Упругая деформация примеры. Школьная энциклопедия

06.04.2019

Главным отличием твердого тела от жидкостей и газов является его способность сохранять форму, если на тело не действуют слишком большие силы. Если попытаться деформировать твердое тело возникают силы упругости, которые препятствуют деформации.

Определения деформации твердого тела

ОПРЕДЕЛЕНИЕ

Деформацией называют внешнее механическое воздействие на тело, которое приводит к изменению его объема и (или) формы.

Деформация в твердом теле называется упругой, если она пропадает после того, как нагрузку с тела сняли.

Деформация называется пластической (остаточной), если после снятия нагрузки она не исчезает или исчезает не полностью.

Одни и те же тела могут быть упругими и пластичными, это зависит от характера деформации. Так при увеличении нагрузки свыше некоторого предела упругие деформации могут переходить в пластические.

Виды деформации твердых тел

Любые деформации твердого тела можно свести к двум типам: растяжению (сжатию) и сдвигу.

Один конец стержня закрепим, а к другому приложим силу , направленную вдоль его оси, в сторону от его конца. В таком случае стержень будет подвергнут деформации растяжения. Такую деформацию характеризуют при помощи абсолютного удлинения (), которое равно:

где - длина стержня до воздействия на него силы; l - длина растянутого стержня.

Часто применяют для характеристики деформации тела относительное удлинение ():

Если , то такая деформация считается малой. У большинства твердых тел при малых деформациях проявляются упругие свойства.

Если на стержень, конец которого закреплен воздействовать с силой вдоль его оси, но по направлению к концу стержня, то данное тело будет испытывать деформацию сжатия.

При растяжении считают, что title="Rendered by QuickLaTeX.com" height="16" width="47" style="vertical-align: -4px;"> при сжатии .

При деформации растяжения и сжатия площадь поперечного сечения тела изменяется. При растяжении уменьшается, при сжатии увеличивается. Однако, при небольших деформациях данным эффектом, обычно пренебрегают.

Деформацией сдвига называют такой вид деформации, при котором происходит взаимное смещение параллельных слоев материала под воздействием деформирующих сил. Рассмотрим параллелепипед из резины, закрепим его нижнее основание на горизонтальной поверхности. К верхней грани бруска приложим силу, параллельную верхней грани. При этом слои бруска сдвинутся, оставаясь параллельными, вертикальные грани параллелепипеда будут оставаться плоскими, отклонятся от вертикали на некоторый угол .

Закон Гука

При небольших деформациях растяжения (сжатия) между деформирующей силой (F) и абсолютным удлинением . Гуком была установлена связь:

где k - коэффициент упругости (жесткость).

Закон Гука часто записывают иначе. При этом вводится понятие напряжения ():

где S - площадь поперечного сечения тела (стержня). При небольших деформациях напряжение прямо пропорционально относительному удлинению:

где E - модуль упрости или модуль Юнга, который равен напряжению, появляющемуся в стержне, если его относительное удлинение равно единице (или при двойном удлинении длины тела). На практике кроме резины при упругой деформации двойного удлинения невозможно достичь, тело рвется. Модуль Юнга определяют при помощи выражения (5), в измерениях напряжения и относительного удлинения.

Коэффициент упругости и модуль Юнга связаны как:

Примеры решения задач

ПРИМЕР 1

Задание Стена высотой м построена из кирпича плотностью . Каково напряжение у основания этой стены?
Решение В нашей задаче деформирующей силой являются сила тяжести, которая сжимает стену:

Зная плотность кирпича, из которого сложена, стена массу найдем как:

где S площадь основания стены.

По определению напряжение () равно отношению величины силы деформации (F) к площади сечения деформируемого тела:

Подставим вместо массы правую часть выражения (1.2), получим:

Проведем вычисления:

Ответ Па

ПРИМЕР 2

Задание Тело, изготовленное из материала, плотность которого () меньше плотности воды, удерживает под водой пружина (рис.2). Какова величина растяжения пружины под водой (), если то же самое тело в воздухе растягивает его на величину удлинения равную ? Плотность воды считать равной . Объем пружины не учитывать.
Решение Сделаем рисунок.

Будем считать, что наше тело маленький шарик. На шарик в состоянии затопления (рис.2) действуют сила Архимеда (); сила тяжести () и сила упругости пружины (). Шарик находится состоянии покоя, значит, второй закон Ньютона запишем как:

ОПРЕДЕЛЕНИЕ

Деформацией в физике называют изменение размеров, объема и часто формы тела, если к телу приложена внешняя нагрузка, например, при растяжении, сжатии или (и) при изменении его температуры.

Деформация появляется в том случае, если разные части тела совершают разные перемещения. Так, например, если резиновый шнур тянуть за концы, то разные его части сместятся относительно друг друга, и шнур окажется деформированным (растянется, удлинится). При деформации изменяются расстояния между атомами или молекулами тел, поэтому появляются силы упругости.

Виды деформации твердого тела

Деформации можно разделить на упругие и неупругие. Упругой называют деформацию, которая исчезает при прекращении действия деформирующего воздействия. При таком виде деформации происходит возврат частиц из новых положений равновесия в кристаллической решетке в старые.

Неупругие деформации твердого тела называют пластическими. При пластической деформации происходит необратимая перестройка кристаллической решетки.

Кроме этого выделяют следующие виды деформации: растяжение (сжатие); сдвиг, кручение.

Одностороннее растяжение заключается в увеличении длины тела, при воздействии силы растяжения. Мерой такого вида деформации служит величина относительного удлинения ().

Деформация всестороннего растяжения (сжатия) проявляется в изменении (увеличении или уменьшении) объема тела. При этом форма тела не изменяется. Растягивающие (сжимающие) силы равномерно распределяются по всей поверхности тела. Характеристикой, такого вида деформации, является относительное изменение объема тела ().

Сдвиг - это вид деформации, при которой плоские слои твердого тела смещены параллельно друг другу. При этом виде деформации слои не изменяют свою форму и размер. Мерой данной деформации служит угол сдвига.

Деформация кручения состоит в относительном повороте параллельных друг другу сечений, перпендикулярных оси образца.

В теории упругости доказано, что все виды упругой деформации могут сводиться к деформациям растяжения или сжатия, которые происходят в один момент времени.

Закон Гука

Рассмотрим однородный стержень, имеющий длину l и площадь сечения S. К концам стержня приложены две силы равные по величине F, направленные по оси стержня, но в противоположные стороны. При этом длина стержня изменилась на величину .

Английским ученым Р. Гуком эмпирически было установлено, что для небольших деформаций относительное удлинение () прямо пропорционально напряжению ():

где E - модуль Юнга; - сила, которая действует на единичную площадь поперечного сечения проводника. Иначе закон Гука записывают как:

где k - коэффициент упругости. Для силы упругости, возникающей в стержне закон Гука имеет вид:

Линейная зависимость между и выполняется в узких пределах, при небольших нагрузках. При увеличении нагрузки зависимость становится нелинейной, а далее упругая деформация переходит в пластическую деформацию.

Примеры решения задач

ПРИМЕР 1

Задание Какова потенциальная энергия растянутого упругого стержня, если его абсолютное удлинение составляет , коэффициент упругости равен k? Считайте, что закон Гука при этом выполняется.
Решение Потенциальная энергия () упругого растянутого стержня равна работе (A), которую совершают внешние силы, вызывая деформацию:

где x - абсолютное удлинение стержня, которое при деформации изменяется от 0 до . В соответствии с законом Гука, мы имеем:

Подставим выражение (1.2) в формулу (1.1), имеем:

Деформация в природе и технике

Брыкина Марина Юрьевна, учитель физики

МБОУ СШ №18 г. Дзержинск Нижегородская область



Деформация -

изменение формы и объема тела при внешнем воздействии.

При деформации тел возникают силы упругости.

Закон Гука выполняется лишь для упругой деформации!


Виды деформаций

Деформация

упругая - деформация, исчезающая после прекращения действия внешней силы

пластическая- деформация, не исчезающая после прекращения действия внешней силы

резина, сталь, кости, сухожилия, человеческое тело

пластилин, замазка, воск, алюминий,

жевательная резинка


Пластическая и упругая деформация

В процессе деформации важное значение имеет величина межатомных связей, приложение нагрузки достаточной для их разыва приводит к необратимым последствиям (необратимая или пластическая деформация). Если нагрузка не превысила допустимых значений, то тело может вернуться в исходное состояние (упругая деформация). Простейший пример поведения предметов, подверженных пластической и упругой деформацией, можно проследить на падении с высоты резинового мяча и куска пластилина.


Виды деформаций

Растяжение, сжатие

Изгиб

Деформации

Сдвиг , срез

Кручение


Деформация растяжения

Деформация растяжения - вид деформации, при которой нагрузка прикладывается продольно от тела, то есть соосно или параллельно точкам крепления тела. Проще всего растяжение рассмотреть на буксировочном тросе для автомобилей. Трос имеет две точки крепления к буксиру и буксируемому объекту, по мере начала движения трос выпрямляется и начинает тянуть буксируемый объект. В натянутом состоянии трос подвергается деформации растяжения, если нагрузка меньше предельных значений, которые может он выдержать, то после снятия нагрузки трос восстановит свою форму.

Схема растяжения образца


Деформация растяжения

  • воспринимать нагрузки с дальнейшим восстановлением первоначального состояния (упругая деформация)
  • воспринимать нагрузки без восстановления первоначального состояния (пластическая деформация)
  • разрушаться на пределе прочности

Деформация сжатия

Деформация сжатия - вид деформации, аналогичный растяжению, с одним отличием в способе приложения нагрузки, ее прикладывают соосно, но по направлению к телу. Сдавливание объекта с двух сторон приводит к уменьшению его длины и одновременному упрочнению, приложение больших нагрузок образовывает в теле материала утолщения типа «бочка».

Схема сжатия образца


Деформация сдвига

Деформация сдвига - вид деформации, при котором нагрузка прикладывается параллельно основанию тела. В ходе деформации сдвига одна плоскость тела смещается в пространстве относительно другой. На предельные нагрузки сдвига испытываются все крепежные элементы - болты, шурупы, гвозди. Простейший пример деформации сдвига – расшатанный стул, где за основание можно принять пол, а за плоскость приложения нагрузки – сидение.

Схема сдвига образца


Деформация изгиба

Деформация изгиба - вид деформации, при котором нарушается прямолинейность главной оси тела. Деформации изгиба испытывают все тела подвешенные на одной или нескольких опорах. Каждый материал способен воспринимать определенный уровень нагрузки, твердые тела в большинстве случаев способны выдерживать не только свой вес, но и заданную нагрузку. В зависимости от способа приложения нагрузки при изгибе различают чистый и косой изгиб.

Схема изгиба образца


Деформация кручения

Деформация кручения – вид деформации, при котором к телу приложен крутящий момент, вызванный парой сил, действующих в перпендикулярной плоскости оси тела. На кручение работают валы машин, шнеки буровых установок и пружины.

Схема кручения образца


Измерение деформации

тензометр

тензодатчики сопротивления

поляризационно-оптический метод

рентгеноструктурный анализ













Вопросы для блиц-опроса.

Какие виды деформации испытывают

стены зданий?

Тросы подъемного крана?

Рельсы на железной дороге?

Валы машин?

Бумага при разрезании?

  • Какие виды деформации испытывает человеческое тело при утренней зарядке?

Приведите примеры.


Возможные ответы

Стены зданий испытывают деформацию здания;

Тросы подъемного крана испытывают деформацию растяжения;

  • Рельсы на железной дороге - деформацию изгиба;
  • Валы машин - деформацию кручения;
  • Бумага при разрезании испытывает деформацию максимального сдвига или среза.

Как уже говорилось, под действием нагрузок конструкция деформируется, т. е. форма и размеры ее могут изменяться.

Деформации бывают упругие, т. е. исчезающие после прекращения действия вызвавших их сил, и пластические, или остаточные, - не исчезающие.

Деформации элементов конструкций могут быть очень сложными, но эти сложные деформации всегда можно представить состоящими из небольшого числа основных видов деформаций.

Основными видами деформаций элементов конструкций являются:

растяжение (рис. 3, а) илисжатие (рис. 3, б). Растяжение или сжатие возникает, например, в случае, когда к стержню по его оси приложены противоположно направленные силы.

Рис. 3

Изменение
первоначальной длиныстержня называют абсолютным удлинением при растяжении и абсолютным укорочением при сжатии. Отношение абсолютного удлинения (укорочения)
к первоначальной длине стержняназываютотносительным удлинением на длинеи обозначают

сдвиг илисрез (рис. 4). Сдвиг или срез возникает, когда внешние силы смещают два параллельных плоских сечения стержня одно относительно другого при неизменном расстоянии между ними;

Рис. 4

Величина смещения
называется абсолютным сдвигом. Отношение абсолютного сдвига к расстояниюмежду смещающимися плоскостями называют относительным сдвигом. Вследствие малости углапри упругих деформациях его тангенс принимают равным углу перекоса рассматриваемого элемента. Следовательно, относительный сдвиг

.

кручение (рис. 5). Кручение возникает при действии на стержень внешних сил, образующих момент относительно оси стержня;

Рис. 5

Деформация кручения сопровождается поворотом поперечных сечений стержня относительно друг друга вокруг его оси. Угол поворота одного сечения стержня относительно другого, находящегося на расстоянии , называют углом закручивания на длине. Отношение угла закручиванияк длиненазывают относительным углом закручивания:

изгиб (рис. 6). Деформация изгиба заключается в искривлении оси прямого стержня или в изменении кривизны кривого стержня.

Рис. 6

В прямых стержнях перемещения точек, направленные перпендикулярно к начальному расположению оси, называют прогибами и обозначают буквой
. При изгибе происходит также поворот сечений стержня вокруг осей, лежащих в плоскостях сечений. Углы поворота сечений относительно их первоначальных положений обозначают буквой.

Основные гипотезы науки о сопротивлении материалов.

Для построения теории сопротивления материалов принимают некоторые допущения (гипотезы) относительно структуры и свойств материалов, а также о характере деформации[ 3 ].

    Гипотеза о сплошности материала . Предполагается, что материал сплошь заполняет форму тела. Атомическая теория дискретного состояния вещества во внимание не принимается.

    Гипотеза об однородности и изотропности . В любом объеме и в любом направлении свойства материала считаются одинаковыми. В некоторых случаях предположение об изотропии неприемлемо. Например, свойства древесины вдоль и поперек волокон существенно различны.

    Гипотеза о малости деформации. Предполагается, что деформации малы по сравнению с размерами тела. Это позволяет составлять уравнения статики для недеформированного тела.

    Гипотеза об идеальной упругости материала. Все тела предполагаются абсолютно упругими.

Перечисленные выше гипотезы намного упрощают решение задач по расчету на прочность, жесткость и устойчивость. Результаты расчетов хорошо сходятся с данными практики.

Изгибом называется деформация, при которой ось стержня и все его волокна, т. е. продольные линии, параллельные оси стержня, искривляются под действием внешних сил. Наиболее простой случай изгиба получается тогда, когда внешние силы будут лежать в плоскости, проходящей через центральную ось стержня, и не дадут проекций на эту ось. Такой случай изгиба называют поперечным изгибом. Различают плоский изгиб и косой.

Плоский изгиб – такой случай, когда изогнутая ось стержня расположена в той же плоскости, в которой действуют внешние силы.

Косой (сложный) изгиб – такой случай изгиба, когда изогнутая ось стержня не лежит в плоскости действия внешних сил.

Работающий на изгиб стержень обычно называют балкой.

При плоском поперечном изгибе балок в сечении с системой координат у0х могут возникать два внутренних усилия – поперечная сила Q у и изгибающий момент М х; в дальнейшем для них вводятся обозначения Q и M. Если в сечении или на участке балки поперечная сила отсутствует (Q=0), а изгибающий момент не равен нулю или М – const, то такой изгиб принято называть чистым .

Поперечная сила в каком-либо сечении балки численно равна алгебраической сумме проекций на ось у всех сил (включая опорные реакции), расположенных по одну сторону (любую) от проведенного сечения.

Изгибающий момент в сечении балки численно равен алгебраической сумме моментов всех сил (включая и опорные реакции), расположенных по одну сторону (любую) от проведенного сечения относительно центра тяжести этого сечения, точнее, относительно оси, проходящей перпендикулярно плоскости чертежа через центр тяжести проведенного сечения.

Сила Q представляет равнодействующую распределенных по сечению внутренних касательных напряжений , а момент М сумму моментов вокруг центральной оси сечения Х внутренних нормальных напряжений.

Между внутренними усилиями существует дифференциальная зависимость

которая используется при построении и проверке эпюр Q и M.

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков, в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем . Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линие й или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений. Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе. Поперечное сечение балки при изгибе искажается. За счет поперечной деформации размеры поперечного сечения в сжатой зоне балки увеличиваются, а в растянутой сжимаются.

Допущения для вывода формул. Нормальные напряжения

1) Выполняется гипотеза плоских сечений.

2) Продольные волокна друг на друга не давят и, следовательно, под действием нормальных напряжений линейные растяжения или сжатия работают.

3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми.

4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости.

5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков.

6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

При чистом изгибе балки на площадках в ее сечении действуют только нормальные напряжения , определяемые по формуле:

где у – координата произвольной точки сечения, отчитываемая от нейтральной линии — главной центральной оси х.

Нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону . На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю.

Характер эпюр нормальных напряжений для симметричных сечений относительно нейтральной линии

Характер эпюр нормальных напряжений для сечений, не обладающих симметрией относительно нейтральной линии

Опасными являются точки, наиболее удаленные от нейтральной линии.

Выберем некоторое сечение

Для любой точки сечения,назовем ее точкой К , условие прочности балки по нормальным напряжениям имеет вид:

, где н.о. — это нейтральная ось

это осевой момент сопротивления сечения относительно нейтральной оси. Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Условие прочности по нормальным напряжениям:

Нормальное напряжение равно отношению максимального изгибающего момента к осевому моменту сопротивления сечения относительно нейтральной оси.

Если материал неодинаково сопротивляется растяжению и сжатию, то необходимо использовать два условия прочности: для зоны растяжения с допускаемым напряжением на растяжение; для зоны сжатия с допускаемым напряжением на сжатие.

При поперечном изгибе балки на площадках в ее сечении действуют как нормальные , так и касательные напряжения.



© dagexpo.ru, 2024
Стоматологический сайт