионический раствор содержит вещества, соответственно их количеству в крови:

Минеральные соли

2. эритроциты

3. лейкоциты

30. В состав внутренней среды не входят следующие жидкости:

3. межклеточная жидкость

4. пищеварительные соки

31. Как называется снижение количества эритроцитов?

1. эритроцитоз

Эритропения

3. эритрон

4. эритропоэтин

32.Основная функция Т-киллеров - это:

Фагоцитоз

2. образование антител

3. уничтожение чужеродных клеток и антигенов

4. участие в регенерации тканей

33. Процентное содержание эозинофилов ко всем лейкоцитам в крови составляет:

34. Какой тип гемоглобина у человека не существует?

1. примитивный

2. фетальный

3. взрослый

Животный

35. Функции Т – лимфоцитов:

1. обеспечивают гуморальные формы иммунного ответа

Отвечают за развитие клеточных иммунологических реакций

3. участие в неспецифическом иммунитете

4. выработка гепарина, гистамина, серотонина

36. Для определения СОЭ используют:

1. гемометр Сали

2. камеру Горяева

Аппарат Панченкова

4. фотоэлектроколориметр (ФЭ

37. Цветовым показателем крови называется:

1. отношение объема эритроцитов к объему крови в %

2. отношение содержания эритроцитов к ретикулоцитам



Относительное насыщение эритроцитов гемоглобином

4. отношение объема плазмы к объему крови

38. Что понимают под лейкоцитарной формулой?

Активная реакция крови — чрезвычайно важная гомеостатическая константа организма, обеспечивающая течение окислительно-восстановительных процессов, деятельность ферментов, направление и интенсивность всех видов обмена.

Кислотность или щелочность раствора зависит от содержания в нем свободных ионов водорода [Н+]. Количественно активная реакция крови характеризуется водородным показателем — рН (power hydrogen — «сила водорода»).

Водородный показатель — отрицательный десятичный логарифм концентрации водородных ионов, т. е. pH = -lg.

Символ рН и шкалу рН (от 0 до 14) ввел в 1908 г. Сервисен. Если рН равно 7,0 (нейтральная реакция среды), то содержание ионов Н + равно 10 7 моль/л. Кислая реакция раствора имеет рН от 0 до 7; щелочная — от 7 до 14.

Кислота рассматривается как донор ионов водорода, основание — как их акцептор, т. е. вещество, которое может связывать ионы водорода.

Постоянство кислотно-основного состояния (КОС) поддерживается как физико-химическими (буферные системы), так и физиологическими механизмами компенсации (легкие, почки, печень, другие органы).

Буферными системами называют растворы, обладающие свойствами достаточно стойко сохранять постоянство концентрации водородных ионов как при добавлении кислот или щелочей, так и при разведении.

Буферная система — это смесь слабой кислоты с солью этой кислоты, образованной сильным основанием.

Примером может служить сопряженная кислотно-основная пара карбонатной буферной системы: Н 2 СО 3 и NaHC0 3 .

В крови существует несколько буферных систем:

1) бикарбонатная (смесь Н 2 СО 3 и НСО 3 -);

2) система гемоглобин — оксигемоглобин (оксигемоглобин имеет свойства слабой кислоты, а дезоксигемоглобин — слабого основания);

3) белковая (обусловленная способностью белков ионизироваться);

4) фосфатная система (дифосфат — монофосфат).

Самой мощной является бикарбонатная буферная система — она включает 53% всей буферной емкости крови, остальные системы составляют соответственно 35%, 7% и 5%. Особое значение гемоглобинового буфера заключается в том, что кислотность гемоглобина зависит от его оксигенации, то есть газообмен кислорода потенцирует буферный эффект системы.

Исключительно высокую буферную емкость плазмы крови можно проиллюстрировать следующим примером. Если 1 мл децинормальной соляной кислоты добавить к 1 л нейтрального физиологического раствора, который не является буфером, то его рН упадет с 7,0 до 2,0. Если такое же количество соляной кислоты добавить к 1 л плазмы, то рН снизится всего с 7,4 до 7,2.

Роль почек в поддержании постоянства кислотно-основного состояния заключается в связывании или выведении ионов водорода и возвращении в кровь ионов натрия и бикарбоната. Механизмы регуляции КОС почками тесно связаны с водно-солевым обменом. Метаболическая почечная компенсация развивается гораздо медленнее дыхательной компенсации — в течение 6-12 ч.

Постоянство кислотно-основного состояния поддерживается также деятельностью печени . Большинство органических кислот в печени окисляется, а промежуточные и конечные продукты либо не имеют кислого характера, либо представляют собой летучие кислоты (углекислота), быстро удаляющиеся легкими. Молочная кислота в печени преобразуется в гликоген (животный крахмал). Большое значение имеет способность печени удалять неорганические кислоты вместе с желчью.

Выделение кислого желудочного сока и щелочных соков (панкреатического и кишечного) также имеет значение в регуляции КОС.

Огромная роль в поддержании постоянства КОС принадлежит дыханию. Через легкие в виде углекислоты выделяется 95% образующихся в организме кислых валентностей. За сутки человек выделяет около 15 ООО ммоль углекислоты, следовательно, из крови исчезает примерно такое же количество ионов водорода (Н 2 СО 3 = C02 + Н 2 0). Для сравнения: почки ежедневно экскретируют 40-60 ммоль Н+ в виде нелетучих кислот.

Количество выделяемой двуокиси углерода определяется ее концентрацией в воздухе альвеол и объемом вентиляции. Недостаточная вентиляция приводит к повышению парциального давления С02 в альвеолярном воздухе (альвеолярная гиперкапния ) и соответственно увеличению напряжения углекислого газа в артериальной крови (артериальная гиперкапния ). При гипервентиляции происходят обратные изменения — развивается альвеолярная и артериальная гипокапния.

Таким образом, напряжение углекислого газа в крови (РаСO 2), с одной стороны, характеризует эффективность газообмена и деятельность аппарата внешнего дыхания, с другой — является важнейшим показателем кислотно-основного состояния, его дыхательным компонентом.

Респираторные сдвиги КОС самым непосредственным образом участвуют в регуляции дыхания. Легочный механизм компенсации является чрезвычайно быстрым (коррекция изменений рН осуществляется через 1-3 мин) и очень чувствительным.

При повышении РаСO 2 с 40 до 60 мм рт. ст. минутный объем дыхания возрастает от 7 до 65 л/мин. Но при слишком большом повышении РаСO 2 или длительном существовании гиперкапнии наступает угнетение дыхательного центра с понижением его чувствительности к СO 2 .

При ряде патологических состояний регуляторные механизмы КОС (буферные системы крови, дыхательная и выделительная системы) не могут поддерживать рН на постоянном уровне. Развиваются нарушения КОС, и в зависимости от того, в какую сторону происходит сдвиг рН, выделяют ацидоз и алкалоз.

В зависимости от причины, вызвавшей смещение рН, выделяют дыхательные (респираторные) и метаболические (обменные) нарушения КОС: дыхательный ацидоз, дыхательный алкалоз, метаболический ацидоз , метаболический алкалоз .

Системы регуляции КОС стремятся ликвидировать возникшие изменения, при этом респираторные нарушения нивелируются механизмами метаболической компенсации, а метаболические нарушения компенсируются изменениями вентиляции легких.

6.1. Показатели кислотно-основного состояния

Кислотно-основное состояние крови оценивается комплексом показателей.

Величина рН — основной показатель КОС. У здоровых людей рН артериальной крови равен 7,40 (7,35-7,45), т.е. кровь имеет слабощелочную реакцию. Снижение величины рН означает сдвиг в кислую сторону — ацидоз (рН < 7,35), увеличение рН — сдвиг в щелочную сторону — алкалоз (рН > 7,45).

Размах колебаний рН кажется небольшим вследствие применения логарифмической шкалы. Однако разница в единицу рН означает десятикратное изменение концентрации водородных ионов. Сдвиги рН более чем на 0,4 (рН менее 7,0 и более 7,8) считаются несовместимыми с жизнью.

Колебания рН в пределах 7,35-7,45 относятся к зоне полной компенсации. Изменения рН вне пределов этой зоны трактуются следующим образом:

Субкомпенсированный ацидоз (рН 7,25-7,35);

Декомпенсированнй ацидоз (рН < 7,25);

Субкомпенсированный алкалоз (рН 7,45-7,55);

Декомпенсированный алкалоз (рН > 7,55).

РаСO 2 (РСO2) — напряжение углекислого газа в артериальной крови. В норме РаСO 2 составляет 40 мм рт. ст. с колебаниями от 35 до 45 мм рт. ст. Повышение или снижение РаСO2 является признаком респираторных нарушений.

Альвеолярная гипервентиляция сопровождается снижением РаСO 2 (артериальной гипокапнией) и респираторным алкалозом, альвеолярная гиповентиляция — повышением РаСO 2 (артериальной гиперкапнией) и респираторным ацидозом.

Буферные основания (Buffer Base, ВВ) общее количество всех анионов крови. Поскольку общее количество буферных оснований (в отличие от стандартных и истинных бикарбонатов) не зависит от напряжения СO 2 , по величине ВВ судят о метаболических нарушениях КОС. В норме содержание буферных оснований составляет 48,0 ± 2,0 ммоль/л.

Избыток или дефицит буферных оснований (Base Excess, BE) — отклонение концентрации буферных оснований от нормального уровня. В норме показатель BE равен нулю, допустимые пределы колебаний ±2,3 ммоль/л. При повышении содержания буферных оснований величина BE становится положительной (избыток оснований), при снижении — отрицательной (дефицит оснований). Величина BE является наиболее информативным показателем метаболических нарушений КОС благодаря знаку (+ или -) перед числовым выражением. Дефицит оснований, выходящий за пределы колебаний нормы, свидетельствует о наличии метаболического ацидоза, избыток — о наличии метаболического алкалоза.

Стандартные бикарбонаты (SB) — концентрация бикарбонатов в крови при стандартных условиях (рН = 7,40; РаСO 2 = 40 мм рт. ст.; t = 37 °С; SO 2 = 100%).

Истинные (актуальные) бикарбонаты (АВ) — концентрация бикарбонатов в крови при соответствующих конкретных условиях, имеющихся в кровеносном русле. Стандартные и истинные бикарбонаты характеризуют бикарбонатную буферную систему крови. В норме значения SB и АВ совпадают и составляют 24,0 ± 2,0 ммоль/л. Количество стандартных и истинных бикарбонатов уменьшается при метаболическом ацидозе и увеличивается при метаболическом алкалозе.

6.2. Нарушения кислотно-основного состояния

Метаболический (обменный) ацидоз развивается при накоплении в крови нелетучих кислот. Он наблюдается при гипоксии тканей, нарушениях микроциркуляции, кетоацидозе при сахарном диабете, почечной и печеночной недостаточности, шоке й других патологических состояниях. Наблюдается уменьшение величины рН, снижение содержания буферных оснований, стандартных и истинных бикарбонатов. Величина BE имеет знак (-), что свидетельствует о дефиците буферных оснований.

К метаболическому (обменному) алкалозу могут приводить тяжелые нарушения обмена электролитов, потеря кислого желудочного содержимого (например, при неукротимой рвоте), чрезмерное потребление с пищей щелочных веществ. Увеличивается значение рН (сдвиг в сторону алкалоза) — повышается концентрация ВВ, SB, АВ. Величина BE имеет знак (+) — избыток буферных оснований.

Причиной дыхательных нарушений кислотно-основного состояния является неадекватная вентиляция.

Респираторный (дыхательный) алкалоз возникает в результате произвольной и непроизвольной гипервентиляции. У здоровых людей он может наблюдаться в условиях высокогорья, при беге на длинные дистанции, при эмоциональном возбуждении. Одышка легочного или сердечного больного, когда нет условий для задержки СO 2 в альвеолах, искусственная вентиляция легких могут сопровождаться респираторным алкалозом. Он протекает с повышением рН, снижением РаСO 2 , компенсаторным уменьшением концентрации бикарбонатов, буферных оснований, нарастанием дефицита буферных оснований.

При выраженной гипокапнии (РаСO 2 < 20-25 мм рт. ст.) и респираторном алкалозе могут наступить потеря сознания и судороги. Особенно неблагоприятны гипокапния и респираторный алкалоз в условиях недостатка кислорода (гипоксии). Устойчивость организма к гипоксии при этом резко падает. С этими нарушениями обычно связывают летные происшествия.

Респираторный (дыхательный) ацидоз развивается на фоне гиповентиляции, которая может быть следствием угнетения дыхательного центра. При тяжелой дыхательной недостаточности, связанной с патологией легких, возникает респираторный ацидоз. Величина рН при этом смещена в сторону ацидоза, напряжение СО 2 в крови повышено.

При значительном (более 70 мм рт. ст.) и достаточно быстром повышении РаСO 2 (например, при астматическом статусе) может развиться гиперкапническая кома. Сначала появляются головная боль, крупный тремор рук, потливость, затем психическое возбуждение (эйфория) или сонливость, спутанность сознания, артериальная и венозная гипертензия. Далее появляются судороги, потеря сознания.

Гиперкапния и респираторный ацидоз могут быть следствием пребывания человека в атмосфере с повышенным содержанием углекислого газа.

При хронически развивающемся дыхательном ацидозе наряду с повышением РаС0 2 и снижением рН наблюдается компенсаторное увеличение бикарбонатов и буферных оснований. Величина BE, как правило, имеет знак (+) — избыток буферных оснований.

При хронических заболеваниях легких может возникнуть и метаболический ацидоз. Его развитие связывают с активным воспалительным процессом в легких, гипоксемией, недостаточностью кровообращения. Метаболический и респираторный ацидоз нередко сочетаются, в результате чего возникает смешанный ацидоз.

Первичные сдвиги КОС не всегда можно отличить от компенсаторных вторичных. Обычно первичные нарушения показателей КОС выражены больше, чем компенсаторные, и именно первые определяют направление сдвига рН. Правильная оценка первичных и компенсаторных сдвигов КОС — обязательное условие адекватной коррекции этих нарушений. Чтобы избежать ошибок в трактовке КОС, необходимо наряду с оценкой всех его компонентов учитывать РаO 2 и клиническую картину заболевания.

Определение рН крови осуществляется электрометрическим способом с использованием стеклянного электрода, чувствительного к ионам водорода.

Для определения напряжения углекислого газа в крови используется эквилибрационная методика Аструпа или электрод Северингхауса. Значения, характеризующие метаболические компоненты КОС, рассчитывают с помощью номограммы.

Исследуется артериальная кровь или артериализированная капиллярная кровь из кончика прогретого пальца. Требуемый объем крови не превышает 0,1-0,2 мл.

В настоящее время выпускаются приборы, определяющие рН, напряжение СO 2 и O 2 крови; расчеты производятся микрокомпьютером, входящим в состав прибора.

РЕАКЦИЯ КРОВИ

Реакция среды определяется концентрацией водородных ионов (рН). Активная реакция крови человека – величина, отличающаяся высоким постоянством. рН крови слабощелочная – 7,36(венозная)-7,42(артериальная).

Ацидоз – сдвиг реакции в кислую сторону (влево). Наблюдается угнетение ЦНС

Алкалоз – сдвиг реакции в щелочную сторону (вправо). Наблюдается перевозбуждение нервной системы, отмечается появление судорог.

Поддержание постоянства реакции крови обеспечивается буферными системами , которые нейтрализуют значительную часть поступающих в кровь кислот и щелочей и препятствуют сдвигу активной реакции крови:

ФОРМЕННЫЕ ЭЛЕМЕНТЫ КРОВИ подразделяются на:

  1. эритроциты
  2. лейкоциты
  3. тромбоциты

ЭРИТРОЦИТЫ (норма4 -5 *10в12/л) анемия (ниже нормы), эритроцитоз (выше нормы).

Эритроциты – высокоспециализированные клетки крови без ядра. Количество эритроцитов изменяется под воздействием фактров окружающей среды (мышечная работа, эмоции, суточные и сезонные колебания и т.д.).

Функции эритроцитов:

  • дыхательная – за счет гемоглобина
  • питательная – адсорбирование на поверхности аминокислот и перенос их к клеткам организма;
  • ферментативная – они являются носителями разнообразных ферментов
  • регуляция рН крови – гемоглобиновый буфер.

Гемоглобин – сложное химическое соединение, состоящее из белка глобина и четырех молекул гемма. Молекула гемма содержит атом железа и обладает способностью присоединять или отдавать молекулу кислорода.

Нормальное содержание гемоглобина – 120 – 160 г/л.

Живут до 120 дней . Образуются в красном костном мозге.

Гемолиз – разрушение эритроцита, выход гемоглобина через измененную оболочку и появление его в плазме.

Вне организма гемолиз может быть:

осмотический (гипертонический раствор)

Механический (встряхивание)

Химический (кислоты-щёлочи)

В организме:

в норме при отмирании старых эритроцитов – наблюдается только в печени, селезенке.

при патологии при укусе ядовитых змей, множественных укусах пчел, переливании несовместимой крови.

При нахождении крови в вертикально расположенной пробирке наблюдается оседание эритроцитов вниз. Скорость оседания эритроцитов (СОЭ) выражается в миллиметрах высоты столба плазмы над эритроцитами за единицу времени. CОЭ у мужчин в норме составляет 5-10 мм/час, у женщин – 8-20 мм/час. Повышение при беременности, воспалительных и злокачественных заболеваниях,

4. изменение онкотического давления

6. Гомеостаз - это:

1. разрушение эритроцитов

2. соотношение плазмы крови и форменных элементов

3. образование тромба

Постоянство показателей внутренней среды

7. К функциям крови не относится

1. трофическая

2. защитная

Синтез гормонов

4. дыхательная

8. Количество минеральных веществ в плазме крови равно:

3. 0,8-1 %

9. Ацидоз это:

1. сдвиг реакции крови в кислую сторону

2. сдвиг реакции крови в щелочную сторону

3. изменение осмотического давления

4. изменение онкотического давление.

10. Количество крови в организме:

1. 6-8 % от веса тела

2. 1-2 % от веса тела

3. 8-10 литров

4. 1-2 литра

11. Вязкость крови это взаимодействие:

1. эритроцитов с солями плазмы

Клеток крови и белков между собой

3. клеток сосудистого эндотелия

4. кислот и оснований в плазме крови

12. Белки плазмы крови не выполняют функцию:

1. защитную

2. трофическую

Транспорт газов

4. пластическую

13. Физиологический раствор это:

1. 0,9 % NaCl

14. Укажите бикарбонатный буфер:

1. NaH 2 PO 4 3. HHb

Na 2 HPO 4 KHbO 2

2. H 2 CO 3 4. Рt CООН

NaHCO 3 NН 2

15. Гематокрит в норме равен:

4. 40-45 %

16. Вязкость крови зависит от:

Количества белков и клеток крови

2. кислотно-основного состояния

3. объема крови

4. осмотичности плазмы

17. Гемолиз происходит в растворе:

1. гипертоническом

Гипотоническом

3. изоионическом

4. физиологическом

18. Онкотическое давление крови определяет обмен воды между:

Плазмой крови и тканевой жидкостью

2. плазмой крови и эритроцитами

3. кислотами и основаниями плазмы

4. эритроцитами и лейкоцитами

19. Наибольшей буферной емкостью обладает буфер:

1. карбонатный

2. фосфатный

Гемоглобиновый

4. белковый

20. Основными органами депо крови являются:

1. кости, связки

Печень, кожа, селезенка

3. сердце, лимфатическая система

4. центральная нервная система

21. Вязкость и плотность цельной крови раны:

3. 5 и 1,05

22. Плазмолиз эритроцитов происходит в растворе:

Гипертоническом

2. гипотоническом

3. физиологическом

4. изоионическом

23. Активная реакция крови определяется соотношением:

1. лейкоцитов и эритроцитов

Кислот и оснований

3. минеральных солей

4. фракций белков

24. Осмотическое давление крови это сила:

1. взаимодействия форменных элементов друг с другом

2. взаимодействие клеток крови со стенкой сосудов

Обеспечивающая движение молекул воды через полупроницаемую мембрану

4. обеспечивающая движение крови

25. В состав гистогематического барьера входит:

1. только ядро клетки

2. только митохондрии клетки

3. мембрана митохондрий и включений

Мембрана клетки и сосудистая стенка

26. Относительное, динамическое постоянство внутренней среды называется:

1. гемолиз

2. гемостаз

Гомеостаз

4. гемотрансфузия

27. К белкам плазмы крови не относятся:

1. альбумины

2. глобулины

3. фибриноген

Гемоглобин

28. Активная реакция крови (рН) в норме равна:

29. Изоионический раствор содержит вещества, соответственно их количеству в крови:

Минеральные соли

2. эритроциты

3. лейкоциты

30. В состав внутренней среды не входят следующие жидкости:

3. межклеточная жидкость

4. пищеварительные соки

31. Как называется снижение количества эритроцитов?

1. эритроцитоз

Эритропения

3. эритрон

4. эритропоэтин

32. Основная функция Т-киллеров - это:

Фагоцитоз

2. образование антител

3. уничтожение чужеродных клеток и антигенов

4. участие в регенерации тканей

33. Процентное содержание эозинофилов ко всем лейкоцитам в крови составляет:

34. Какой тип гемоглобина у человека не существует?

1. примитивный

2. фетальный

3. взрослый

Животный

35. Функции Т – лимфоцитов:

1. обеспечивают гуморальные формы иммунного ответа

Отвечают за развитие клеточных иммунологических реакций

3. участие в неспецифическом иммунитете

4. выработка гепарина, гистамина, серотонина

36. Для определения СОЭ используют:

1. гемометр Сали

2. камеру Горяева

Аппарат Панченкова

4. фотоэлектроколориметр (ФЭ

37. Цветовым показателем крови называется:

1. отношение объема эритроцитов к объему крови в %

2. отношение содержания эритроцитов к ретикулоцитам

Относительное насыщение эритроцитов гемоглобином

4. отношение объема плазмы к объему крови

38. Что понимают под лейкоцитарной формулой?

Процентное соотношение отдельных форм лейкоцитов

2. процентное соотношение количества лейкоцитов к эритроцитам

3. процентное соотношение всех форменных элементов крови

4. процентное соотношение базофилов и моноцитов

1. у мужчин и женщин 4,0 -9,О х 10 9 /л

2. у мужчин 5,0- 6,0, у женщин 3,9-4,7 х 10 12 /л

3. у мужчин и женщин 18О-32О х 1О 9 /л

4. у мужчин 4,5-5,0, у женщин 4,0-4,5х10 12 /л

40. Как называется соединение гемоглобина с кислородом:

1. карбгемоглобин

Оксигемоглобин

3. метгемоглобин

4. карбоксигемоглобин

41. Функции нейтрофилов:

1. фагоцитируют гранулы тучных клеток

Микрофаги, первые приходят в очаг поражения

3. синтезируют гепарин, гистамин, серотонин

4. транспортируют газы крови

42. Уменьшение количества лейкоцитов называется

1. лейкоцитоз

Лейкопения

3. лейкоцитурия

43. Лимфоциты наиболее важную роль играют в процессе:

1. свертывания крови

2. гемолиза

3. фибринолиза

Иммунитета

44. Нормальный показатель СОЭ:

Мм/ч у женщин, 3-9 мм/час у мужчин

2. 15-20 мм/ч у мужчин, 1-10 мм/ч у женщин

3. 3-25 мм/ч у женщин, 2-18 мм/ч у мужчин

4. 13-18 мм/ч у женщин, 5-15 мм/ч у мужчин

45. Этот элемент содержится в гемоглобине:

Железо

46. Количество базофилов в крови составляет:

1. 14 – 16г %

2. 0,5 – 1 % от всех видов лейкоцитов

3. 4 – 10 9 /л

4. 60 – 70 % от всех видов лейкоцитов

47. Увеличение количества лейкоцитов называется:

1. лейкопения

Лейкоцитоз

3. лейкоцитурия

48. Количество нейтрофилов в крови взрослого человека составляет:

1. 6-8 % всех лейкоцитов

2. 45-75 % всех лейкоцитов

3. 1-2 % всех лейкоцитов

4. 25-30 % всех лейкоцитов

49. Какие лейкоциты обладают наиболее выраженным фагоцитозом:

1. базофилы

2. эозинофилы

Моноциты

4. лимфоциты.

50. К физиологическим соединениям гемоглобина относится все, кроме:

1. дезоксигемоглобин

2. оксигемоглобин

Метгемоглобин

4. карбгемоглобин

51. Что отражает цветовой показатель?

1. степень диссоциации оксигемоглобина



© dagexpo.ru, 2024
Стоматологический сайт