Химический состав пищевых продуктов. Сборник тематических статей о здоровом питании. Краткая характеристика основных пищевых продуктов

08.03.2019

Итак, для того, чтобы бесперебойно работало схема производитель - качественный продукт – реализация через предприятия по торговле – потребитель. Необходимо комплексное исследование продуктов, до того как они дойдут до потребителя. Комплексное исследование возможно лишь на основе использование современных методов анализа, позволяющих изучить структуру вещества входящих в состав каждого продукта и сделать объективную оценку его состава и свойств.

Коротко вспомним состав пищевых продуктов, это основные вещества: белки, углеводы, минеральные вещества, витамины.

Белки – ценные, незаменимые компоненты пищи. Попадая в организм, расщепляются под действием ферментов до аминокислот, из которых организм синтезирует необходимые для организма аминокислоты, белки, ферменты и др. 8 аминокислот не синтезируются организмом, а попадают только с пищей. Их называют незаменимыми: изолейцин, лейцин, лизин, метионин, фенилаланил, триптофан, трионин, валин. Организм грудных детей не синтезирует гистидин и цистин – поэтому они считаются частично незаменимыми. При дефиците этих аминокислот в пище происходит глубокие нарушения обмена веществ и жизнедеятельности.

Поэтому продукты по содержанию в них этих аминокислот в белке бывают полноценными и неполноценными. Белок животный пищи ближе к нам и усваивается лучше, чем растительный белок (белок яиц и молока-96%, хлеба, муки-85, овощей-80%, картофеля, бобовых-70%).

Избыток, также вреден, т.к. при распаде образуется вещества азотсодержащие, которые создают нагрузки на почки и печень при их выведении, а также откладывается в виде отложение солей в суставах на внутренних органах.

Норма потребления белка для молодых и взрослых мужчин и женщин 1-1,5г в день на 1кг массы тела. А уже на качество белка влияет тепловая или технологическая обработка сырья и пищевых продуктов.

Жиры - их роль не только энергетическая, но и строительная т.к. они являются необходимым компонентом клеток, а также источником жирорастворимых витаминов. Содержат биологически активные добавки - ненасыщенные жирные кислоты, фосфолипиды, стерины. Об их роли вы достаточно много изучили в физиологии питании, суточное потребление – в среднем 107г

Углеводы – это простые и сложные сахара. Глюкоза, фруктоза, лактоза, крахмал, гликоген, клетчатка, пектин. Главный и более безвредный источник энергии, выполняет функцию питания клеток при получении энергии, а также источник глубоких пищевых волокон имеющих большое значение при ряде заболеваний желудочно-кишечного тракта и в профилактике рака. Пектин (содержится в свекле, черной смородине, яблоках, сливе) необходим при отравлении токсическими элементами т.к. выходит их из организма.


Итогом всего сказанного будет то, что в пище должно содержаться правильное соотношение белков, жиров и углеводов норма 1:1:4.

Минеральные вещества – не обладают энергетической ценностью, однако участвуют во всех жизненных функциях. Делятся минеральные вещества на макро- и микроэлементы.

Макроэлементы содержание которых в организме превышает 0,001% (Ca, P, Mg, Na, Cl, Fe, O, C, H, K, N, S) и микроэлементы содержание которых колеблется от 0,001 до 0,000011 % (Cu, Mn, Zn, Bo, Co, J, F, Cr) и ультромикроэлементы (свинец, ванадий, золото и т.д.) менее 0,000001% от общей массы организма.

Так, кальций составляет основу костей скелета, медь, железо и магний необходимы для транспортировки белков и углеводов через клеточные мембраны, железо обеспечивает перенос газов кровью. Различные минеральные вещества необходимы для нормальной свертываемости крови, обеспечения процессов возбудимости мышечной и нервной ткани... Перечислять можно еще очень и очень долго.

Все необходимые минеральные вещества наш организм получает только с пищей, поэтому они являются незаменимыми компонентами питания.

При недостатке тех или иных минеральных веществ возникают различные расстройства здоровья. К примеру, различные нарушения деятельности центральной нервной системы могут вызываться недостатком натрия, кальция, калия, фосфора, хлора, брома; дефицит йода приводит к снижению функций щитовидной железы и развитию зобной болезни. В свою очередь избыток некоторых минеральных веществ также вреден для здоровья.

Важна также сбалансированность минеральных веществ как между собой, так и с другими питательными веществами. Так, усвояемость кальция резко снижается при избытке фосфора и магния и при недостатке жира и жирорастворимых витаминов. Наиболее благоприятное соотношение фосфора, кальция и магния - 3:2:1.

Минеральными веществами богаты многие продукты как животного, так и растительного происхождения, однако в очень многих растительных продуктах содержание микроэлементов плохо (с точки зрения человеческого организма) сбалансировано. В продуктах же животного происхождения сбалансированность минеральных веществ гораздо лучше. В самом оптимальном сочетании микроэлементы содержатся в молоке и в молочных продуктах.

Витамины занимают особое место среди жизненно необходимых нам питательных веществ. Недаром само слово витамин происходит от латинского vita - жизнь.

Витамины участвуют практически во всех биохимических процессах, протекающих в нашем организме. Они необходимы для обеспечения функции желез внутренней секреции и их гормональной активности, повышения умственной и физической работоспособности, поддержания устойчивости организма к воздействию неблагоприятных факторов внешней среды (жара, холод, инфекции, интоксикации...).

Нехватка витаминов приводит к развитию таких патологических состояний, как авитаминоз и гиповитаминоз.

Авитаминоз - это самая тяжелая форма витаминной недостаточности. Авитаминозы развиваются при полном отсутствии или очень значительной нехватке того или иного витамина в пище и вызывают такие заболевания, как цинга (при недостатке витамина C), рахит и остеопороз (при нехватке витамина D), пеллагра (за нее "отвечает" витамин PP), бери-бери (витамин B1).

Гиповитаминоз, то есть незначительная нехватка витаминов, конечно же, не так страшен, как авитаминоз, но тоже не несет нам ничего хорошего. При гиповитаминозах наблюдаются такие неприятные явления, как снижение иммунитета, работоспособности, памяти, расстройство сна, плохое самочувствие и другие.

Витамины не синтезируются в нашем организме, мы получаем их извне, и главный (а правильнее сказать - единственный естественный) источник витаминов - это наша пища. (Заметим в скобках, что некоторые витамины наш организм синтезировать все же может, но только из других веществ, так называемых провитаминов, которые, опять же, мы получаем только с пищей. Так, витамин А вырабатывается человеческим организмом из вещества под названием каротин, которое в значительных количествах содержится в моркови, плодах шиповника, смородины, рябины, облепихи и ряда других растений.). Подсчитывая количество потребляемых витаминов, надо помнить, что содержание витаминов в продуктах в значительной степени зависит от способов хранения и режимов кулинарной обработки. Так, некоторые витамины практически полностью разрушаются в течение нескольких минут при температуре 80-100 градусов. То есть при обычной варке на маленьком огне.

При полноценном, сбалансированном питании мы получаем с пищей все витамины в достаточном количестве. Применение витаминных препаратов бывает необходимо в зимне-весенний период, в других случаях, когда в пище содержится мало витаминов (питание больных, находящихся на строгой диете, питание в крайних климатических зонах и т.д.), а также в случаях повышенной потребности витаминов при некоторых физиологических состояниях (усиленный рост в детском и подростковом возрасте, беременность, лактация, некоторые болезни).

Токсиканты. В условиях, сложившихся в наше время, в месте с продуктами питания человек постоянно употребляет в пищу различные микрокомпоненты, которые могут оказывать неблагоприятный эффект на организм, будучи накоплены или употреблены в относительно повышенных количествах. Рассмотрим некоторые такие вещества.

Во-первых, в их число входят так называемые природные токсиканты. К ним относятся натуральные, присущие данному виду продукта, образующиеся в ходе самого роста биологически активные вещества, которые, при условии возникновения определенных обстоятельств, могут вызвать токсический эффект.

Ко второму типу относятся "загрязнители", т.е. токсичные вещества, которые поступают в пищевые продукты из окружающей среды из-за различных нарушений технологии выращивания, производства или хранения продуктов, а также других причин, к которым можно отнести загрязнение среды, плохую экологию и техногенные загрязнения.

В число природных токсикантов входят такие вещества, как биогенные амины, некоторые алкалоиды, цианогенные гликозиды, кумарины и др.

Пищевые добавки. История применения пищевых добавок насчитывает тысячелетия. Первоначально это были всем известные специи – соль, сахар, уксус. С развитием химической и пищевой промышленности в наш обиход вошло великое множество пищевых добавок, которые на этикетках продуктов обозначаются буквенные кодом Е.

Современные пищевые добавки выполняют две главные задачи:

· увеличивают срок хранения продуктов питания, что необходимо для их транспортировки в разные уголки земного шара;

· придают продуктам питания необходимые и приятные свойства – красивый цвет, привлекательный вкус и аромат, густую консистенцию.

По мнению производителей продуктов питания, в современных условиях невозможно обойтись без применения пищевых добавок для производства вкусных и красивых продуктов с длительным сроком хранения. Сейчас в пищевой промышленности используется около 500 различных пищевых добавок, а в сочетании друг с другом их становится в несколько раз больше.

Каждой пищевой добавке присвоен трех- или четырехзначный номер с предшествующей буквой Е.

Для изучения потребительских свойств продовольственных товаров и процессов, происходящих в них на стадии производства и хранения, необходимо знать химический состав товаров.

Химический состав продовольственных товаров необходимо знать для организации рационального питания человека, т.е. потребления пищи, сбалансированной по качественному и количественному составу.

Все вещества, входящие в состав пищевых продуктов, делят на две группы: неорганические и органические.

К неорганическим веществам относят воду и минеральные (зольные) элементы. Основными веществами органического происхождения являются белки, жиры и углеводы. Органические вещества делят на нерастворимые и растворимые в воде.

Вода составляет основную массу тела человека, животных, растений и микроорганизмов. Так, в организме взрослого человека содержится 58-67% воды, что составляет в среднем 2/3 массы его тела. Суточная потребность взрослого человека в воде обычно составляет 2,5-3,0 л, или 40 г на 1 кг массы его тела, у грудных детей - в 3-4 раза больше.

В продовольственных товарах вода находится в двух формах: свободной и связанной. Свободная вода представляет собой либо клеточный сок, либо мельчайшие капли, находящиеся в массе и на поверхности продукта, либо влагу, удерживаемую макро- и микрокапиллярами продукта. Связанная вода прочно соединена с химическими веществами продукта. В растительных и животных тканях преобладает свободная вода.

При переработке и хранении пищевых продуктов вода может переходить из одной формы связи в другую, что обусловливает изменение их свойств. Так, при производстве мармелада, желе, пастилы, выпечке хлеба свободная вода переходит в связанную, при оттаивании мороженого мяса, черствении хлеба наблюдается обратное явление, т.е. связанная вода переходит в свободную.

Продовольственные товары различаются по содержанию воды. Так, в зерне и муке содержится 12-15% воды, сахаре - 0,15-0,40, в хлебе печеном-23-48, рыбе - 62-84, плодах свежих - 75-90, молоке - 87-90, овощах-85-95%.

Минеральные вещества. Минеральные (зольные) элементы находятся в пищевых продуктах в виде органических и неорганических соединений. Они входят в состав многих органических веществ различных классов - белков, жиров, гликозидов, ферментов и др.

Минеральные элементы, входящие в состав пищевых продуктов, условно делят на три группы: макроэлементы, микроэлементы и ультрамикроэлементы. .

Макроэлементы содержатся в пищевых продуктах в количестве более 1 мг на 100 г продукта. К ним относятся калий, натрий, кальций, магний, фосфор, хлор, железо и др.

Ультрамикроэлементы содержатся в микрограммах и менее на 100 г продукта (радий, олово, свинец, ртуть и др.).

Кальций в организме человека находится в составе костной ткани и зубов (около 99%). Он активизирует деятельность ряда важных ферментов, участвует в поддержании ионного равновесия в организме, влияет на процессы, протекающие в нервно-мышечной и сердечно-сосудистой системах, участвует в регуляции работы нервной ткани, в обмене углеводов и энергетическом обмене.

Усвоение кальция уменьшается при содержании в рационе большого количества жиров, фитиновых кислот (злаковые культуры), фосфатов, щавелевой кислоты (щавель, шпинат), что необходимо учитывать при составлении рационов для людей, нуждающихся в повышенном потреблении кальция.

Магния в организме человека содержится в 30-35 раз меньше, чем кальция. Магний регулирует процессы нейромышечной возбудимости, участвует в углеводном и фосфорном обмене, оказывает сосудорасширяющее действие, предотвращает образование камней в почках. Большая часть магния находится в костной ткани. Магний содержится в наибольших количествах в зернобобовых продуктах.

Фосфор и его соединения участвуют во всех процессах жизнедеятельности организма, но особое значение они имеют для обмена веществ и выполнения функций нервной и мозговой тканей, мышц, печени, в образовании костной ткани, ферментов, гормонов. Фосфор содержится в зерновых и бобовых культурах, однако в этих продуктах соединения фосфора (фитина) плохо усваиваются. Замачивание круп и бобовых перед кулинарной обработкой, а также выпечка хлеба улучшают усвоение фосфора.

Натрий встречается в пищевых продуктах, особенно животного происхождения. Он играет важную роль в процессах внутриклеточного и межтканевого обменов в регулировании водного обмена организма. Пищевые продукты с повышенным содержанием соли: соленая, копченая рыба, мясные копчености, сырокопченые колбасы, соленые огурцы и т.д. Среднее содержание натрия в квашеной капусте, хлебе ржаном, сыре, соленом масле и др.

Калий участвует в ферментативных реакциях, регуляции водно-солевого обмена, осмотического давления, кислотно-щелочного баланса организма, выведения из организма избытка воды и натрия. Источники калия - курага, картофель, капуста, морковь, яблоки, говядина, яйца, рыба, фасоль, хлеб.

Железо широко распространено в природе. Почти все естественные пищевые продукты содержат железо, но в малых количествах.

В организме человека и животных железо входит в состав важнейших органических соединений - гемоглобина крови, миоглобина, некоторых ферментов - каталазы, пероксидазы, цитохромоксидазы и др.

Железо, входящее в состав плодов и овощей, хорошо усваивается организмом человека, тогда как большая часть железа зерновых продуктов находится в неусвояемой для организма форме.

Хлор входит в состав естественных пищевых продуктов также в небольших количествах. Продукты растительного происхождения содержат мало хлора, а животного - несколько больше. Основной источник хлора - хлористый натрий, который добавляется в пищу в виде соли.

Сера входит в состав почти всех белков организма человека и особенно ее много в аминокислотах. В наибольших количествах содержится в продуктах из хлебных злаков, бобовых, молочных продуктах, мясе, рыбе и особенно в яйцах.

Йод участвует в синтезе йодосодержащего белка щитовидной железы - тироглобулина, в образовании ее гормонов (тироксина, трийодтироксина).

В организме здорового человека массой 70 кг йода содержится примерно 25 мг. Половина этого количества находится в щитовидной железе, а остальная часть - в мышечной и костной тканях, крови. Йод быстро усваивается щитовидной железой и через несколько часов после поступления в нее превращается в органические соединения. При поступлении в организм с пищей недостаточного количества йода нарушается деятельность щитовидной железы и развивается тяжелое заболевание, называемое эндемическим зобом. Наиболее высоким содержанием йода отличаются говядина, яйца, масло, фрукты. Морская капуста, морская рыба и рыбий жир содержат наибольшее количество йода.

Фтор играет важную роль в образовании костной ткани и зубной эмали.

Недостаток фтора часто оказывает влияние на развитие кариеса. Избыток же фтора в воде вызывает заболевание флюороз, при котором нарушается нормальное строение зубов, на эмали появляются пятна и увеличивается хрупкость зубов. От недостатка или избытка фтора особенно страдают дети.

Медь наряду с железом играет важную роль в кроветворении, стимулирует окислительные процессы и тем самым связана с обменом железа.

Небольшие количества меди, содержащиеся в естественных продуктах, не приносят организму человека вреда. Но повышенное количество меди может вызвать отравление. Поэтому содержание меди в пищевых продуктах регламентируется нормативной документацией.

Цинк содержится во всех тканях животных и растений. При недостатке цинка в организме молодых животных задерживается их рост. Цинк в продовольственных товарах в повышенных количествах может служить причиной отравлений. Кислые и жировые продукты растворяют его, и поэтому приготовление или хранение пищевых продуктов в цинковой посуде недопустимо.

Селен является сильным антиоксидантом, препятствует возникновению злокачественных опухолей. Источники селена - продукты моря (креветки, крабы, лангусты), печень, сердце, почки, желток яиц, отруби, томаты, чеснок.

Свинец является ядовитым для человека металлом, обладает способностью аккумулироваться в организме, главным образом в печени, и вызывать тяжелые хронические отравления. Встречается в животных и растительных продуктах в очень малых количествах. Из-за большой ядовитости содержание свинца в пищевых продуктах строго нормируется.

Олово в пищевых продуктах обнаруживается в незначительных количествах. Оно менее вредно, чем свинец, медь. Олово используется для лужения жести, предохраняет ее от коррозии. Для усиления защиты жестяной консервной банки от коррозии на поверхность олова дополнительно наносят специальные кислотоустойчивые лаки или эмаль либо создают на поверхности жести тонкую пленку устойчивых окислов олова.

Марганец широко распространен в продуктах животного и растительного происхождения. Он принимает активное участие в образовании многих ферментов, формировании костей, процессах кроветворения и стимулирует рост. В растениях марганец усиливает процесс фотосинтеза и образования аскорбиновой кислоты. Растительные продукты в большинстве случаев богаче марганцем, чем животные. Источники марганца - злаковые продукты, листовые овощи, чай, плоды и овощи. .

Радиоактивные изотопы присутствуют в организме человека, они непрерывно поступают и выводятся из организма. Во всех пищевых продуктах содержатся радиоактивные изотопы калия (K 4 0 ), углерода (С 12), водорода (Н 2), а также радия с продуктами его распада. Наибольшая концентрация приходится на калий (К 40). Радиоактивные изотопы участвуют в обмене веществ наряду с нерадиоактивными. Для контроля радиационной безопасности пищевых продуктов устанавливаются предельно допустимые концентрации (ПДК) радиоактивных изотопов кобальта, цезия и стронция, а также радионуклидов.

Мышьяк как элемент в чистом виде ядовит только в больших концентрациях. Однако его соединения, такие как мышьяковистый ангидрид, арсениты и арсенаты, сильно токсичны. Источниками загрязнения мышьяком являются медеплавильные заводы, электростанции, использующие бурый уголь.

Углеводы - органические соединения, состоящие из углерода, водорода и кислорода. Образуются они при фотосинтезе в зеленых листьях растений из углекислого газа воздуха и получаемой из почвы влаги.

Потребность человека в углеводах составляет 400-- 500 г в сутки, но при тяжелой физической нагрузке она может повыситься в 2--3 раза.

В состав пищевых продуктов чаще всего входят следующие углеводы: из моносахаридов - пентозы (арабиноза, ксилоза, рибоза) и гексозы (глюкоза, фруктоза, галактоза); из полисахаридов первого порядка (олигосахариды) -дисахариды (сахароза, мальтоза, лактоза, трегалоза) и трисахариды (рафиноза); из полисахаридов второго порядка (полиозы) - пентозаны (арабан, ксилан), гексозаны (крахмал, инулин, гликоген, клетчатка, или целлюлоза) и пектиновые вещества.

Моносахариды и полисахариды первого порядка имеют сладкий вкус, поэтому их называют сахарами.

Гексозы в пищевых продуктах представлены главным образом глюкозой, фруктозой и галактозой. Гексозы обладают восстанавливающими свойствами.

Глюкоза (декстроза, виноградный сахар) широко распространена в природе; ее находят в листьях, плодах, овощах, семенах растений, меде и т.д. Остатки глюкозы входят также в состав молекул многих более сложных соединений - сахарозы, крахмала, клетчатки, гликозидов, некоторых протеидов и др. Глюкозу широко применяют в кондитерской промышленности, медицине, а также для получения аскорбино-вой кислоты (витамина С).

Фруктоза (левулеза, плодовый сахар) распространена в растениях так же часто, как и глюкоза. Около 35% фруктозы содержится в меде. Она получается путем гидролиза инулина под действием серной кислоты.

Галактоза в свободном виде в природе не встречается. Она входит в состав олигосахаридов - лактозы, рафинозы, а также высокомолекулярных полисахаридов - агар-агара, различных гуми и слизей, гемицеллюлоз, пектиновых веществ. Галактоза получается гидролизом лактозы, сбраживается только лактозными дрожжами.

К полисахаридам первого порядка относятся дисахариды и трисахариды.

Дисахариды построены из остатков двух молекул моносахаридов.

Сахароза (свекловичный или тростниковый сахар) представляет собой глюкозофруктозид. В некоторых растениях она может накапливаться в больших количествах. Так, в сахарной свекле сахарозы содержится до 24%, меньше в бананах, сливах, дынях, яблоках, моркови. Хорошо очищенный сахар более чем на 99% состоит из сахарозы.

Под действием ферментов, кислот сахароза гидролизуется (расщепляется) на глюкозу и фруктозу. Смесь равных количеств глюкозы и фруктозы после гидролиза называется инвертным сахаром.

Мальтоза (солодовый сахар) в свободном виде в природе не встречается, а образуется в качестве промежуточного продукта при гидролизе крахмала под действием фермента амилазы (диастазы) или кислот. При гидролизе мальтозы образуется глюкоза.

Лактоза (молочный сахар) имеется в молоке млекопитающих.

Под влиянием молочнокислых бактерий лактоза сбраживается в молочную кислоту. На этом свойстве лактозы основано получение кисломолочных продуктов.

Трегалоза (грибной сахар) содержится в пекарских дрожжах, грибах, некоторых водорослях.

Из трисахаридов в продуктах встречается рафиноза.

Рафиноза (мелитриоза) находится во многих растениях: в сахарной свекле, семенах хлопчатника, сои, гороха и др. При производстве свекловичного сахара рафиноза переходит в побочный продукт, называемый мелассой.

Полисахариды второго порядка встречаются преимущественно в растениях, некоторые их них (целлюлоза, гемицеллюлозы, протопектин) образуют в растениях опорные ткани, а другие (крахмал, инулин) служат в растениях запасными веществами. Полисахарид гликоген, называемый животным крахмалом, в организме человека и животных является запасным веществом.

Крахмал в растениях находится в виде крахмальных зерен, различающихся по свойствам и химическому составу как в одном и том же растении, так и в разных растениях. Он откладывается в качестве запасного вещества в клубнях, корнях, плодах и других частях растений.

Наиболее богаты крахмалом зерна злаковых. Так, содержание крахмала в пшенице достигает 70% , во ржи -05, кукурузе - 75, рисе - 80, картофеле - 24% .

Крахмальные зерна имеют различную форму и размер, характерные для отдельных растений. По форме зерен под микроскопом можно определить природу крахмала.

Инулин содержится в клубнях земляной груши, корнях цикория - 15-17%.

При кислотном гидролизе или под действием фермента инулазы инулин превращается в фруктозу.

Гликоген (животный крахмал) близок по строению к амилопектину, содержится в различных тканях человека и животных, а также в грибах, дрожжах, зерне кукурузы. В печени человека содержание гликогена достигает 20%, он служит запасным веществом.

При гидролизе гликоген, подобно крахмалу, превращается сначала в декстрины, затем в мальтозу и глюкозу.

Клетчатка является главнейшей структурной частью клеточных стенок хлорофиллоносных растений.

Пищевые растения и продукты их переработки содержат мало клетчатки. При полном гидролизе крепкой серной или соляной кислотой из клетчатки образуется глюкоза.

В пищеварительном тракте человека не вырабатываются ферменты, которые могли бы подвергать клетчатку гидролизу. Однако многие микроорганизмы способствуют расщеплению клетчатки до простейших составных частей. Такие микроорганизмы широко встречаются в природе, особенно они активны в кишечнике животных.

Клетчатка усиливает перистальтику кишечника и тем самым способствует прохождению пищевых масс через кишечный тракт. Она обладает свойством выводить из организма холестерин, в результате чего у человека задер-живается развитие атеросклероза.

Гемицеллюлозы (полуклетчатка) объединяют большую группу высокомолекулярных полисахаридов, не растворимых в воде, но растворимых в слабых растворах щелочей и легкогидролизуемых под влиянием слабых кислот. При гидролизе кислотами гемицеллюлозы обра-зуют маннозу, галактозу, арабинозу или ксилозу. Гемицеллюлозы сопутствуют клетчатке и находятся в семенах, орехах, кожице плодов и овощей, оболочках зерна, древесине и др.

Пектиновые вещества в отличие от крахмала, клетчатки и других полисахаридов второго порядка построены из остатков галактуроновой кислоты, являющейся продуктом окисления глюкозы. Они широко распространены в плодах, ягодах, овощах, листьях и др. Пектиновые вещества неоднородны и встречаются в виде протопектина, пектина, пектиновой и пектовой кислот.

Важным свойством пектиновых веществ является их способность в присутствии сахара и кислот образовывать студни, что используется в производстве кондитерских изделий (варенья, джемов, желе, мармелада, пастилы).

Липиды (жиры). По происхождению жиры делят на растительные и животные. Растительные жиры, называемые маслами, делят на твердые и жидкие. К твердым относят масло какао, кокосовое и пальмовое. Жидкие растительные масла в зависимости от свойств делят на невысыхающие (оливковое, миндальное и др.), полувысыхающие (подсолнечное, хлопковое и др.) и высыхающие (льняное, конопляное и др.). Животные жиры также подразделяют на жидкие и твердые. Различают жидкие животные жиры наземных животных (копытный жир) и жидкие жиры морских животных и рыб (рыбий жир, жир печени китовых). К животным твердым жирам относятся говяжий, бараний, свиной жир, а также коровье масло.

Жидкие растительные жиры с помощью катализаторов могут превращаться в твердые путем насыщения водородом непредельных жирных кислот. Процесс этот носит название гидрогенизации. Гидрогенизированные жиры широко используют в пищевой промышленности для получения маргарина. Жиры способны растворять некоторые ароматические вещества. Поэтому при складировании с продуктами, имеющими запах (соленая рыба, сыры, копчености и др.), жиры могут приобретать несвойственный им запах.

Потребность в жирах зависит от возраста, характера работы, климатических условий и других факторов, но в среднем в сутки взрослому человеку необходимо от 80 до 100 г жиров. Из этого количества не менее 20-30 г должны составлять жиры растительные, 25-30 г - молочный жир, а остальное - другие пищевые жиры.

Белки - наиболее сложные из азотсодержащих соединений. Они являются важнейшими частями животных и растительных клеток. С белками связаны процессы обмена в организмах, способность к росту и размножению, защитная функция, создание опорных тканей - соединительных, хрящевых и костных, образование гормонов, антител, ферментов, участие в формировании клеточного субстрата.

Белки делят на простые (протеины) и сложные (протеиды). К простым относят белки, которые при гидролизе дают только аминокислоты, к сложным - белки, состоящие из простых белков и соединений небелковой группы, называемой простетической.

Простые белки - альбумины, глобулины, проламины, глютелины, протамины, гистоны, склеропротеины.

Сложные белки - фосфопротеиды, гликопротеиды, липопротеиды, хромопротеиды и нуклеопротеиды.

Все белки пищевых продуктов условно делят на полноценные и неполноценные.

Полноценными называют белки, которые будучи введены в организм с пищей в достаточном количестве, способны поддерживать жизнедеятельность и нормальное развитие организма. Такие белки содержат в необходи-мом количестве все незаменимые аминокислоты. Примером полноценных белков могут служить казеин молока и яичный альбумин.

Неполноценными называют белки, которые не содержат хотя бы одну из незаменимых аминокислот. Наличие в пище только какого-либо одного неполноценного белка приводит к нарушению обмена веществ.

Растительные белки усваиваются хуже, чем животные, потому что в клетках растений они защищены клетчаткой и другими соединениями.

Ферменты -- это белковые вещества, которые вырабатываются только живыми клетками и ускоряют реакции в организмах, т. е. являются биокатализаторами.

Роль ферментов для организма человека велика, так как под их действием происходят все жизненные процессы - дыхание, пищеварение, образование тканей, обмен веществ и др.

Витамины -- это биологически активные вещества, обеспечивающие нормальное течение биохимических и физиологических процессов в организме.

Отсутствие или недостаток витаминов в пище даже при наличии в ней необходимого количества углеводов, жиров, белков и минеральных элементов вызывает в организме глубокие нарушения в процессах обмена веществ, вследствие чего возникают заболевания, называемые авитаминозами. При недостатке в пище какого-либо одного витамина возникает заболевание, известное под названием гиповитаминоз. Чрезмерное поступление в организм некоторых витаминов может вызвать заболевание, называемое гипервитаминозом. Суточная потребность организма в различных витаминах составляет всего 0,1-0,2 г.

Все витамины классифицируют на две большие группы по их растворимости в жирах и воде.

К витаминам, растворимым в жирах, относят следующие: А-ретинол; D-кальциферол; Е-токоферол; К-филлохинон.

Витамины, растворимые в воде: С - аскорбиновая кислота, Р - биофлаваноиды, В 1 - тиамин, В 2 - рибофлавин, В 6 - пиридоксин, В 12 - цианокобаламин, РР - никотиновая кислота, В 9 - фолиевая кислота, В 15 - пангамовая кислота, В 3 - пантотеновая кислота, ПАБ - параамино-бензойная кислота, Н - биотин и др.

Полиненасыщенные жирные кислоты - линолевую, линоленовую и арахидоновую, а также оротовую и липоевую кислоты, холин и витамин U относят к витаминоподобным веществам. Эти вещества не обладают всеми свойствами, характерными для витаминов, и потребность в них намного превышает нормы потребления витаминов. Так, суточная потребность в полиненасыщенных жирных кислотах составляет 8-10 г.

Химический состав пищевых продуктов.

Химические свойства продовольственных товаров обусловлены составом и свойствами веществ, входящих в их структуру. Все химические вещества продовольственных товаров делятся в зависимости от различных классификационных признаков.

По химической природе химические вещества подразделяются на неорганические и органические. Органические вещества – вещества, обязательными элементами которых являются углерод и водород. Неорганические вещества – вещества минерального происхождения или вода, характеризующиеся отсутствием комплексов элементов углерода и водорода.

По усвояемости химические вещества подразделяются на усвояемые, неусвояемые и трудноусвояемые. Усвояемые вещества – вещества, легко вовлекаемые в обмен других веществ организма человека. Они обеспечивают жизнедеятельность человека. К ним относятся сахара, крахмал, большинство белков, липиды, витамины и др. Неусвояемые вещества – вещества, которые не перевариваются организмом человека и выводятся из него. Однако большая часть неусвояемых веществ обладают свойствами абсорбента и выводят из организма некоторые загрязнители. К таким веществам относятся гемицеллюлоза, пектиновые вещества, клетчатка и др. Трудноусвояемые вещества – вещества, которые используются организмом человека лишь частично из-за плохой усвояемости. Такие вещества относятся к питательным, но поскольку они труднодоступны для ферментов желудочного сока и не полностью расщепляются на составные части, неусвояемая часть выводится из организма. К таким веществам относятся белки соединительной ткани мяса – эластин и коллаген, жиры с высокой температурой плавления и др.

По полезности химические вещества подразделяют на питательные, балластные и вредные. Питательные вещества – вещества, обладающие полезностью для организма человека благодаря вовлечению их в процессы жизнедеятельности. Именно питательные вещества удовлетворяют основные физиологические потребности человека. Балластные вещества – вещества, не вовлекаемые в обмен веществ организма человека, но выводящие из него различные загрязнители. Вредные вещества – вещества-загрязнители, наносящие вред здоровью и жизни человека. Вредные вещества подразделяют на токсичные и ксенобиотики. Токсичные вещества наносят вред здоровью человека только при превышении предельно допустимых норм (мышьяк, медь, железо, цинк, антибиотики и др.), ксенобиотики – опасные, чужеродные для организма вещества (хлор- и ртутьорганические соединения, микотоксины, афлотоксины, радионуклиды и др.).

По происхождению химические вещества подразделяются на природные, искусственные и синтетические. Природные вещества – вещества, образующиеся в результате природных процессов или жизнедеятельности биологических организмов. Эта группа является преобладающей в пищевых продуктах. Искусственные вещества – вещества, образующиеся при химических реакциях в процессе производства пищевых продуктов. Многие из них формируют новые потребительские свойства готовой продукции. К ним относятся переэтирифицированные жиры, искусственные красящие вещества (меланоиды, карамелины, флабофены и др.). Синтетические вещества – вещества, специально синтезируемые и используемые в качестве добавок для улучшения органолептических или лечебно-профилактических свойств пищевых продуктов.

Изучим химические вещества по их химической природе.

К неорганическим веществам относятся вода и минеральные вещества, которые подразделяются на отдельные виды и формы.

Вода в продуктах питания содержится в двух формах: свободной и связанной. Свободная вода служит растворителем многих органических и неорганических веществ, средой для химических, физико-химических и микробиологических процессов, замерзает при 0°С. Связанная вода не обладает указанными свойствами и замерзает при -70°С.

Вода имеет большое значение для сохраняемости пищевых продуктов. Значительную роль при этом играет соотношение свободной и связанной воды, которое характеризует активность воды. Активность воды выражается соотношением давления водяных паров над продуктом к их давлению над поверхностью чистой воды при одной и той же температуре. Этот показатель определяет доступность воды для физических, химических, физико-химических и микробиологических процессов. Чем ниже активность воды в пищевых продуктах, тем лучше они сохраняются. Различают продукты с низкой активностью воды (менее 0,90): мука, крупа, жиры, сахар; со средней активностью (0,90 – 0,95): вареные колбасы, мясокопчености, хлеб, мороженные продукты, соленую, копченую рыбу, консервы и др.; с высокой активностью (0,95 – 1,0): плоды и овощи, алкогольные и безалкогольные напитки, молоко, охлажденные мясо и рыба и др.

1. Очень сухие товары (0,1 – 12,0% воды): сахар, соль, кондитерские товары, орехи, жиры и др.

2. Сухие товары (13 – 25%): мука, крупа, торты и пирожные, мед, масло сливочное, маргарин, сушеные товары.

3. Товары со средней влажностью (26 – 60%): хлебобулочные изделия, сыры, колбасные изделия, соленая и копченая рыба и др.

4. Товары с повышенной влажностью (61 – 90%): плоды, овощи, грибы, мясо, рыба, молоко, кисломолочные товары, соки, мороженное и др.

5. Товары с очень высоким содержанием воды (91 – 99,9%): огурцы, томаты, тыквы, свежая зелень, квашенные овощи, квас, пиво и др.

В зависимости от содержания минеральные вещества подразделяются на макро- и микроэлементы.

Макроэлементы: натрий, калий, магний, кальций, фосфор, железо, хлор, сера, бор и др. – содержатся в пищевых продуктах в значиельных количествах (от 30 до 400 мг%). Суточная потребность в них у организма человека составляет от 100 до 1200 мг.

Микроэлементы: цинк, медь, марганец, кобальт, йод, фтор, молибден, никль, хром, селен, олово, ванадий, кремний, мышьяк и др. – признаны необходимыми для обеспечения жизнедеятельности человека. Эти содержаться в пищевых продуктах и требуются организму человека в небольших количествах (от 1 до 20 мг).

Кратко рассмотрим характеристику важнейших минеральных веществ.

Натрий. Суточная потребность – 4 – 6 г. Обеспечивает осмотическое давление крови, участвует в водном обмене, в деятельности пищеварительной и нервной систем. Источники: пищевая соль, соленая, солено-сушеная, копченая рыба, мясокопчености, сыры, соленые овощи.

Калий. Суточная потребность – 3,5 г. Участвует во внутриклеточном обмене, передаче нервных импульсов к мышцам, регулирует водно-солевой обмен, осмотическое давление и кислотно-щелочное состояние организма, нормализует деятельность мышц, выводит из организма избыток натрия и воды, активизирует некоторые ферменты. Источники: свежие плоды и овощи, молочные продукты, мясо, рыба.



Магний. Суточная потребность – 400 мг. Снижает возбудимость нервной системы, нормализует деятельность мышц, участвует в процессах углеводного и фосфорного обменов, предотвращает образование камней в почках, снижает содержание холестерина, угнетает рост злокачественных новообразований. Источники: поваренная соль, орехи, отруби, гречневая крупа, зеленые плоды и овощи, горох, фасоль, халва.

Кальций. Суточная потребность – 1 г. Участвует в образовании костной ткани, кроветворении, влияет на процессы сократимости мышц, свертывания крови, активизации некоторых ферментов, регулирует функции эндокринных желез, снижает появление аллергии. Источники: молочные продукты, яйцо, рыба и мясо.

Фосфор. Суточное потребление – 1 г. Участвует вместе с кальцием в построении костной ткани, мембран клеток, обеспечивает углеводный и энергетический обмен. Источники: молочные продукты, сыр, мясные, рыбные товары, яйцо и яичные продукты.

Железо. Суточная потребность – 14 мг. Участвует в построении важнейших белков организма: гемоглобина и миогемоглобина, а также различных ферментов, в лизисе микроорганизмов и поддержании иммунитета, синтезе гормонов щитовидной железы. Источники: мясо и рыба, яйцо, нежирный творог, дрожжи, вино, белые грибы, абрикосы, персики, яблоки, зелень, печень, почки, язык.

Хлор. Суточная потребность – 5 – 7 г. Поддерживает осмотическое давление в тканях, участвует в образовании соляной кислоты желудочного сока. Источники: поваренная соль и содержащие ее продукты.

Сера. Суточная потребность – 1 г. Входит в состав большинства белков организма человека, участвует в образовании витамина В1, инсулина. Источники: хлебные злаки, капустные овощи, чеснок, бобовые, молочные продукты, мясо, рыба и яйца.

Цинк. Суточная потребность – 15 мг. Участвует в костеобразовании, ускорении заживления ран, входит в состав многих ферментов, повышает устойчивость к стрессам и простудным заболеваниям, участвует в обмене углеводов, жиров, белков и нуклеиновых кислот, удлиняет действие инулина. Источники: рыба, мясо (баранина), печень, почки, яйца, орехи, имбирь, овсяные хлопья, чеснок.

Медь. Суточная потребность – 2 мг. Участвует в окислительно-восстановительных процессах, образовании кровяных клеток, белкового и углеводного обмена, активизирует витамины группы В. Источники: печень, мясо, рыба, бобовые, орехи, овсяная и гречневая крупы.

Марганец. Суточная потребность – 5 – 10 мг. Участвует в процессах кроветворения, образования костной ткани, входит в состав многих ферментов. Источники: все растительные продукты.

Кобальт. Суточная потребность – 0,2 мг. Способствует усвоению железа, стимулирует кроветворение и иммунологическую активность, предупреждают дегенеративные изменения нервной системы, входит в состав витамина В12. Источники: гречневая крупа, пшеница, кукуруза, свежие плоды и овощи, пиво.

Йод. Суточная потребность – 0,15 мг. Участвует в образовании гормонов щитовидной железы, регулирует энергетический и тепловой обмен веществ, функции сердечно-сосудистой системы. Источники: йодированная соль, рыба, нерыбные морепродукты, яйца, молочные продукты, фейхоа, виноград.

Фтор. Суточная потребность – 0,5 – 1 мг. Участвует в образовании костной ткани, зубной эмали. Источник: морская рыба, хлеб с отрубями, орехи, овсяная крупа.

Хром. Суточная потребность – 0,20 – 0,25 мг. Усиливает действие инсулина. Источники: печень, пивные дрожжи, проросшие зерна пшеницы, крупы.

Селен. Суточная потребность – 70 мкг. Является сильным антиоксидантом и стабилизатором мембран, препятствует развитию рака. Источники: каменная поваренная соль, морепродукты, почки, печень, сердце, желток яиц, кукуруза, томаты, чеснок, грибы, дрожжи.

Большинство органических веществ относятся к важнейшим питательным веществам.

Углеводы – органические соединения, молекула которых содержит атомы углерода, водорода и кислорода. Углеводы – основные компоненты пищевых продуктов растительного происхождения, они являются главными поставщиками энергии. По усвояемости углеводы делятся на усвояемые и неусвояемые. К усвояемым углеводам относятся мономахариды (глюкоза, фруктоза), дисахариды (сахароза, мальтоза, лактоза, трегалоза), трисахарид (раффиноза) и полисахариды (крахмал, инулин, гликоген). Моно- и дисахариды (сахара) обладают сладким вкусом и хорошей растворимостью. По степени сладости сахара можно проранжировать: фруктоза, сахароза, глюкоза, мальтоза, лактоза. Полисахариды нерастворимы в воде, усваиваются хуже, чем сахара.

При поступлении в организм человека усвояемые углеводы используются для выделения энергии путем биологического окисления. Однако данные углеводы необходимы организму не только для энергетических целей, но и для поддержания нормального уровня сахара в крови, а также эластичности сосудов.

Глюкоза содержится в пищевых продуктах в основном растительного происхождения, особенно много в меде и винограде, входит в состав инвертного сахара.

Фруктоза присутствует во многих продуктов растительного происхождения, в продуктах животного происхождения отсутствует. Наиболее богаты фруктозой натуральный мед (до 35%), семечковые плоды, арбузы.

Сахароза состоит из остатков молекул глюкозы и фруктозы, усваивается только после гидролиза до моносахаров. В пищевых продуктах встречается почти в чистом виде (сахар).

Лактоза состоит из остатков молекул глюкозы и галактозы, усваивается организмом человека и сбраживается микроорганизмами только после гидролиза. Лактоза – основной сахар молока и молочных продуктов. Кроме того, лактоза обнаружена в грибах.

Крахмал – количественно преобладающий полисахарид многих продуктов растительного происхождения. Особенно его много в зерномучных товарах, крахмал используется в качестве загустителя при производстве продуктов питания. В растительных тканях крахмал накапливается в виде зерен: в картофеле – крупные, овальные, слоистого строения; кукурузе - неправильные многогранники; пшенице – округлые среднего размера; рисе – округлые, самые мелкие. Крахмал обладает следующими свойствами: гидролиз до мальтозы и глюкозы, высокая гигроскопичность, окраска йодом в синий цвет, нерастворимость в холодной воде, образование густого вязкого раствора в горячей воде. Клейстеризация крахмала происходит при выпечке мучных изделий, варке круп, макаронных изделий, овощей.

Гликоген условно называют животным крахмалом. Содержится в мясе, сердце, мозге, печени, а также в грибах, кукурузе, дрожжах. С йодом дает красно-бурое окрашивание.

Клетчатка (целлюлоза) встречается во всех продуктах растительного происхождения. Она почти не усваивается организмом человека, в составе пищевых волокон способствует перистальтике кишечника, а также выведению солей тяжелых металлов, холестерина и других вредных веществ.

Пектиновые вещества – комплекс неусвояемых веществ, состоящих из остатков полигалактуроновой кислоты и включающих протопектин, пектин и пектиновую кислоту. Пектиновые вещества связывают и выводят из организма холестерин, соли тяжелых металлов, радионуклиды, бактериальные и грибные яды. Они содержатся в свежих плодах и овощах, фруктово-ягодных кондитерских изделиях.

Азотистые вещества – соединения в состав молекулы которых входит азот. В эту группу входят белки и небелковые вещества: аминокислоты и их амиды, аммиачные соединения, нитраты и нитриты, нуктеиновые кислоты, некоторые алкалоиды (кофеин, теобромин и др.), гликозиды (амигдалин, соланин и др.

Белки – сложные азотистые вещества, молекула которых состоит из соединенных между собой остатков молекул аминокислот. Они входят в состав клеток и тканей организма, а также ферментов, выполняют транспортную и защитную функции, обеспечивают сокращение мышц.

По аминокислотному составу белки подразделяют на полноценные и неполноценные, а по компонентному составу – на простые и сложные.

Полноценные белки – белки, в состав которых входят все незаменимые аминокислоты в оптимальном для организма человека соотношении. неполноценные белки – белки, в составе которых отсутствует хотя бы одна из незаменимых аминокислот или содержание их недостаточно. К незаменимым аминокислотам относятся следующие: изолейцин, лейцин, лизин, метионин , фенилаланин, треонин, триптофан , валин, аргинин, гистидин.

Простые белки – белки, в состав которых входят только остатки аминокислот. К ним относятся альбумины, глобулины, проламины, глютелины, протамины, гистоны и др. Они отличаются друг от друга по растворимости в воде, растворах солей и спирте. Сложные белки – белки, молекулы которых состоят из остатков молекул аминокислот, а также других веществ. К ним относятся фосфопротеиды, гликопротеиды, липопротеиды, хромпротеиды и нуктеопротеиды.

Для формирования качества пищевых продуктов важное значение имеют следующие.

Набухание (гидратация) белков – способность белков поглощать и удерживать в течение определенного времени связанную воду. Денатурация (свертывание) белков – процесс свертывания и выпадения белков в осадок под действием различных факторов. При этом утрачивается их способность к растворению, но улучшается их усвояемость. Денатурация может быть обратимой и необратимой. Гидролиз белков – процесс распада молекулы белка с участием воды до полипептидов, пептидов и аминокислот, происходит при брожении теста, вина, квашении, созревании сыров, мяса, рыбы, гниении. Меланоидинообразование – взаимодействие свободных и связанных аминокислот белков с редуцирующими сахарами с образованием темноокрашенных соединений – меланоидинов. Оно снижает пищевую ценность продуктов, протекает при производстве хлеба, пива, консервов, сушении плодов и овощей.

Липиды – природные органические вещества, большинство из которых являются эфирами жирных кислот, а также одно- и многоатомных спиртов. Группа липидов пищевых продуктов подразделяется на подгруппы: жиры, свободные жирные кислоты и липоиды: фосфолипиды, стерины, воска.

Жиры – высокомолекулярные органические соединения, состоящие из остатков молекул трехатомного спирта – глицерина и жирных кислот. Общим и наиболее значимым свойством для всех жиров является их энергетическая ценность (1 г дает 9 ккал), а также участвует в образовании оболочек мембран и протоплазмы животных клеток.

Жирные кислоты делятся на насыщенные и ненасыщенные. насыщенные жирные кислоты придают жирам твердую консистенцию, ненасыщенные – жидкую. Ненасыщенные жирные кислоты линолевая и линоленовая относятся к незаменимым. Ненасыщенные жирные кислоты могут насыщаться водородом при высокой температуре и катализаторе (никель, платина). На этой способности основана реакция гидрогенизации.

К другим свойствам жиров относят их способность служить растворителем жирорастворимым витаминам (К, Е, D, А), а также регулировать ферментативную активность белков.

Витамины - низкомолекулярные органические соединения различной химической природы, небольшое количество которых способно обеспечивать нормальное течение физиологических и биохимических процессов в организме. Организм человека не синтезирует необходимого количества витаминов, поэтому растительные и животные продукты являются основными их источниками. При недостатке витаминов возникают такие заболевания, как авитаминоз и гиповитаминоз, а при избытке - гипервитаминоз.

По отношению к растворителям витамины подразделяют на водорастворимые (С, В, Р, РР и др.) и жирорастворимые (А, D, Е, К).

Витамин С (аскорбиновая кислота) содержится во всех продуктах растительного происхождения. В яблоках его имеется 3-20 мг, в картофеле 6-20 мг, в шиповнике 1000-4500 мг на 100 г продукта. Суточная потребность человека в витамине С составляет 75-100 мг. При недостатке аскорбиновой кислоты нарушаются окислительно-восстановительные процессы в организме, прекращается синтез белковых веществ мозга, появляется угроза цинги. При нагревании и длительном хранении пищевых продуктов витамин С разрушается.

Витамин B1 (тиамин). Источником витамина В являются дрожжи, орехи, крупа, свинина. Суточная потребность 1,5-2 г. Недостаток его в питании приводит к возникновению болезни бери-бери и полиневрита.

Витамин В2 (рибофлавин) обнаружен в дрожжах, печени, молочных продуктах, овощах. Суточная потребность 2,0-2,5 г. Недостаток его приводит к расстройству центральной нервной системы.

Витамин В3 (пантотеновая кислота) содержится в тех же продуктах, что и витамин В2. Суточная потребность 10-15 г. При недостатке его в организме нарушается работа центральной нервной системы и органов пищеварения.

Витамин В9 (фолиевая кислота) найден во всех растительных и животных продуктах. Суточная потребность 0,1-0,5 мг. Недостаток в пище вызывает малокровие.

Витамин Вп (цианокобаламин) присутствует в печени, почках, молочных продуктах, яичном желтке. Суточная потребность 0,005-0,05 мг. Отсутствие в питании вызывает нарушение синтеза белков, процесса кроветворения.

Витамин РР (никотиновая кислота) поступает в организм при употреблении мяса, рыбы, дрожжей, хлеба, круп, молока, яиц, картофеля. Суточная потребность 15-20 мг. Недостаток его проявляется в виде пеллагры, нарушения деятельности нервной системы, пищеварительного тракта.

Витамин Р присутствует в черной смородине, лимонах, дикорастущих ягодах. Суточная потребность 75-100 мг. Активность его усиливается в присутствии витамина С.

Витаминку (ретинол) найден в животных продуктах. В растительных продуктах он встречается в виде каротиноидов, придающих продукту оранжево-желтую окраску. Источником являются жиры морских животных и рыб, сливочное масло, морковь, абрикосы, перец красный. Суточная потребность 1-2 мг. При недостатке ретинола в пище возможно нарушение зрения, задержка роста.

Витамин D (кальциферол) поступает в организм с жиром морских рыб, из желтков яиц, с молоком. Суточная потребность для детей 12,5 мг, для взрослых - 2,5 мг. При недостатке в пище снижается сопротивляемость организма такому заболеванию, как рахит.

Витамин Е (токоферол) обнаружен в облепиховом, кукурузном, подсолнечном, хлопковом маслах, печени морских рыб, бобовых, овощах. Суточная потребность 10-25 мг. Присутствие его в организме человека предотвращает старение, бесплодие, ускоряет рост. В жирах витамин Е является антиокислителем.

Витамин К) (филлохинон) присутствует в свиной печени, печени морских рыб, шпинате, крапиве, картофеле. Суточная потребность 10-15 мг. При отсутствии его или недостатке замедляется свертывание крови, возникают кровоизлияния в коже.

Недостаток витаминов в пищевых продуктах восполняется их витаминизацией в процессе производства.

Ферменты. Без участия ферментов не осуществляется ни одно химическое или биохимическое преобразование в живом организме. Как ускорители многих реакций ферменты используются при производстве этилового спирта, чая, пива, кисломолочных и других продуктов. Однако они могут оказывать и отрицательное действие на качество товаров, вызывая, например, порчу мяса, рыбы, перезревание плодов.

По химической природе ферменты - вещества белкового характера. По направленности действия их делят на следующие классы:

гидролазы - катализируют процессы расщепления сложных

веществ с присоединением к ним воды;

оксидоредуктазы - катализируют реакции биологического

окисления и восстановления, дыхания и брожения;

трансферазы - катализируют реакции переноса химических

групп от одних органических соединений к другим;

лиазы - катализируют превращение органических веществ в их изомеры;

лигазы - катализируют реакции соединения друг с другом двух молекул органических веществ.

Общие свойства ферментов - высокая каталитическая активность, специфичность действия, которая проявляется в том, что каждый фермент катализирует определенную реакцию. Ферменты выдерживают низкие температуры, но разрушаются при температуре свыше 70 °С. Эти свойства учитываются при выборе условий хранения и технологии производства пищевых продуктов.

Вещества, входящие в состав пищевых продуктов, делят на органические и неорганические. К неорганическим веществам относят водуиминеральные вещества, к органическим –белки,жиры,углеводы,кислоты,витамины,ферменты,дубильные,красящие,ароматическиеи другие вещества. Каждое из этих веществ имеет для организма человека определенное значение: одни обладают питательными свойствами (углеводы, белки, жиры), другие придают продуктам определенный вкус, аромат, окраску и играют соответствующую роль в воздействии на нервную систему и органы пищеварения (органические кислоты, дубильные, красящие, ароматические вещества и др.), некоторые вещества обладают бактерицидными свойствами (фитонциды).

Вода входит в состав всех пищевых продуктов, но содержание их различно. Количество воды в пищевых продуктах влияет на их качество и сохраняемость. Скоропортящиеся продукты с повышенным содержанием влаги без консервирования длительное время не сохраняются. Вода, содержащаяся в продуктах, способствует ускорению в них химических, биохимических и других процессов. Продукты с малым содержанием воды лучше сохраняются.

Свободная вода активно участвует в процессах, протекающих в клетках, легко испаряется.

Связанная вода прочно соединена с другими компонентами пищевых продуктов и испаряется из них с большим трудом.

В растительных и животных тканях преобладает свободная вода, так как свободная вода из них легко удаляется.

Содержание воды в пищевых продуктах в процессе их перевозки и хранения не остается постоянным. В зависимости от особенности самих продуктов, а также условий внешней среды они теряют влагу или увлажняются. Высокой гигроскопичностью (способностью поглощать влагу) обладают продукты, содержащие много фруктозы (мед, карамель), а также сушенные плоды и овощи, чай, поваренная соль. Эти продукты хранят при относительной влажности воздуха не выше 65-70%.

Количество воды во многих продуктах, как правило, нормируется стандартами с указанием верхнего предела ее содержания, так как от этого зависят не только качество и сохраняемость, но и пищевая ценность продуктов.

Минеральные (зольные) вещества имеют большое значение в жизни живых организмов. Они содержатся во всех пищевых продуктах в виде органических и неорганических соединений.

В организме человека и животных минеральные элементы участвуют в синтезе пищеварительных соков, ферментов (железо, йод, медь, фтор и др.), в построение мышечной и костной тканей (сера, кальций, магний, фосфор), нормализует кислотно-щелочное равновесие и водный обмен (калий, натрий, хлор).

В зависимости от количественного содержания минеральных элементов в пищевых продуктах различают макро-, микро- и ультрамикроэлементы.

Макроэлементы содержатся в продуктах в значительных количествах. К ним относят калий, кальций, магний, фосфор, железо, натрий, хлор и др.

Микроэлементы находятся в продуктах в небольших количествах. Элементами этой группы являются барий, бром, йод, кобальт, марганец, медь, молибден, свинец. фтор, алюминий, мышьяк и др.

Ультрамикроэлементы содержатся в продуктах в ничтожно малых количествах. К ним относятся уран, торий, радий и др. Они становятся ядовитыми и опасными, если содержатся в продуктах в повышенных дозах.

Зольность характеризует качество муки, крахмала, конфет, карамели, халвы, сахара, пряностей и др.

Углеводы образуются при фотосинтезе в зеленых листьях растений из углекислого газа воздуха и получаемой из почвы воды.

Углеводы являются основным источником энергии в организме человека и в рационе питания занимают первое место.

В зависимости от строения молекул углеводы подразделяют на три класса: простые углеводы, или моносахариды , олигосахариды и полисахариды .

К моносахаридам относятся гексозы (глюкоза, галактоза и фруктоза) и пентозы (арабиноза, ксилоза, рибоза и дезоксирибоза).

в пищевых продуктах в свободном виде в значительных количествах встречаются только глюкоза и фруктоза.

Глюкоза (виноградный сахар) в продуктах питания чаще всего находится вместе с фруктозой. В чистом виде она усваивается организмом лучше других углеводов. Содержится в плодах, овощах, меде, является основной частью свекловичного сахара, мальтозы, лактозы, клетчатки, крахмала.

Фруктоза (плодовый сахар) в свободном состоянии находится главным образом во фруктах, ягодах и овощах (яблоках, грушах, арбузах) она является преобладающим сахаром. Из продуктов животного происхождения значительное количество фруктозы содержится в меде. Она обладает более сладким вкусом, чем сахароза, и этим объясняется высокая сладость меда.

Глюкоза и фруктоза являются хорошими восстановителями и относятся к редуцирующим сахарам, которые, обладая высокой реакционной способностью (соединяются с аминокислотами) и гигроскопичностью, могут быть причиной потемнения и увлажнения продуктов. Поэтому содержание этих углеводов в сахаре, карамели, халве и других продуктах ограничивается.

Олигосахариды – это углеводы, молекулы которых состоят из моносахаридов. К ним относят сахарозу, мальтозу, лактозу.

Сахароза (свекловичный или тростниковый сахар)является самым распространенным сахаром в продуктах растительного происхождения.

Мальтоза (солодовый сахар) встречается в свободном виде в патоке и сое. Получают ее кислотным или ферментативным гидролизом крахмала. Мальтоза обладает менее сладким вкусом, чем сахароза.

Лактоза (молочный сахар) имеет большое физиологическое значение, так как содержится в молоке и молочных продуктах. Это наименее сладкий сахар.

Полисахариды состоят из шести и более остатков моносахаридов. К ним относятся крахмал, гликоген, инулин, целлюлоза (клетчатка).

Крахмал является одним из важнейших резервных углеводов растений. Он синтезируется растениями и накапливается в виде крахмальных зерен в клубнях, плодах, зерне хлебных злаков. Наиболее крупные крахмальные зерна у картофеля, мелкие – у риса и гречихи. В картофеле, хлебе, крупах крахмал является основным углеводом. Кроме того, из зерна и картофеля вырабатывают различные виды крахмала, который используется как самостоятельный пищевой продукт.

Гликоген (животный крахмал) является запасным углеводом животных, который откладывается в мышечной ткани. Все жизненные процессы сопровождаются гликолизом – биохимическим расщеплением гликогена. Это процесс протекает после убоя животных и влияет на качество мяса и рыбы при созревании.

Инулин содержится в земляной груши и в цикории. Он хорошо растворяется в горячей воде, образуя при этом коллоидный раствор. При гидролизе инулин превращается во фруктозу. Он рекомендуется для больных, страдающих диабетом.

    Целлюлоза (клетчатка) – распространенный полисахарид. Большая часть клетчатки организмом человека не усваивается. Повышенное содержание ее в продукте снижает его усвояемость, пищевую ценность, ухудшает вкус.

Липиды состоят из жиров и жироподобных веществ (липоидов). Они содержатся в каждой клетке организма, участвуют в обмене веществ и синтезе белков, используются для построения мембран клеток и жировой ткани.

В продуктах питания из липидов преобладают жиры, которые имеют большое значение в питании, так как обладают самой высокой энергетической ценностью.

По происхождению жиры делят на растительные (масла) и животные . К твердым растительным жирам относят масло кокосовое, пальмовое, какао-масло; к жидким – подсолнечное, хлопковое, оливковое, льняное; к твердым животным жирам относят жир говяжий, бараний, свиной, масло коровье; к жидким – жиры рыб и морских животных.

Характерной особенностью всех жиров является то, что они легче воды, не растворяются в ней, а только в органических растворителях.

Жиры легко подвергаются омылению, окислению, прогорканию, гидрированию и другим процессам, поэтому при хранении необходимо учитывать эти свойства.

Жирами богаты растительные и коровье масла, топленные и кулинарные жиры, маргарин, орехи, семена масличных культур и др. Мало жиров в плодах и овощах, в зернах злаков, в макаронных и хлебобулочных изделиях.

В зависимости от температуры плавления различные жиры усваиваются организмом неодинаково. Так, чем ниже температура плавления жира, тем он легче усваивается. Температура плавления жира составляет: коровьего – 26-32 о С, говяжьего – 42-25 о С, свиного – 33-46 о С, бараньего – 44-55 о С.

Наиболее часто встречаются фосфоглицериды лецитин и кефалин , из стеринов – холестерин. Много его в мозге, яичном желтке, в плазме крови. Холестерин способствует эмульгированию жира, а также обезвреживанию бактериальных гемотоксинов в организме. Избыточное накопление холестерина в организме может привести к атеросклерозу, к желчекаменной болезни. В растительных клетках и дрожжах содержится эргостерин , который под действием ультрафиолетовых лучей превращается в витамин D.

Воска покрывают поверхность плодов и овощей, предохраняя их от проникновения микроорганизмов и испарения влаги; они содержатся в растительных жирах и затвердевают при низких температурах хранения, вызывая помутнение. Пищевого значения они не имеют.

Азотистые вещества. Вещества, в состав которых, кроме углерода, водорода и кислорода, входит азот. Их подразделяют на собственно белковые соединения и соединения, содержащие азот, но не относящиеся к белковым веществам (небелковые аминокислоты, алкалоиды и др.).

Белки являются основным материалом, из которого построена протоплазма, входят в состав ядра клеток, участвуют в процессах роста и размножения, в образовании ферментов и гормонов.

О роли белков в природе говорит само их название – протеины. Белки – самая ценная составная часть пищевых продуктов. Они принимают участие в построении белков организма человека, являются энергетическим материалом.

Белки состоят из различных аминокислот. Белок находится в трех состояниях: твердом (кожа, волосы, шерсть), сиропообразном (яичный белок) и жидком (молоко и кровь).

Белки не растворяются в воде, а только набухают в ней. Это явление набухания белков имеет место при изготовлении теста в хлебопечении и в макаронном производстве, при производстве солода и др. Под действием температуры, органических растворителей, кислот или солей белки свертываются и выпадают в осадок. Этот процесс называется денатурацией.

Пищевые продукты, обработанные высокими температурами, содержат денатурированный белок. Это свойство используют при сушке плодов, овощей, грибов, молока, рыбы, при выпечке хлеба и кондитерских изделий. Биологическая ценность белков характеризуется аминокислотным скором, по которому судят о незаменимых аминокислотах, которые организмом не вырабатывается. Наиболее полноценны белки мышечной ткани мяса, рыбы, яиц, молока, сои, бобов, гороха, гречневой крупы, картофеля. Белки проса, кукурузы и другие неполноценны.

Усвояемость белков колеблется от 70% (картофеля и круп) до 96% (молочных продуктов и яиц).

Кислоты в пищевых продуктах содержатся органические или неорганические. Из органических кислот преобладают муравьиная, уксусная, молочная, щавелевая, винная, бензойная. Они придают продуктам кислый вкус, участвуют в обмене веществ в живых растительных и животных организмах, используются для консервирования. Пища, содержащая кислоты, оказывает возбуждающее действии на пищеварительные железы и хорошо усваивается организмом.

Дневная потребность человека в кислотах составляет 2 г. Больше всего органических кислот содержится в плодах и овощах.

Уксусная кислота содержится в плодово-ягодных и овощных соках, хлебе, вине; молочная – находится в молочных продуктах, хлебе. мясе, рыбе, квашенных плодах и овощах; яблочная – встречается в яблоках, винограде, рябине, томатах и др.; винная – в винограде, айве, косточковых плодах; лимонной кислотой богаты лимоны, клюква, апельсины, земляника.

Содержание и состав кислот в продуктах при хранении изменяется. При длительном хранении пищевых жиров в неблагоприятных условиях увеличивается количество свободных жирных кислот. При хранении плодов в условиях низких температур кислоты обычно раньше других веществ расходуются на дыхание, в результате чего нарушается присущее плодам соотношение сахара и кислоты, ухудшается их вкус.

Повышенное содержание кислот в продуктах свидетельствует об их несвежести. Так, содержание в виноградных винах летучих органических кислот в количестве до 0,1% улучшает их аромат, а при 0,2% появляется резкий кислый вкус.

Различают кислотность активную и титруемую. Титруемая кислотность показывает количественное содержание кислот и кислых солей в продуктах и выражается в процентах или градусах; активная кислотность (рН) находится в зависимости от содержания кислоты и степени ее диссоциации, т.е. от количества ионов водорода. Активная кислотность точнее характеризует интенсивность кислого вкуса товара.

Используют кислоты в кондитерской, безалкогольной и ликероводочной промышленности для улучшения вкуса продуктов.

Витамины – это физиологически активные органические соединения, небольшое количество которых способно обеспечивать нормальное течение физиологических и биохимических процессов в организме человека. Они регулируют обмен веществ в клетках организма человека и способствуют повышению его сопротивляемости заболеваниям. Витамины также принимают участие в синтезе ферментов.

Недостаток витаминов в питании приводит к гиповитаминозу, а отсутствие того или иного витамина – к авитаминозу. Вырабатываются витамины главным образом растениями, некоторые могут синтезироваться клетками животных тканей и органов или микрофлорой желудочно-кишечного тракта. Организмом человека витамины не вырабатываются.

В зависимости от способности к растворению витамины подразделяют на две группы: растворимые в жирах – А , D , E , K и растворимые в воде – C , Р , PP , Н , B1 , B2 , В3 , B6 , B9 , B12 и др.

Витамин А способствует росту и нормальному развитию молодого организма, улучшает зрение. Источником витамина А являются жиры морских рыб, печень говяжья, желток яйца, сливочное масло, шпинат. морковь, капуста, лук зеленый, томаты, красный перец. В некоторых плодах и овощах содержится оранжево-красное красящее вещество каротин, который в организме человека превращается в витамин А и носит название провитамина А .

Витамин D имеет особо важное значение для предупреждения рахита у детей. Он поступает в организм с жиром морских рыб, в виде желтков яиц, молока и мяса. Из растительных продуктов витамин D находится в грибах.

Витамин Е способствует нормальной функции размножения. Обнаружен в облепиховом, подсолнечном, соевом и кукурузном маслах, а также в свежих плодах и овощах, молоке, яйцах.

Витамин К влияет на свертываемость крови. Он содержится в картофеле, моркови, зеленом горошке, томатах, шпинате, в мясе, свиной печени, яйцах.

Витамин С наиболее широко распространен в природе. В основном он содержится в продуктах растительного происхождения: в шиповнике, черной смородине, облепихе, сладком перце, яблоках, сливе, вишне, капусте белокочанной, картофеле, луке репчатом. При нагревании и длительном хранении продуктов витамин С разрушается. Отсутствие его в пище вызывает цингу, нарушение окислительно-восстановительных процессов, прекращается синтез белковых веществ мозга.

Витамин Р обнаружен в растениях в виде антоцианов, катехинов, флавоноидов. Витамин Р способствует укреплению стенок капиллярных сосудов и регулирует их проницаемость. Содержится в растительных клетках: в черноплодной рябине, черной смородине, апельсинах, лимонах, яблоках, моркови, картофеле.

Витамин РР по химической природе является никотиновой кислотой. При недостатке этого витамина в организме задерживается образование большой группы ферментов, катализирующих окислительно-восстановительные реакции, что может привести к заболеванию пеллагрой. Этот витамин находится в говяжьей печени, мясе, пшеничном хлебе, молоке. картофеле, моркови, яблоках и др.

Витамин Н оказывает влияние на развитие микроорганизмов и дрожжей. При недостатке его в организме может произойти поражение кожи и выпадение волос. В незначительных количествах содержится в мясе, молоке, хлебе, картофеле, овощах.

Витамин В1 необходим для предупреждения болезни берибери. Источником витамина В1 являются дрожжи, зерновые продукты, плоды и овощи, молоко и мясо.

Витамин В2 синтезируется только растениями и некоторыми микроорганизмами. Недостаток его в организме приводит к расстройству нервной системы. Содержится в дрожжах, печени, молоке, яйцах, меде, овощах.

Витамин В3 нормализует работу центральной нервной системы и органов пищеварения. Он содержится в мясе, рыбе, хлебе, грибах, плодах и овощах.

Витамин В6 играет важную роль в процессе обмена веществ. При недостатке его возникает воспаление кожи, прекращается рост молодых организмов. Как правило, недостатком витамина В6 человек не страдает. Содержится он в дрожжах, мясе, рыбе, сыре, овощах.

Витамин В9 играет важную роль в кровообразовании. Недостаток его в пище вызывает малокровие. Содержится почти во всех продуктах животного и растительного происхождения.

Витамин В12 синтезируют главным образом микроорганизмы. Недостаток его в пище может привести к развитию тяжелой формы анемии. Препараты витамина В12 используют для лечения лучевой болезни. Содержится в мясе и мясопродуктах, молоке, сыре, яичном желтке.

Ферменты – это специфические белки, вырабатываемые клетчаткой, органические катализаторы биохимических процессов и реакций в организме. Любая живая клетка выполняет жизненные функции под действием ферментов. По сравнению с неорганическими катализаторами ферменты обладают более сильным действием.

Все ферменты разделяются на две группы: однокомпонентные и двухкомпонентные . К первой относят ферменты, состоящие только из белка, обладающего каталитическими свойствами, ко второй – ферменты, которые состоят из белка и небелковой части – простетической или активной группы.

Кроме того, ферменты делят на шесть классов:

      оксидоредуктазы – катализируют окислительно-восстановительные реакции;

      трансферазы – катализируют перенос различных групп атомов с одной молекулы на другую;

      гидролазы – катализируют расщепление сложных соединений на более простые путем присоединения воды;

      лиазы – отщепляют от вещества группы атомов без участия воды;

      изомеразы – катализируют внутримолекулярные переносы атомных групп, образуя изомеры;

      лигазы (синтетазы) – ускоряют синтез сложных соединений из более простых.

В товароведении продовольственных товаров учение о ферментах занимает одно из центральных мест, так как в основе процессов, происходящих при переработке и хранении пищевых продуктов, лежат ферментативные изменения. Более того, и микробиологические процессы, происходящие в продуктах питания, могут объяснены только действием тех или иных ферментов. Без знания ферментов нельзя объяснить такие важные процессы, как созревание сыров, различные виды брожения, ферментацию табака, чая, кофе, хранение зерновой массы, плодов, овощей, картофеля. Ферментативные препараты широко применяют в народном хозяйстве – в пищевой промышленности, в медицине. Протеолитические ферменты использую при изготовлении мучных кондитерских изделий, хлеба, для размягчения тканей мяса, для обработки сырной пасты, сухого молока, диетических продуктов, для обогащения круп белками, при переработке рыбы и др. Они необходимы для стабилизации пива, фруктово-ягодных соков и т.д.

Дубильные, красящие и ароматические вещества , находясь в продуктах питания в незначительных количествах, оказывают существенное влияние на их пищевые и вкусовые достоинства. Они обуславливают вкус, аромат и окраску продуктов, способствуют возбуждению аппетита и лучшей усвояемости пищи.

Дубильные вещества относятся к полифенольным соединениям. Терпкий вкус зеленых плодов связан с высоким содержанием в них дубильных веществ. Во время хранения плодов происходит размягчение их мякоти, переход свободных дубильных веществ в связанное состояние и исчезновение терпкого вкуса. Много дубильных веществ в чае, хурме, терне, айве, рябине, смородине, яблоках, грушах.

При повреждении тканей плодов дубильные вещества в них подвергаются ферментативному окислению с образованием коричневых и красных веществ.

Красящие вещества делят на хлорофиллы , каротиноиды и флавоноиды . Разнообразная окраска плодов, овощей и других растений обуславливается растительными пигментами – красящими веществами.

Хлорофилл – это зеленый пигмент растений. Он играет чрезвычайно важную роль в процессе фотосинтеза.

Каротиноиды – это группы пигментов, придающих плодам и овощам оранжевую или желтую, а иногда и красную окраску. Они содержатся в моркови, абрикосах, томатах, красном перце, цитрусовых плодах.

    Флавоноиды относятся к красящим веществам. Красящие вещества лука, яблок, чая, винограда, столовой свеклы могут быть использованы при производстве некоторых видов кондитерских изделий, фруктово-ягодных напитков, ликероводочных изделий и др.

Ароматические вещества обуславливают аромат пищевых продуктов. Они легко перегоняются с водяным паром, летучи, поэтому их запах ощущается даже при ничтожно малом содержании. Общее их количество в пищевых продуктах определяется десятыми и сотыми долями процента.

В плодах и овощах ароматические вещества входят в состав эфирных масел. Богаты эфирными маслами цитрусовые плоды, пряные овощи (петрушка, укроп, эстрагон), а также лук, чеснок, редька и др. Эфирные масла используют для ароматизации пищевых продуктов и в парфюмерии.

Качественный состав и количественное соотношение веществ, содержащихся в пищевых продуктах, обуславливает их пищевую ценность, безопасность и сохраняемость.

Все вещества, входящие в состав пищевых продуктов можно подразделить, на неорганические – вода и минеральные элементы, и органические – углеводы, жиры и жироподобные соединения, белки и другие азотсодежащие вещества, витамины, ферменты, органические кислоты, фенольные соединения, красящие и ароматические вещества.

Вода входит в состав всех пищевых продуктов, но в разных количествах. Она составляет около 2 / 3 массы тела человека и обеспечивает протекание важнейших биохимических и физиологических процессов в организме. Потеря организмом воды в количестве 6-8% от массы тела приводит к серьезным физиологическим нарушениям, а свыше 10-12% - к изменениям, несовместимым с жизнью. Потребности человеческого организма в воде удовлетворяются за счет употребления питьевой воды и напитков, пищевых продуктов, содержащих воду, а также за счет воды, образующейся в тканях при биологическом окислении различных веществ (белков, жиров, углеводов и др.).

К пищевым продуктам с высоким содержанием воды относят свежие плоды и овощи (65-95%), молоко (87-90%), рыбу (62-84%), мясо (58-74%), печеный хлеб (42-51%). Эти продукты нестойки при хранении, поскольку вода является благоприятной средой для развития микроорганизмов, протекания биохимических, химических и других процессов. Они быстро подвергаются различным видам порчи, а для продления сроков хранения нуждаются в консервировании.

Низким содержанием воды отличаются мука, крупа, макаронные изделия (12-15%), чай и кофе (3-8%), крахмал (13-20%), сухофрукты (12-25%). Очень мало воды в сахаре, соли, растительных маслах и животных топленых жирах (десятые доли %). Эти продукты сохраняются лучше, но, обладая высокой гигроскопичностью (способностью поглощать и удерживать водяные пары из окружающей атмосферы), они легко увлажняются, что приводит к потере сыпучести, слеживанию, комкованию и другим нежелательным изменениям качества.



При выборе условий хранения пищевых продуктов стремятся создать и поддерживать на постоянном уровне такую относительную влажность воздуха, которая не вызывала бы процессов усушки или увлажнения. Содержание воды в продуктах является важным показателем, влияющим на их пищевую ценность и сохраняемость. Поэтому для многих продовольственных товаров в нормативной и технической документации, устанавливающей требования к качеству, предусмотрены показатели – массовая доля влаги (в %, не более) или влажность (в %, не более).

Минеральные вещества участвуют в пластических процессах организма (входят в состав тканей, ядер клеток, цитоплазмы), в водно-солевом обмене, поддержании кислотно-щелочного равновесия, осмотического давления крови, обеспечивают протекание многих ферментативных процессов.

Общее содержание минеральных веществ в большинстве пищевых продуктов составляет в среднем 1% . Все минеральные элементы делят на три группы: макроэлементы (Ca, P, Mg, Na, K, Cl, S, Fe), содержащиеся в пище в относительно больших количествах (более 1 мг%), микроэлементы (Zn, Cu, I, F, Мn, Cr, Ni и др.), концентрация которых невелика (менее 1 мг%) и ультрамикроэлементы (Sn, Pb, Hg и др.), присутствующие в продуктах в «следовых» количествах. Характеристика некоторых макро- и микроэлементов приведена в таблице 2.

Таблица 2.

Минер. элемент Основная биологическая роль Суточная потребность
Макроэлементы
Кальций Входит в состав костной ткани, ядер клеток; обеспечивает свертываемость крови 800-1000 мг Сыр, творог, молоко, яйца, цветная капуста, фасоль
Фосфор Пластические функции, участие в энергетическом обмене 1,0-1,5 г Рыба, икра, фасоль, хлеб, печень говяжья
Магний Входит в состав важнейших ферментов; регуляция нервной и сердечно-сосудистой систем, углеводного и энергетического обмена 300-500 мг Хлеб и крупяные изделия, курага, чернослив, урюк
Натрий Калий Участие в водно-солевом обмене 4,0-6,0 г 2,5-5,0 г Хлеб, подсоленная пища Бобовые, курага, соки
Хлор Образует желудочный сок, плазму, активизирует ферменты 5,0-7,0 г Хлеб, подсоленная пища
Железо Входит в состав гемоглобина, цитоплазмы и некоторых ферментов 15 –25 мг Печень, говядина, яйца, рыба, фасоль, яблоки
Микроэлементы
Йод Регулирует деятельность щитовидной железы 100-200 мкг Морская рыба, морская капуста, йодир. соль
Фтор Образование зубной эмали 800-900 мкг Рыба, морепродукты, чай, питьевая вода

Определяют содержание минеральных элементов в золе, остающейся после сжигания пищевых продуктов, поэтому их называют также зольными элементами. Для многих пищевых продуктов регламентируют показатели:

· зольность (в %, не более), массовая доля минеральных примесей (в %, не более), массовая доля общей золы (в %, не более) – для крупы, муки, крахмала, сахара, варенья, джема, чая и др.;

· массовая доля золы, нерастворимой в 10%-ной соляной кислоте (в %, не более) – для плодоовощных консервов;

· массовая доля металломагнитных примесей (в мг на 1 кг продукта или в %, не более) – для крупы, муки, макаронных изделий, чая, кофе и др.

Превышение установленных пределов по данным показателям снижает сортность изделий и указывает, как правило, на плохую очистку сырья, загрязнение продукта минеральными примесями, наличие трудно усваиваемых компонентов (например, оболочек зерновки – для крупы и муки). Некоторые минеральные элементы (мышьяк, ртуть, кадмий, свинец и др.) обладают ярко выраженной токсичностью, поэтому нормативные документы устанавливают допустимые уровни их содержания (см.п…..).

Углеводы образуются в процессе фотосинтеза в зеленых листьях растений из углекислого газа воздуха и воды. На их долю приходится до 90% сухих веществ растений и около 2% сухих веществ животного организма. По объему потребления и обеспечению калорийности пищевого рациона они занимают первое место среди других компонентов пищи. Кроме энергетической, углеводы выполняют и другие функции в организме: входят в состав важнейших клеточных структур (нуклеиновых кислот, антител, гормонов, ферментов), участвуют в регуляции многих биохимических процессов. В то же время избыточное поступление углеводов приводит к ожирению, нарушениям нервной системы, аллергизации организма.

Основным источником углеводов являются продукты растительного происхождения. Среди них есть такие, которые почти полностью состоят из одних углеводов - сахар, мед, крахмал. В некоторых продуктах на долю углеводов приходится основная часть сухих веществ - мука, крупа, кондитерские изделия, плоды и овощи.

Согласно принятой классификации, углеводы подразделяют на три больших класса: моносахариды простые сахара (глюкоза, фруктоза, галактоза, ксилоза, арабиноза и др.); олигосахариды – содержат от двух до десяти моносахаридных остатков (дисахариды – сахароза, мальтоза, лактоза и др., трисахарид – раффиноза, тетрасахарид – стахиоза и др.); полисахариды - продукты поликонденсации моносахаридов (крахмал, гликоген, пектиновые вещества, целлюлоза или клетчатка, гемицеллюлозы, инулин, камеди и др.).

По усвояемости в организме углеводы делятся на усваиваемые (моно-, олигосахариды, крахмал и продукты его распада – декстрины, гликоген) и неусваиваемые (клетчатка, гемицеллюлозы, пектиновые вещества). Главными усваиваемыми углеводами являются крахмал и сахароза. На долю крахмала приходится около 80% всех потребляемых человеком углеводов. Источниками крахмала являются крупы, макаронные и мучные изделия, картофель, другие овощи и плоды. Неусваиваемые углеводы называют также пищевыми волокнами или балластными веществами . Они выполняют важную физиологическую функцию - вызывают перистальтику кишечника, обеспечивая тем самым продвижение пищи по желудочно-кишечному тракту.

Углеводы играют важную роль в формировании и сохранении качества продовольственных товаров. Некоторые свойства (превращения) углеводов используют в технологии производства и хранения пищевых продуктов:

· гидролиз (расщепление при участии воды) крахмала лежит в основе производства крахмалопродуктов (глюкозы, патоки, сахарных сиропов), спирта (при подготовке сырья для брожения), пива (при получении пивного сусла), хлеба (процесс приготовления теста) и других продуктов; гидролиз пектиновых веществ происходит при созревании и дозревании плодов и овощей; гидролиз сахарозы с образованием инвертного сахара используется в кондитерской промышленности, при производстве безалкогольных напитков;

· реакция карамелизации сахаров, происходящая при нагревании свыше 160 0 С и сопровождающаяся образованием коричнево окрашенных веществ с карамельным ароматом, используется при производстве сахарного колера (натуральный краситель, применяемый для подкрашивания безалкогольных напитков, коньяков), происходит при выпечке хлеба, обжаривании кофейных зерен, при приготовлении жареного мяса, рыбы и других продуктов;

· реакция меланоидинообразования (реакция Майяра) – реакция взаимодействия карбонильных групп восстанавливающих сахаров с аминогруппами белков, аминокислот, сопровождающаяся накоплением темноокрашенных веществ (меланоидинов) и летучих ароматических соединений, - происходит при хлебопечении, сушке солода, длительной термической обработке молока (цвет топленого молока, ряженки);

· способность моносахаридов к сбраживанию под воздействием микроорганизмов (дрожжей, молочнокислых бактерий и др.) лежит в основе технологии изготовления хлеба, кисломолочных продуктов, сыров, пива, вина, кваса и других продуктов;

· гидрофильность – способность к связыванию воды – обуславливает

высокую гигроскопичность многих углеводов, лежащую в основе нежелательных изменений качества при хранении пищевых продуктов; способность крахмальных зерен к набуханию в холодной воде и образованию крахмального клейстера в горячей – используется в пищевом производстве; при старении крахмальных зерен теряется их способность к удерживанию влаги (после длительного хранения ухудшается развариваемость крупяных изделий, снижаются хлебопекарные достоинства муки).

Жиры (липиды – от греч. lipos - жир)участвуют в пластических процессах организма, являются источником энергии (при окислении 1 г жира образуется 9,0 ккал энергии), жирорастворимых витаминов (A, D, E, K) и незаменимых полиненасыщенных жирных кислот (арахидоновой, линолевой, линоленовой), которые регулируют жировой обмен и уровень холестерина в крови.

Жиры по происхождению делят на животные и растительные, их оптимальное соотношение в пищевом рационе составляет 2:1. Высоким содержанием животных жиров отличаются коровье масло (62-99%), свинина (10-37%), некоторые виды морских животных и рыб (до 30%), а растительных – различные виды растительного масла (99,7%), орехи (40-70%), масличные семена. Смешанный жировой состав имеют такие пищевые жиры как маргарин (40-82%) и майонез (30-67%).

По химической природе жиры представляют смесь сложных эфиров трехатомного спирта глицерина и жирных кислот. В состав жиров могут входить насыщенные (предельные) жирные кислоты (лауриновая, миристиновая, пальмитиновая, стеариновая и др.) и ненасыщенные (непредельные) жирные кислоты (олеиновая, линолевая, линоленовая, арахидоновая и др.), имеющие в молекуле двойные связи. Ненасыщенные жирные кислоты имеют более низкую температуру плавления и проявляют более высокую реакционную способность по сравнению с насыщенными кислотами. Физические и химические свойства жиров зависят от их жирнокислотного состава.

Жиры, содержащие предельные жирные кислоты с большой молекулярной массой, имеют высокую температуру плавления и твердую консистенцию (t пл.бараньего жира = 44-50 0 С). Большинство растительных жиров, а также некоторые животные жиры (например, жиры морских животных и рыб) отличаются высоким содержанием непредельных жирных кислот, соответственно, имеют низкую температуру плавления и жидкую консистенцию при температуре, близкой к 0 0 С и ниже (t пл.подсолн. масла) = -21 0 С). Усвояемость жиров, прежде всего, зависит от их температуры плавления: чем она выше, тем жир труднее усваивается в организме.

Жиры нерастворимы в воде , но могут образовывать с ней эмульсии в присутствии эмульгаторов (производство маргарина, майонеза).

Жиры растворяются в органических растворителях (бензине, хлороформе, петролейном эфире и др.). На этом свойстве основаны экстракционный способ получения растительных масел, а также методика определения массовой доли жиров в составе пищевых продуктов.

Жидкие жиры могут превращаться в твердые в результате насыщения водородом непредельных жирных кислот. Этот процесс происходит в жестких условиях (при температуре 200-220 0 С, в присутствии никелевого катализатора) и называется гидрогенизацией жиров . Получаемый гидрожир или саломас является основным сырьем при производстве маргарина, кулинарных, кондитерских и хлебопекарных жиров.

При хранении снижение качества жиров происходит в результате их гидролиза и окисления.

Гидролиз жиров является первоначальной стадией их порчи. Под действием ферментов липаз в присутствии воды жиры расщепляются на глицерин и свободные жирные кислоты, которые подвергаются в дальнейшем окислительной порче. Для многих жиросодержащих продуктов в стандартах установлен показатель качества – кислотное число, указывающее на степень свежести жира.

Окислению подвергаются, прежде всего, ненасыщенные жирные кис-

лоты, входящие в состав жиров, они присоединяют кислород по месту разрыва двойной связи. Накапливающиеся токсичные продукты окисления – пероксиды и гидропероксиды (на начальной стадии), альдегиды, кетоны, оксикислоты (при глубоком окислении) – придают жирам неприятный прогорклый запах, резкий «царапающий» вкус. Реакция ускоряется с повышением температуры, под воздействием световой энергии, в присутствии влаги и металлов переменной валентности. Замедляют окислительные процессы – антиоксиданты (антиокислители), которые можно подразделить на природные (токоферолы, фенольные вещества, витамин С и др.) и синтетические (ионол, бутилоксианизол - БОА, бутилокситолуол -БОТ, пропилгаллаты и др.). Для предупреждения окислительной порчи жиров, жиросодержащие продукты следует хранить в герметичной упаковке при пониженной температуре, избегая воздействия прямых солнечных лучей.

Кроме типичных жиров в состав пищевых продуктов входят жироподобные соединения (липоиды) , имеющие более сложное строение, – фосфолипиды (лецитины, кефалины), стерины (холестерин, эргостерол и др.), воски . Фосфолипиды являются основными компонентами клеточных мембран и обеспечивают их полупроницаемость, холестерин входит в состав стероидных гормонов и желчных кислот, эргостерол под действием ультрафиолетовых лучей в организме превращается в витамин D, воски растительного и животного происхождения выполняют защитные функции. Лецитин широко используется в пищевой промышленности в качестве эмульгатора (при производстве шоколада, маргарина, мороженого).

Белки илипротеины являются наиболее ценными компонентами пищевых продуктов. Они выполняют важнейшие биологические функции: каталитическую (ферменты) – обеспечивают протекание биохимических процессов в организме, структурную (коллаген, фиброин) – составляют основу клеточных мембран, регуляторную (гормоны) – регулируют гормональный обмен, защитную (иммуноглобулины, интерферон) – формируют иммунитет, двигательную (актин, миозин) – входят в состав мышечной ткани, транспортную (гемоглобин, миоглобин) и другие.

По химической природе белки представляют собой высокомолекулярные биополимеры, молекулы которых построены из остатков аминокислот. Аминокислоты, входящие в состав белков, подразделяют на заменимые – они могут синтезироваться в организме человека из других веществ, и незаменимые (эссенциальные ), которые должны поступать в организм в готовом виде (их всего 8, а у детей – 9). Биологическая ценность белков определяется сбалансированностью аминокислотного состава. Если в состав белка входят все незаменимые аминокислоты, белок называется полноценным . Полноценными являются большинство животных белков – белки молока (казеин, альбумин, глобулин), мяса и рыбы (миозин и актин), яйца (овоальбумин, овоглобулин), а также некоторые растительные белки (картофеля, пшеницы, ржи, гречихи, овса). Белки, в состав которых не входит хотя бы одна незаменимая аминокислота, называются неполноценными . К неполноценным относят животные белки соединительной ткани (коллаген, эластин), а также многие белки растительного происхождения (проса, кукурузы, некоторых бобовых культур).

Некоторые свойства белков лежат в основе технологии производства пищевых продуктов, а также учитываются при хранении.

Большинство белков являются гидрофильными соединениями. Способность белков к связыванию воды и набуханию используется при замесе теста в хлебопечении, производстве сухарных, бараночных и макаронных изделий, в технологии изготовления колбасных изделий. При длительном хранении способность белков к набуханию снижается: увеличивается время варки бобовых круп до готовности, происходит расслаивание простокваши и других жидких кисломолочных продуктов.

Нагревание при температуре выше 50-60 0 С приводит к изменению структуры большинства белков – они свертываются (денатурируют, коагулируют) и теряют гидрофильность. Это свойство белков используется при производстве сыров, творога и творожных изделий, при выпечке хлеба, сушке макарон, молока, рыбы и других продуктов. Оно лежит в основе некоторых методов определения содержания белков в составе продуктов.

Под действием ферментов протеиназ белки подвергаются гидролитическому расщеплению (гидролизу или протеолизу) с образованием пептидов и аминокислот. Гидролитические процессы оказывают благоприятное воздействие на формирование качества мяса, рыбы, сыров при их созревании.

Под действием гнилостных микроорганизмов белки могут разрушаться до более простых соединений – аминов, жирных кислот, фенолов, сероводорода, индола, скатола, меркаптана и других, многие из которых являются сильными ядами. Продукт приобретает резкий, неприятный запах, изменяются его консистенция и цвет. Процесс глубокого распада белков под действием гнилостных бактерий называется гниением и является основной причиной порчи продуктов с высоким содержанием белка.

В состав небелковых азотсодержащих соединений пищевых продуктов входят продукты гидролиза или неполного синтеза белков (пептоны, полипептиды, аминокислоты), аммиачные соединения, алкалоиды (кофеин, теобромин), нуклеиновые кислоты, нитраты и нитриты. Их роль в формировании качества пищевых продуктов различна: некоторые аммиачные соединения обуславливают специфический запах продуктов (например, триметиламин – основной компонент запаха морской рыбы), алкалоиды чая и кофе обладают высокой физиологической активностью – оказывают возбуждающее действие на нервную и сердечно-сосудистую системы, нитриты в небольших количествах добавляют при посоле мяса, колбасного фарша для формирования цвета и т.д.

Витамины являются биорегуляторами различных процессов, протекающих в живом организме. Для нормальной жизнедеятельности человека они необходимы в небольших количествах. Общая суточная потребность организма в различных витаминах составляет 0,1-0,2 г. Большинство витаминов не синтезируется человеческим организмом, поэтому они должны поступать вместе с пищей. В настоящее время известно более 30 витаминов и витаминоподобных веществ (полная незаменимость которых еще не доказана). По растворимости витамины классифицируют на две группы: жирорастворимые и водорастворимые. Характеристика наиболее важных витаминов и витаминоподобных веществ приведена в таблице 3.

Таблица 3.

Наименование витамина Биологическая роль Суточная потребность Продукты, являющиеся источниками
Жирорастворимые витамины
A (ретинолы) Регуляция зрения и роста (у растущих организмов) 0,8-0,9 мг Печень, сливочное масло, растит. масла, яйца, морковь
D (кальциферолы) Антирахитный 2,5-5 мкг Рыбий жир, печень животных и рыб, желток
E (токоферолы) Фактор размножения (при недостатке – бесплодие) 8-10 мг Растит. масла, икра, зародыши злаковых культур
K (филлохинон) Регулирует свертываемость крови 0,2-0,3 мг Листовая зелень, капуста, картофель
Водорастворимые витамины
B 1 (тиамин) Антиневритный, регулирует пищеварение 1,7 мг Хлеб, крупа, дрожжи, мясо, яйца
B 2 (рибофлавин) Участвует в окислит.-восстановит. реакциях 2,0-3,5 мг Хлеб, крупа, чай, дрожжи, мясо, печень
B 6 (пиридоксин) Регулирует белковый и жировой обмен 2,0 мг Дрожжи, яичный желток, бобовые, кукуруза
B 9 (фолиевая кислота) Лечение анемии, лучевой болезни, неврастении и др. 200 мкг Листья салата, шпината, пивные дрожжи, бобы
B 12 (циано- кобаламин) Биосинтез нуклеиновых кислот, фактор кроветворения 1-3 мкг Субпродукты (печень, почки, мозги), говядина
PP (ниацин) Антидерматитный 15-25 мг Печень, почки, мясо, рыба
C (аскорбино- вая кислота) Антицинготный, повышает сопротивляемость организма 60-100 мг Свежие плоды, ягоды, овощи
Витаминоподобные вещества
Витамин U Противоязвенный 250-300 мг Сок капусты, спаржа, петрушка, томаты, молоко
Витамин F (полиненасыщ.к-ты) Регулирует жировой обмен и уровень холестерина в крови 8-15 г Растительные масла, рыбий жир

Ферменты - это биологические катализаторы белковой природы, уско-

ряющие протекание различных биохимических реакций: окислительно-восстановительных (оксидоредуктазы), реакций отщепления (лиазы), внутримолекулярного переноса (изомеразы), синтеза (лигазы) и другие. Собственные эндогенные ферменты пищевых продуктов могут оказывать как положительное, так и отрицательное влияние на их качество. Так, например, благоприятное воздействие ферментативных процессов наблюдается при созревании муки, рыбы и мяса при посоле, при дозревании плодов и овощей, получении солода, черного байхового чая. Глубокие ферментативные процессы приводят к порче пищевых продуктов (автолитическая порча мяса, мацерация – разрушение тканей - плодов и овощей, скисание пива и т.д.). Для продления сроков хранения пищевых продуктов используют различные методы консервирования, снижающие активность эндогенных ферментов.

В пищевой промышленности широко используют ферментные препа-раты - в хлебопечении, пивоварении, при производстве крахмалопродуктов, спирта, плодово-ягодных соков, виноградных вин, мучных кондитерских изделий, сычужных сыров. Ферментативные методы анализа применяют при исследовании качества и идентификации пищевых продуктов.

Органические кислоты придают кислый вкус пищевым продуктам, участвуют в формировании аромата (летучие кислоты), используются в пищевой промышленности в качестве консервантов (уксусная, сорбиновая, бензойная кислоты). Помимо аминокислот и жирных кислот, входящих соответственно в состав белков и жиров, наиболее распространенными являются яблочная, лимонная, винная, молочная, уксусная, щавелевая, муравьиная, хинная, янтарная, фумаровая, бензойная и сорбиновая кислоты.

Общее содержание кислот в составе пищевых продуктов варьирует от 0,1% (картофель, многие овощи) до 6% (лимоны). При хранении продуктов содержание кислот, как правило, увеличивается и в часто приводит к их порче: прокисанию молока, пива, уксуснокислому скисанию вин, соков и т.д. Для многих продовольственных товаров (молока, кисломолочных продуктов, пива, виноградных вин, хлеба и др.) в перечень физико-химических показателей качества входят: кислотность, титруемая кислотность, летучая кислотность, активная кислотность (рН).

Фенольные соединения содержатся преимущественно в продуктах растительного происхождения: плодах и овощах, чае, кофе, шоколаде, виноградных винах, коньяках и др. Многим продуктам они придают терпкий, вяжущий вкус, участвуют в формировании их цвета и аромата. Фенольные соединения относят к физиологически активным веществам: они обладают бактерицидными свойствами, проявляют Р-витаминную активность, являются сильными антиоксидантами.

Эта группа соединений включает фенолкарбоновые кислоты (гидроксибензойную, галловую, ванилиновую, сиреневую, коричную, кумаровую и др.), кумарины и их производные, флавонолы (кверцетин, мирицетин и др.), антоцианы и лейкоантоцианы, катехины, танины или дубильные вещества (являются продуктами полимеризации катехинов и лейкоантоцианов). Фенольные соединения имеют следующие свойства:

· при взаимодействии с белками образуют нерастворимые соединения (свойство используется при осветлении соков, виноградных вин);

· при окислении дают коричневоокрашенные продукты (при сушке и консервировании плоды и овощи бланшируют горячим паром или окуривают сернистым ангидридом для инактивации ферментов, катализирующих этот процесс);

· разрушаются при замораживании (снижается терпкость при замораживании плодов и овощей)

Красящие вещества , входящие в состав пищевых продуктов, можно подразделить на натуральные и синтетические красители. К натуральным относятся собственные эндогенные красящие вещества пищевых продуктов: хлорофиллы – пигменты зеленого цвета (цвет листовой зелени, огурцов, оливкового масла и др.), каротиноиды – пигменты желтого, оранжевого и красного цвета (цвет моркови, красного перца, яичного желтка и др.), флавоноиды – пигменты желто-коричневого цвета (цвет репчатого лука, чая и др.), антоцианы – пигменты красного и синего цвета (цвет кожицы красного винограда, черной смородины, кизила и др.) и другие пигменты. Выделенные из природных источников красители используют в пищевой промышленности для подкрашивания разных пищевых продуктов. Натуральные красители являются нестойкими соединениями – они чувствительны к нагреванию, действию кислорода воздуха, кислот, щелочей, микроорганизмов, поэтому изменение цвета пищевых продуктов при хранении является первым признаком их порчи.

Перечень синтетических красителей, разрешенных к применению в Российской Федерации при производстве пищевых продуктов, регламентирует СанПиН 2.3.2.1078-01 «Гигиенические требования безопасности и пищевой ценности пищевых продуктов. Санитарно-эпидемиологические правила и нормативы». В него входят такие красители как ультрамарин (голубой), тартразин (желтый), индигокармин (синий), азорубин (красный) и др. Запрещены к применению в Российской Федерации при производстве пищевых продуктов красители цитрусовый красный (Е121) и амарант (Е123).

В состав ароматических веществ пищевого продукта входят ароматические компоненты сырья, вещества, образовавшиеся в процессе технологии изготовления (при термической обработке, сушке и т.д.) и при хранении продукта, а также специально внесенные пищевые ароматизаторы. Так, например, в состав ароматических веществ жареного кофе входит 370 различных соединений, земляники – 256, хлеба – 174, коньяка – 128, мяса птицы – 189. Обычно одно или несколько соединений определяют основной аромат пищевого продукта, остальные – участвуют в образовании различных «тонов». Основной аромат лимонам придает цитраль, ванили – ванилин, чесноку – аллилсульфид, тмину – карвон. По химической природе ароматические вещества относятся к разным классам соединений: терпеноидам, спиртам, летучим кислотам, простым и сложным эфирам.

Пищевые ароматизаторы – это сложные композиции душистых веществ натурального, идентичного натуральному или искусственного происхождения. В их состав могут входить до 20-30 и более компонентов различной химической природы.

При длительном хранении пищевых продуктов их запах (аромат) претерпевает существенные изменения за счет улетучивания собственных ароматических веществ и поглощения (сорбции) запахов из окружающего пространства. Для предотвращения этих нежелательных изменений используют герметичную упаковку.



© dagexpo.ru, 2024
Стоматологический сайт