Такие глаза называются фасеточными. Фасеточные глаза

11.04.2019

Глаз насекомого при большом увеличении похож на мелкую решетку.
Это потому, что глаз насекомого состоит из множества маленьких "глазков"-фасеток. Глаза насекомых называют фасеточными. Крошечный глазок-фасетка называется омматидий. Омматидий имеет вид длинного узкого конуса, основание которого - линза, имеющая вид шестигранника. Отсюда и название фасеточного глаза: facette в переводе с французского означает "грань".

Пучок омматидиев составляет сложный, круглый, глаз насекомого.

Каждый омматидий имеет очень ограниченное поле зрения: угол обзора омматидиев в центральной части глаза - всего около 1°, а по краям глаза - до 3°. Омматидий «видит» только тот крошечный участок находящегося перед глазами предмета, на который он "нацелен", то есть куда направлено продолжение его оси. Но так как омматидии тесно прилегают друг к другу, а их оси в круглом глазу расходятся лучеобразно, то весь сложный глаз охватывает предмет в целом. Причём изображение предмета получается в нем мозаичным, то есть составленным из отдельных кусочков.

Число омматидиев в глазу у разных насекомых различно. У рабочего муравья в глазу всего около 100 омматидиев, у комнатной мухи - около 4000, у рабочей пчелы - 5000, у бабочек - до 17 000, а у стрекоз - до 30 000! Таким образом, у муравья зрение весьма посредственное, тогда как огромные глаза стрекозы - два радужных полушария - обеспечивают максимальное поле зрения.

Из-за того, что оптические оси омматидиев расходятся под углами 1-6°, четкость изображения насекомых не очень высока: мелких деталей они не различают. Кроме того, большинство насекомых близоруки: видят окружающие предметы на расстоянии лишь нескольких метров. Зато фасеточные глаза отлично умеют различать мелькания (мигания) света с частотой до 250–300 герц (для человека предельная частота около 50 герц). Глаза насекомых способны определять интенсивность светового потока (яркость), а кроме того, они обладают уникальной способностью: умеют определять плоскость поляризации света. Эта способность помогает им ориентироваться, когда солнца не видно на небосклоне*.

Насекомые различают цвета, но совсем не так, как мы. Например, пчелы «не знают» красного цвета и не отличают его от чёрного, но зато воспринимают невидимые для нас ультрафиолетовые лучи, которые расположены на противоположном конце спектра. Ультрафиолет различают также некоторые бабочки, муравьи и другие насекомые. Кстати, именно слепостью насекомых-опылителей нашей полосы к красному цвету объясняется любопытный факт, что среди нашей дикорастущей флоры нет растений с алыми цветками.

*Свет, идущий от солнца, не поляризован, то есть его фотоны имеют произвольную ориентацию. Однако, проходя через атмосферу, свет поляризуется в результате рассеивания молекулами воздуха, и при этом плоскость его поляризации всегда направлен на солнце

Кроме фасеточных глаз у насекомых есть еще три простых глазка диаметром 0,03-0,5 мм, которые располагаются в виде треугольника на лобно-теменной поверхности головы. Эти глазки не приспособлены для различения объектов и нужны для совсем другой цели. Они измеряют усредненный уровень освещенности, который при обработке зрительных сигналов используется в качестве точки отсчета («ноль-сигнала»). Если заклеить насекомому эти глазки, оно сохраняет способность к пространственной ориентации, но летать сможет только при более ярком свете, чем обычно. Причина этого в том, что заклеенные глазки принимают за «средний уровень» черное поле и тем самым задают фасеточным глазам более широкий диапазон освещенности, а это, соответственно, снижает их чувствительность.

Энциклопедия «Биология»

Фасеточные глаза

(сложные глаза), основной парный орган зрения ракообразных, членистоногих и некоторых других беспозвоночных, состоящий из одинаковых простых «глазков» – омматидиев, расположенных в геометрическом порядке. Фасеточные глаза всегда выпуклые. Каждый омматидий даёт прямое изображение части расположенного непосредственно перед ним предмета, а общий его вид складывается, как мозаика, из отдельных частей с участием всех омматидиев. Омматидии членистоногих – мельчайшие светочувствительные органы, состоящие из линзы роговицы, кристаллического конуса, зрительных рецепторных клеток, расположенных, как дольки, в апельсине, и примыкающих к ним пигментных клеток. У различных животных может быть разное количество омматидиев (от нескольких штук до нескольких десятков тыс.). Так, у дафнии 22 омматидия, а у стрекозы ок. 30 тыс. Различают 3 типа фасеточных глаз: аппозиционные, оптико-суперпозиционные и нейросуперпозиционные. В аппозиционных глазах смежные омматидии изолированы друг от друга пигментными клетками. Такие глаза присущи в основном дневным животным, напр. пчёлам, крабам, ракам-богомолам. Оптико-суперпозиционные глаза в условиях сильной освещённости могут функционировать как аппозиционные, но при слабом освещении форма пигментных клеток изменяется, образуется т. н. «прозрачная зона», благодаря чему лучи света из разных омматидиев собираются на один. Подобные глаза присущи ночным ракообразным (креветкам, омарам) и бабочкам. Вершиной эволюции зрения являются нейросуперпозиционные глаза, напр. у мух, в которых разрешающая сила может быть в 100 раз выше, чем в глазах другого типа. Лучи света одного источника падают на зрительные клетки смежных омматидиев, аксоны которых сходятся на одном патроне оптического ганглия. В каждом омматидии 8 зрительных клеток, воспринимающих лучи различных источников света.

Энциклопедический словарь

Фасеточные Глаза

(от франц. facette - грань) (сложные глаза), парный орган зрения насекомых, ракообразных и некоторых др. беспозвоночных; образован многочисленными отдельными глазками - омматидиями. Хорошо воспринимают движущиеся объекты, обеспечивают широкое поле зрения. Острота зрения и способность к восприятию формы предмета развиты слабо.

ФАСЕТОЧНЫЕ ГЛАЗА

сложные глаза (oculi), основной парный орган зрения ракообразных, насекомых и нек-рых других беспозвоночных, образованный омматидиями, роговичная линза к-рых имеет вид выпуклого 6-гранника - фасетки (франц. facette - грань, отсюда назв.). Ф. г. насекомых неподвижно расположены по бокам головы, иногда (у стрекоз, мух и др.) занимая почти всю её поверхность, у нек-рых ракообразных - на подвижных стеблевидных выростах. Наиб, изучены Ф. г. насекомых, у к-рых они сложены большим числом (до 30 тыс.) омматидиев. Различают 3 морфофункц. типа Ф. г. В аппозиционных Ф. г. (свойственны обычно дневным насекомым) смежные омматидии постоянно изолированы друг от друга непрозрачным пигментом, локализованным в спец. пигментных клетках. В оптикосуперпозиционных Ф. г. изоляция омматидиев переменная, и при недостатке света происходит наложение (суперпозиция) лучей, прошедших сквозь разные фасетки. В таких Ф. г. с «прозрачной зоной», свойственных ночным насекомым и ракообразным, тела зрительных клеток и утолщённый рабдом сдвинуты проксимально. Для нейросуперпозиционных Ф. г. мух характерна суммация нервных сигналов от неск. зрительных клеток, получающих свет из одной и той же точки пространства. Нервная проекция сетчатки на оптич. ганглии мозга и свойства оптики таковы, что Ф. г. обеспечивают анализ внеш. мира с точностью до растра омматидиев, а не отд. зрительных клеток, как у позвоночных. Низкая угловая плотность омматидиев (их оптич. оси расходятся под углом от 1 до 6-8° и больше) препятствует различению мелких деталей, но малая инерционность в сочетании с высокой контрастной чувствительностью сетчатки позволяет нек-рым насекомым воспринимать мелькания с частотой до 250- 300 Гц. Ф. г. обеспечивают мн. беспозвоночным цветовое зрение с восприятием УФ-лучей и анализ направления плоскости линейно поляризованного света, благодаря чему они могут ориентироваться по картине поляризации безоблачного неба. (см. ОММАТИДИИ).

Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)

фасе́точные глаза́

(сложные глаза), основной парный орган зрения ракообразных, членистоногих и некоторых других беспозвоночных, состоящий из одинаковых простых «глазков» – омматидиев, расположенных в геометрическом порядке. Фасеточные глаза всегда выпуклые. Каждый омматидий даёт прямое изображение части расположенного непосредственно перед ним предмета, а общий его вид складывается, как мозаика, из отдельных частей с участием всех омматидиев.
Омматидии членистоногих – мельчайшие светочувствительные органы, состоящие из линзы роговицы, кристаллического конуса, зрительных рецепторных клеток, расположенных, как дольки, в апельсине, и примыкающих к ним пигментных клеток. У различных животных может быть разное количество омматидиев (от нескольких штук до нескольких десятков тыс.). Так, у дафнии 22 омматидия, а у стрекозы ок. 30 тыс.
Различают 3 типа фасеточных глаз: аппозиционные, оптико-суперпозиционные и нейросуперпозиционные. В аппозиционных глазах смежные омматидии изолированы друг от друга пигментными клетками. Такие глаза присущи в основном дневным животным, напр. пчёлам, крабам, ракам-богомолам. Оптико-суперпозиционные глаза в условиях сильной освещённости могут функционировать как аппозиционные, но при слабом освещении форма пигментных клеток изменяется, образуется т.н. «прозрачная зона», благодаря чему лучи света из разных омматидиев собираются на один. Подобные глаза присущи ночным ракообразным (креветкам, омарам) и бабочкам. Вершиной эволюции зрения являются нейросуперпозиционные глаза, напр. у мух, в которых разрешающая сила может быть в 100 раз выше, чем в глазах другого типа. Лучи света одного источника падают на зрительные клетки смежных омматидиев, аксоны которых сходятся на одном патроне оптического ганглия. В каждом омматидии 8 зрительных клеток, воспринимающих лучи различных источников света.

Считается, что до 90% знаний о внешнем мире человек получает при помощи своего стереоскопического зрения. Зайцы обзавелись боковым зрением, благодаря которому они могут видеть объекты, находящиеся сбоку и даже позади себя. У глубоководных рыб глаза могут занимать до половины головы, а теменной «третий глаз» миноги позволяет ей неплохо ориентироваться в воде. Змеи способны видеть только движущийся объект, а самыми зоркими в мире признаны глаза сокола-сапсана, способного выследить добычу с высоты 8 км!

Но как видят мир представители самого многочисленного и разнообразного класса живых существ на Земле - насекомых? Наряду с позвоночными животными, которым они проигрывают только по размерам тела, именно насекомые обладают наиболее совершенным зрением и сложноустроенными оптическими системами глаза. Хотя фасеточные глаза насекомых не обладают аккомодацией, вследствие чего их можно назвать близорукими, однако они, в отличие от человека, способны различать чрезвычайно быстро двигающиеся объекты. А благодаря упорядоченной структуре своих фоторецепторов многие из них обладают настоящим «шестым чувством» - поляризационным зрением.

Меркнет зрение - сила моя,
Два незримых алмазных копья...

А. Тарковский (1983)

Трудно переоценить значение света (электромагнитного излучения видимого спектра) для всех обитателей нашей планеты. Солнечный свет служит основным источником энергии для фотосинтезирующих растений и бактерий, а опосредованно через них - и для всех живых организмов земной биосферы. Свет непосредственно влияет на протекание всего многообразия жизненных процессов животных, от размножения до сезонной смены окраски. И, конечно, благодаря восприятию света специальными органами чувств, животные получают значительную (а часто и бо льшую) часть сведений об окружающем мире, могут различать форму и цвет объектов, определять движение тел, ориентироваться в пространстве и т. п.

Зрение особенно важно для животных, способных активно передвигаться в пространстве: именно с возникновением подвижных животных начал формироваться и совершенствоваться зрительный аппарат - сложнейший из всех известных сенсорных систем. К таким животным относятся позвоночные и среди беспозвоночных - головоногие моллюски и насекомые. Именно эти группы организмов могут похвалиться самыми сложноустроенными органами зрения.

Однако зрительный аппарат у этих групп значительно различается, как и восприятие образов. Считается, что насекомые в целом более примитивны по сравнению с позвоночными, не говоря уже о высшем их звене - млекопитающих, и, естественно, человеке. Но вот насколько различается их зрительное восприятие? Иными словами, намного ли отличается от нашего мир, увиденный глазами маленького создания по имени муха?

Мозаика из шестигранников

Зрительная система насекомых в принципе не отличается от таковой у других животных и состоит из периферических органов зрения, нервных структур и образований центральной нервной системы. Но что касается морфологии органов зрения, то здесь различия просто бросаются в глаза.

Всем знакомы сложные фасеточные глаза насекомых, которые встречаются у взрослых насекомых или у личинок насекомых, развивающихся с неполным превращением , т. е. без стадии куколки. Исключений из этого правила не так много: это блохи (отряд Siphonaptera), веерокрылые (отряд Strepsiptera), большинство чешуйниц (семейство Lepismatidae) и весь класс скрыточелюстных (Entognatha).

Фасеточный глаз по виду напоминает корзинку спелого подсолнуха: он состоит из набора фасеток (омматидиев ) - автономных приемников светового излучения, имеющих все необходимое для регуляции светового потока и формирования изображения. Число фасеток сильно варьирует: от нескольких у щетинохвосток (отряд Thysanura) до 30 тыс. у стрекоз (отряд Aeshna). Удивительно, но число омматидиев может варьироваться даже внутри одной систематической группы: например, ряд видов жуков-жужелиц, обитающих на открытых пространствах, имеют хорошо развитые фасеточные глаза с большим количеством омматидиев, в то время как у жужелиц, обитающих под камнями, глаза сильно редуцированы и состоят из небольшого числа омматидиев.

Верхний слой омматидиев представлен роговицей (хрусталиком) - участком прозрачной кутикулы, секретируемой специальными клетками, которая представляет собой своеобразную шестигранную двояковыпуклую линзу. Под роговицей у большинства насекомых располагается прозрачный кристаллический конус, структура которого может различаться у разных видов. У некоторых видов, особенно ведущих ночной образ жизни, в светопреломляющем аппарате имеются дополнительные структуры, играющие главным образом роль антибликового покрытия и увеличивающие светопропускание глаза.

Изображение, сформированное хрусталиком и кристаллическим конусом, попадает на светочувствительные ретинальные (зрительные) клетки, представляющие собой нейрон с коротким хвостиком-аксоном. Несколько ретинальных клеток образуют единый цилиндрический пучок - ретинулу . Внутри каждой такой клетки на стороне, обращенной внутрь омматидия, расположен рабдомер - особое образование из множества (до 75–100 тыс.) микроскопических трубочек-ворсинок, в мембране которых содержится зрительный пигмент. Как и у всех позвоночных, этим пигментом является родопсин - сложный окрашенный белок. Благодаря огромной площади этих мембран фоторецепторный нейрон содержит большое количество молекул родопсина (например, у плодовой мушки Drosophila это число превышает 100 млн!).

Рабдомеры всех зрительных клеток, объединенные в рабдом , и являются светочувствительными, рецепторными элементами фасеточного глаза, а все ретинулы в совокупности составляют аналог нашей сетчатки.

Светопреломляющий и светочувствительный аппарат фасетки по периметру окружают клетки с пигментами, которые играют роль световой изоляции: благодаря им световой поток, преломляясь, попадает на нейроны только одного омматидия. Но так устроены фасетки в так называемых фотопических глазах, приспособленных к яркому дневному свету.

Для видов, ведущих сумеречный или ночной образ жизни, характерны глаза другого типа - скотопические . Такие глаза имеют ряд приспособлений к недостаточному световому потоку, например, очень большие рабдомеры. Кроме того, в омматидиях таких глаз светоизолирующие пигменты могут свободно мигрировать внутри клеток, благодаря чему световой поток может попадать на зрительные клетки соседних омматидиев. Этот феномен лежит в основе и так называемой темновой адаптации глаз насекомых - увеличении чувствительности глаза при недостаточном освещении.

При поглощении рабдомерами фотонов света в ретинальных клетках генерируются нервные импульсы, которые по аксонам направляются в парные зрительные доли головного мозга насекомых. В каждой зрительной доле имеется по три ассоциативных центра, где и осуществляется переработка потока зрительной информации, одновременно идущей от множества фасеток.

От одного до тридцати

Согласно древним легендам, у людей некогда имелся «третий глаз», отвечающий за сверхчувственное восприятие. Доказательств этому нет, однако та же минога и другие животные, такие как ящерица-гаттерия и некоторые земноводные, имеют необычные светочувствительные органы в «неположенном» месте. И в этом смысле насекомые не отстают от позвоночных: помимо обычных фасеточных глаз у них встречаются небольшие дополнительные глазки - оцелли , расположенные на лобно-теменной поверхности, и стеммы - по бокам головы.

Оцелли имеются в основном у хорошо летающих насекомых: взрослых особей (у видов с полным превращением) и личинок (у видов с неполным превращением). Как правило, это три глазка, расположенные в виде треугольника, но иногда срединный либо два боковых могут отсутствовать. По строению оцелли сходны с омматидиями: под светопреломляющей линзой у них находится слой прозрачных клеток (аналог кристаллического конуса) и сетчатка-ретинула.

Стеммы можно обнаружить у личинок насекомых, развивающихся с полным превращением. Их число и расположение варьирует в зависимости от вида: с каждой стороны головы может располагаться от одного до тридцати глазков. У гусениц чаще встречается шесть глазков, расположенных так, что каждый из них имеет обособленное поле зрения.

В разных отрядах насекомых стеммы могут отличаться друг от друга по строению. Эти различия связаны, возможно, с их происхождением от разных морфологических структур. Так, число нейронов в одном глазке может составлять от нескольких единиц до нескольких тысяч. Естественно, это сказывается на восприятии насекомыми окружающего мира: если некоторые из них могут видеть лишь перемещение светлых и темных пятен, то другие способны распознавать размеры, форму и цвет предметов.

Как мы видим, и стеммы, и омматидии представляют собой аналоги одиночных фасеток, пусть и видоизмененные. Однако у насекомых имеются и другие «запасные» варианты. Так, некоторые личинки (особенно из отряда двукрылых) способны распознать свет даже при полностью затененных глазках с помощью фоточувствительных клеток, расположенных на поверхности тела. А некоторые виды бабочек имеют так называемые генитальные фоторецепторы.

Все такие фоторецепторные зоны устроены схожим образом и представляют собой скопление из нескольких нейронов под прозрачной (или полупрозрачной) кутикулой. За счет подобных дополнительных «глаз» личинки двукрылых избегают открытых пространств, а самки бабочек используют их при откладке яиц в затененных местах.

Фасеточный поляроид

На что способны сложноустроенные глаза насекомых? Как известно, у любого оптического излучения можно выделить три характеристики: яркость , спектр (длину волны) и поляризацию (ориентированность колебаний электромагнитной составляющей).

Спектральную характеристику света насекомые используют для регистрации и распознавания объектов окружающего мира. Практически все они способны воспринимать свет в диапазоне от 300–700 нм, в том числе и недоступную для позвоночных ультрафиолетовую часть спектра.

Как правило, разные цвета воспринимаются различными областями сложного глаза насекомых. Такая «локальная» чувствительность может различаться даже в пределах одного вида в зависимости от половой принадлежности особи. Нередко в одном и том же омматидии могут находиться различные цветовые рецепторы. Так, у бабочек рода Papilio два фоторецептора имеют зрительный пигмент с максимумом поглощения 360, 400 или 460 нм, еще два - 520 нм, а остальные - от 520 до 600 нм (Kelber et al., 2001).

Но это далеко не все, что умеет глаз насекомого. Как упоминалось выше, в зрительных нейронах фоторецепторная мембрана микроворсинок рабдомера свернута в трубку круглого или гексагонального сечения. За счет этого часть молекул родопсина не участвуют в поглощении света из-за того, что дипольные моменты этих молекул располагаются параллельно ходу светового луча (Говардовский, Грибакин, 1975). В результате микроворсинка приобретает дихроизм - способность к различному поглощению света в зависимости от его поляризации. Повышению поляризационной чувствительности омматидия способствует и то, что молекулы зрительного пигмента не располагаются в мембране хаотично, как у человека, а ориентированы в одном направлении, да к тому же жестко закреплены.

Если глаз способен различить два источника света на основе их спектральных характеристик вне зависимости от интенсивности излучения, можно говорить о цветовом зрении . Но если он делает это, фиксируя поляризационный угол, как в данном случае, мы имеем все основания говорить о поляризационном зрении насекомых.

Как же воспринимают насекомые поляризованный свет? Исходя из структуры омматидия, можно предположить, что все фоторецепторы должны быть одновременно чувствительными как к определенной длине (длинам) световых волн, так и к степени поляризации света. Но в таком случае могут возникнуть серьезные проблемы - так называемое ложное восприятие цвета . Так, свет, отраженный с глянцевой поверхности листьев или водной глади, частично поляризуется. В этом случае мозг, анализируя данные фоторецепторов, может ошибиться в оценке интенсивности окраски либо формы отражающей поверхности.

Насекомые научились успешно справляться с подобными трудностями. Так, у ряда насекомых (в первую очередь мух и пчел) в омматидиях, воспринимающих только цвет, формируется рабдом закрытого типа , в котором рабдомеры не контактируют между собой. При этом у них имеются также омматидии с обычными прямыми рабдомами, чувствительные и к поляризационному свету. У пчел такие фасетки располагаются по краю глаза (Wehner, Bernard, 1993). У некоторых бабочек искажения при восприятии цвета снимаются за счет значительного искривления микроворсинок рабдомеров (Kelber et al., 2001).

У многих других насекомых, особенно у чешуекрылых, во всех омматидиях сохраняются обычные прямые рабдомы, поэтому их фоторецепторы способны одновременно воспринимать и «цветной», и поляризованный свет. При этом каждый из этих рецепторов чувствителен лишь к определенному поляризационному углу преференции и определенной длине световой волны. Такое сложное зрительное восприятие помогает бабочкам при питании и откладке яиц (Kelber et al., 2001).

Незнакомая Земля

Можно бесконечно углубляться в особенности морфологии и биохимии глаза насекомых и все равно затруднится в ответе на такой простой и одновременно невероятно сложный вопрос: как видят насекомые?

Человеку трудно даже представить образы, возникающие в головном мозге насекомых. Но все нужно заметить, что популярная сегодня мозаичная теория зрения , согласно которой насекомое видит изображение в виде своеобразного пазла из шестигранников, не совсем точно отражает суть проблемы. Дело в том, что хотя каждая единичная фасетка фиксирует отдельный образ, являющийся лишь частью цельной картины, эти изображения могут перекрываться с изображениями, полученными с соседних фасеток. Поэтому изображение мира, полученное с помощью огромного глаза стрекозы, состоящего из тысяч миниатюрных камер-фасеток, и «скромного» шестифасеточного глаза муравья, будет сильно различаться.

Что касается остроты зрения (разрешающей способности , т. е. способности различать степень расчлененности объектов), то у насекомых она определяется количеством фасеток, приходящихся на единицу выпуклой поверхности глаза, т. е. их угловой плотностью. В отличие от человека, глаза насекомых не обладают аккомодацией: радиус кривизны светопроводящей линзы у них не меняется. В этом смысле насекомых можно назвать близорукими: они видят тем больше деталей, чем ближе к объекту наблюдения находятся.

При этом насекомые с фасеточными глазами способны различать очень быстро движущиеся объекты, что объясняется высокой контрастностью и малой инерционностью их зрительной системы. К примеру, человек может различать лишь около двадцати вспышек в секунду, а пчела - в десять раз больше! Такое свойство жизненно важно для быстролетающих насекомых, которым нужно принимать решения непосредственно в полете.

Цветовые образы, воспринимаемые насекомыми, также могут быть гораздо сложнее и необычнее, чем у нас. К примеру, цветок, кажущийся нам белым, часто скрывает в своих лепестках множество пигментов, способных отражать ультрафиолетовый свет. И в глазах насекомых-опылителей он сверкает множеством красочных оттенков - указателей на пути к нектару.

Считается, что насекомые «не видят» красный цвет, который в «чистом виде» и встречается в природе чрезвычайно редко (исключение - тропические растения, опыляемые колибри). Однако цветы, окрашенные в красный цвет, часто содержат и другие пигменты, способные отражать коротковолновые излучения. А если учесть, что многие из насекомых способны воспринимать не три основных цвета, как человек, а больше (иногда до пяти!), то их зрительные образы должны представлять собой просто феерию красок.

И, наконец, «шестое чувство» насекомых - поляризационное зрение. С его помощью насекомым удается увидеть в окружающем мире то, о чем человек может получить лишь слабое представление с помощью специальных оптических фильтров. Насекомые же таким способом могут безошибочно определять местонахождение солнца на облачном небе и использовать поляризованный свет в качестве «небесного компаса». А водные насекомые в полете обнаруживают водоемы по частично поляризованному свету, отраженному от зеркала воды (Schwind, 1991). Но вот какие при этом они «видят» образы, человеку просто невозможно себе представить...

У всех, кто по той или иной причине интересуется зрением насекомых, может возникнуть вопрос: почему у них не сформировался камерный глаз, подобный человеческому глазу, со зрачком, хрусталиком и прочими приспособлениями?

На этот вопрос в свое время исчерпывающе ответил выдающийся американский физик-теоретик, Нобелевский лауреат Р. Фейнман: «Этому мешает несколько довольно интересных причин. Прежде всего, пчела слишком мала: если бы она имела глаз, похожий на наш, но соответственно уменьшенный, то размер зрачка оказался бы порядка 30 мкм, а поэтому дифракция была бы столь велика, что пчела все равно не могла бы видеть лучше. Слишком маленький глаз - это не очень хорошо. Если же такой глаз сделать достаточного размера, то он должен быть не меньше головы самой пчелы. Ценность сложного глаза в том и состоит, что он практически не занимает места - просто тоненький слой на поверхности головы. Так что, прежде чем давать советы пчеле, не забывайте, что у нее есть свои собственные проблемы!»

Поэтому неудивительно, что насекомые выбрали свой путь в зрительном познании мира. Да и нам, чтобы видеть его с точки зрения насекомых, пришлось бы, для сохранения привычной остроты зрения, обзавестись громадными фасеточными глазами. Вряд ли такое приобретение оказалось бы нам полезным с точки зрения эволюции. Каждому - свое!

Литература
1. Тыщенко В. П. Физиология насекомых. М.: Высшая школа, 1986, 304 с.
2. Klowden M. J. Physiological Systems in Insects. Academ Press, 2007. 688 p.
3. Nation J. L. Insect Physiology and Biochemistry. Second Edition: CRC Press, 2008.

И некоторых других членистоногих. Характерно цветовое зрение с восприятием ультрафиолетовых лучей и направления поляризации линейно-поляризованного света, при плохом различении мелких деталей, но хорошей способностью различать мелькания (мигания) света с частотой вплоть до 250-300 Гц (для человека предельная частота около 50 Гц).

Апозиционные (фотопические) фасеточные глаза

В апозиционных фасеточных глазах, свойственных обычно дневным насекомым, смежные омматидии постоянно изолированы друг от друга непрозрачным пигментом и рецепторы воспринимают только свет, направление которого совпадает с осью данного омматидия.

Оптикосуперпозиционные фасеточные глаза

В оптикосуперпозиционных фасеточных глазах, характерных для ночных и сумеречных насекомых и многих ракообразных, изоляция омматидиев переменная (вследствие способности пигмента перемещаться), и при недостатке света происходит наложение (суперпозиция) падающих под косым углом лучей , прошедших не сквозь одну, а сквозь несколько фасеток. Таким образом, при слабом освещении увеличивается чувствительность глаза.

Нейросуперпозиционные фасеточные глаза

Для нейросуперпозиционных фасеточных глаз характерна суммация сигналов от зрительных клеток, находящихся в разных омматидиях, но получающих свет из одной и той же точки пространства.

Разрешающая способность и цветовое восприятие

Источники

  • Фасеточные глаза - статья из Большой советской энциклопедии .
  • А. А. Яхонтов Зоология для учителя. Том 1. - М.: Просвещение, 1968. - С. 320.

Напишите отзыв о статье "Фасеточные глаза"

Отрывок, характеризующий Фасеточные глаза

И он не допел еще последних слов, когда в зале молодежь приготовилась к танцам и на хорах застучали ногами и закашляли музыканты.

Пьер сидел в гостиной, где Шиншин, как с приезжим из за границы, завел с ним скучный для Пьера политический разговор, к которому присоединились и другие. Когда заиграла музыка, Наташа вошла в гостиную и, подойдя прямо к Пьеру, смеясь и краснея, сказала:
– Мама велела вас просить танцовать.
– Я боюсь спутать фигуры, – сказал Пьер, – но ежели вы хотите быть моим учителем…
И он подал свою толстую руку, низко опуская ее, тоненькой девочке.
Пока расстанавливались пары и строили музыканты, Пьер сел с своей маленькой дамой. Наташа была совершенно счастлива; она танцовала с большим, с приехавшим из за границы. Она сидела на виду у всех и разговаривала с ним, как большая. У нее в руке был веер, который ей дала подержать одна барышня. И, приняв самую светскую позу (Бог знает, где и когда она этому научилась), она, обмахиваясь веером и улыбаясь через веер, говорила с своим кавалером.
– Какова, какова? Смотрите, смотрите, – сказала старая графиня, проходя через залу и указывая на Наташу.
Наташа покраснела и засмеялась.
– Ну, что вы, мама? Ну, что вам за охота? Что ж тут удивительного?

В середине третьего экосеза зашевелились стулья в гостиной, где играли граф и Марья Дмитриевна, и большая часть почетных гостей и старички, потягиваясь после долгого сиденья и укладывая в карманы бумажники и кошельки, выходили в двери залы. Впереди шла Марья Дмитриевна с графом – оба с веселыми лицами. Граф с шутливою вежливостью, как то по балетному, подал округленную руку Марье Дмитриевне. Он выпрямился, и лицо его озарилось особенною молодецки хитрою улыбкой, и как только дотанцовали последнюю фигуру экосеза, он ударил в ладоши музыкантам и закричал на хоры, обращаясь к первой скрипке:
– Семен! Данилу Купора знаешь?
Это был любимый танец графа, танцованный им еще в молодости. (Данило Купор была собственно одна фигура англеза.)
– Смотрите на папа, – закричала на всю залу Наташа (совершенно забыв, что она танцует с большим), пригибая к коленам свою кудрявую головку и заливаясь своим звонким смехом по всей зале.
Действительно, всё, что только было в зале, с улыбкою радости смотрело на веселого старичка, который рядом с своею сановитою дамой, Марьей Дмитриевной, бывшей выше его ростом, округлял руки, в такт потряхивая ими, расправлял плечи, вывертывал ноги, слегка притопывая, и всё более и более распускавшеюся улыбкой на своем круглом лице приготовлял зрителей к тому, что будет. Как только заслышались веселые, вызывающие звуки Данилы Купора, похожие на развеселого трепачка, все двери залы вдруг заставились с одной стороны мужскими, с другой – женскими улыбающимися лицами дворовых, вышедших посмотреть на веселящегося барина.
– Батюшка то наш! Орел! – проговорила громко няня из одной двери.
Граф танцовал хорошо и знал это, но его дама вовсе не умела и не хотела хорошо танцовать. Ее огромное тело стояло прямо с опущенными вниз мощными руками (она передала ридикюль графине); только одно строгое, но красивое лицо ее танцовало. Что выражалось во всей круглой фигуре графа, у Марьи Дмитриевны выражалось лишь в более и более улыбающемся лице и вздергивающемся носе. Но зато, ежели граф, всё более и более расходясь, пленял зрителей неожиданностью ловких выверток и легких прыжков своих мягких ног, Марья Дмитриевна малейшим усердием при движении плеч или округлении рук в поворотах и притопываньях, производила не меньшее впечатление по заслуге, которую ценил всякий при ее тучности и всегдашней суровости. Пляска оживлялась всё более и более. Визави не могли ни на минуту обратить на себя внимания и даже не старались о том. Всё было занято графом и Марьею Дмитриевной. Наташа дергала за рукава и платье всех присутствовавших, которые и без того не спускали глаз с танцующих, и требовала, чтоб смотрели на папеньку. Граф в промежутках танца тяжело переводил дух, махал и кричал музыкантам, чтоб они играли скорее. Скорее, скорее и скорее, лише, лише и лише развертывался граф, то на цыпочках, то на каблуках, носясь вокруг Марьи Дмитриевны и, наконец, повернув свою даму к ее месту, сделал последнее па, подняв сзади кверху свою мягкую ногу, склонив вспотевшую голову с улыбающимся лицом и округло размахнув правою рукой среди грохота рукоплесканий и хохота, особенно Наташи. Оба танцующие остановились, тяжело переводя дыхание и утираясь батистовыми платками.
– Вот как в наше время танцовывали, ma chere, – сказал граф.
– Ай да Данила Купор! – тяжело и продолжительно выпуская дух и засучивая рукава, сказала Марья Дмитриевна.

В то время как у Ростовых танцовали в зале шестой англез под звуки от усталости фальшививших музыкантов, и усталые официанты и повара готовили ужин, с графом Безухим сделался шестой удар. Доктора объявили, что надежды к выздоровлению нет; больному дана была глухая исповедь и причастие; делали приготовления для соборования, и в доме была суетня и тревога ожидания, обыкновенные в такие минуты. Вне дома, за воротами толпились, скрываясь от подъезжавших экипажей, гробовщики, ожидая богатого заказа на похороны графа. Главнокомандующий Москвы, который беспрестанно присылал адъютантов узнавать о положении графа, в этот вечер сам приезжал проститься с знаменитым Екатерининским вельможей, графом Безухим.



© dagexpo.ru, 2024
Стоматологический сайт