Подождите. Добавляем книгу в корзину. Активация теломеразы – самый перспективный подход к продлению молодости

30.03.2019

Статья на конкурс «био/мол/текст»: Уже более 50 лет прошло с тех пор, как на культуре фибробластов доказан феномен старения клеток, но существование старых клеток в организме долгое время подвергалось сомнению. Не было доказательств, что старение отдельных клеток играет важную роль в старении всего организма . В последние годы были открыты молекулярные механизмы старения клеток, их связь с онкологическими заболеваниями и воспалением. По современным представлениям, воспаление играет ведущую роль в генезе практически всех возраст-зависимых заболеваний, которые в конечном итоге приводят организм к смертельному исходу. Оказалось, что старые клетки, с одной стороны, выступают в качестве супрессоров опухолей (поскольку необратимо перестают делиться сами и снижают риск трансформации окружающих клеток), а с другой - специфический метаболизм старых клеток может вызывать воспаление и перерождение соседних предраковых клеток в злокачественные. В настоящее время проходят клинические испытания лекарственных препаратов, избирательно элиминирующих старые клетки в органах и тканях, тем самым предотвращая дегенеративные изменения органов и рак.

В организме человека присутствует примерно 300 типов клеток, и все они делятся на две большие группы: одни могут делиться и размножаться (то есть, они митотически компетентны ), а другие - постмитотические - не делятся: это достигшие крайней стадии дифференцировки нейроны, кардиомиоциты, зернистые лейкоциты и другие.

В нашем организме существуют обновляющиеся ткани, в которых есть пул постоянно делящихся клеток, которые заменяют отработанные или погибающие клетки. Такие клетки есть в криптах кишечника, в базальном слое эпителия кожи, в костном мозге (кроветворные клетки). Обновление клеток может происходить довольно интенсивно: так, клетки соединительной ткани в поджелудочной железе заменяются каждые 24 часа, клетки слизистой желудка - каждые три дня, лейкоциты - каждые 10 дней, клетки кожи - каждые шесть недель, примерно 70 г пролиферирующих клеток тонкого кишечника удаляется из организма ежедневно .

Стволовые клетки, существующие практически во всех органах и тканях, способны делиться неограниченно. Регенерация тканей происходит за счет пролиферации стволовых клеток, которые могут не только делиться, но и дифференцироваться в клетки той ткани, регенерация которой происходит. Стволовые клетки есть в миокарде, в головном мозге (в гипокампе и в обонятельных луковицах) и в других тканях. Это открывает большие надежды в плане лечения нейродегенеративных заболеваний и инфаркта миокарда .

Постоянно обновляющиеся ткани способствуют увеличению продолжительности жизни. При делении клеток происходит омоложение тканей: новые клетки приходят на место поврежденных, при этом интенсивнее происходит репарация (устранение повреждений ДНК) и возможна регенерация при повреждении тканей. Не удивительно, что у позвоночных значительно выше продолжительность жизни, чем у беспозвоночных - тех же насекомых, у которых во взрослом состоянии клетки не делятся.

Но в то же время обновляющиеся ткани подвержены гиперпролиферации, что ведет к образованию опухолей, в том числе - злокачественных. Это происходит из-за нарушений регуляции деления клеток и повышенной частоты мутагенеза в активно делящихся клетках. По современным представлениям, чтобы клетка приобрела свойство злокачественности, ей необходимо 4–6 мутаций . Мутации возникают редко, и для того, чтобы клетка стала раковой - это подсчитано для фибробластов человека - должно произойти около 100 делений (такое число делений обычно происходит у человека примерно в возрасте 40 лет) .

Стоит, в прочем, помнить, что мутация мутации рознь, и согласно новейшим геномным исследованиям в каждом поколении человек приобретает около 60 новых мутаций (которых не было в ДНК у его родителей). Очевидно, что большая часть из них вполне нейтральная (см. «Перевалило за тысячу: третья фаза геномики человека »). - Ред.

В целях защиты от самого себя, в организме сформировались специальные клеточные механизмы супрессии опухолей . Один из них - репликативное старение клеток (сенесценция ), заключающееся в необратимой остановке деления клетки в стадии G1 клеточного цикла . При старении клетка перестает делиться: она не реагирует на ростовые факторы и становится устойчивой к апоптозу.

Лимит Хейфлика

Феномен старения клеток был впервые открыт в 1961 г. Леонардом Хейфликом с коллегами на культуре фибробластов. Оказалось, что клетки в культуре фибробластов человека при хороших условиях живут ограниченное время и способны удваиваться примерно 50±10 раз, - и это число стали называть лимитом Хейфлика , . До открытия Хейфлика господствовала точка зрения, что клетки бессмертны, а старение и смерть - это свойство организма в целом.

Эта концепция считалась неопровержимой во многом благодаря экспериментам Карреля, который поддерживал культуру клеток сердца цыпленка 34 года (ее выбросили лишь после его смерти). Однако, как выяснилось впоследствии, бессмертие культуры Карреля было артефактом, поскольку вместе с эмбриональной сывороткой, которая добавлялась в культуральную среду для роста клеток, туда попадали и сами эмбриональные клетки (и, скорее всего, культура Карреля стала уже далеко не тем, чем была в начале).

По-настоящему бессмертными являются раковые клетки. Так, клетки HeLa , выделенные в 1951 г. из опухоли шейки матки Генриетты Лакс , до сих пор используются цитологами (в частности, c помощью клеток HeLa была разработана вакцина против полиомиелита). Эти клетки даже побывали в космосе.

О захватывающей истории бессмертия Генриетты Лакс см. в статье «Бессмертные клетки Генриетты Лакс », а также «Наследники клеток HeLa ». - Ред.

Как выяснилось, лимит Хейфлика зависит от возраста: чем старше человек, тем меньшее число раз удваиваются его клетки в культуре. Интересно, что замороженные клетки при разморозке и последующем культивировании как будто помнят число делений до замораживания. Фактически, внутри клетки существует «счетчик делений», и по достижении определенного предела (лимита Хейфлика) клетка перестает делиться - становится сенесцентной. Сенесцентные (старые) клетки имеют специфическую морфологию - они крупные, уплощенные, с большими ядрами, сильно вакуолизированы, у них меняется профиль экспрессии генов. В большинстве случаев они устойчивы к апоптозу.

Однако старение организма нельзя свести только к старению клеток. Это значительно более сложный процесс. Старые клетки есть и в молодом организме, но их мало! Когда же с возрастом сенесцентные клетки накапливаются в тканях, начинаются дегенеративные процессы, которые приводят к возраст-зависимым заболеваниям. Один из факторов этих заболеваний - так называемое старческое «стерильное» воспаление , которое связано с экспрессией провоспалительных цитокинов старыми клетками.

Еще один важный фактор биологического старения - строение хромосом и их кончиков - теломеров.

Теломерная теория старения

Рисунок 1. Теломеры - концевые участки хромосом. Поскольку хромосом у человека 23 пары (то есть, 46 штук), теломер получается 92.

В 1971 году наш соотечественник Алексей Матвеевич Оловников предположил, что лимит Хейфлика связан с «недорепликацией» концевых участков линейных хромосом (они имеют специальное название - теломеры ). Дело в том, что в каждом цикле деления клетки теломеры укорачиваются из-за неспособности ДНК-полимеразы синтезировать копию ДНК с самого кончика , . Кроме того, Оловников предсказал существование теломеразы (фермента, добавляющего повторяющиеся последовательности ДНК на концы хромосом), исходя из того факта, что иначе в активно делящихся клетках ДНК быстро бы «съелась», и генетический материал был бы утерян. (Проблема в том, что активность теломеразы угасает в большинстве дифференцированных клеток.)

Теломеры (рис. 1) играют важную роль: они стабилизируют кончики хромосом, которые иначе, как говорят цитогенетики, стали бы «липкими», т.е. подверженными разнообразным хромосомным аберрациям, что приводит к деградации генетического материала. Теломеры состоят из повторяющихся (1000–2000 раз) последовательностей (5′-TTAGGG-3′), что в сумме дает 10–15 тысяч нуклеотидных пар на каждый хромосомный кончик. На 3′-конце теломеры имеют довольно длинный однонитевой участок ДНК (150–200 нуклеотидов), участвующий в образовании петли по типу лассо , (рис. 2). С теломерами связано несколько белков, образующих защитный «колпачок» - этот комплекс называется шелтерином (рис. 3). Шелтерин предохраняет теломеры от действия нуклеаз и слипания и, видимо, именно он сохраняет целостность хромосомы.

Рисунок 2. Состав и структура теломер. Многократное деление клетки в случае отсутствия активности теломеразы ведет к укорочению теломер и репликативному старению .

Рисунок 3. Строение теломерного комплекса (шелтерина ). Теломеры находятся на концах хромосом и состоят из тандемных повторов TTAGGG, которые заканчиваются 32-членным выступающим одноцепочечным фрагментом. С теломерной ДНК связан шелтерин - комплекс из шести белков: TRF1, TRF2, RAP1, TIN2, TPP1 и POT1.

Незащищенные концы хромосом воспринимаются клеткой как повреждение генетического материала, что активирует репарацию ДНК . Теломерный комплекс вместе с шелтерином «стабилизирует» хромосомные кончики, защищая всю хромосому от разрушения. В сенесцентных клетках критическое укорочение теломер нарушает эту защитную функцию , в связи с чем начинают формироваться хромосомные аберрации, которые часто приводят к малигнизации. Чтобы этого не произошло, специальные молекулярные механизмы блокируют клеточное деление, и клетка переходит в состояние сенесцентности - необратимой остановки клеточного цикла. При этом клетка гарантированно не может размножаться, а значит, не сможет и сформировать опухоль. В клетках с нарушенной способностью к сенесценции (которые размножаются, несмотря на дисфункцию теломер), образуются хромосомные аберрации.

Длина теломер и скорость их укорочения зависит от возраста. У человека длина теломер варьирует от 15 тысяч нуклеотидных пар (т.н.п.) при рождении до 5 т.н.п. при хронических заболеваниях. Длина теломер максимальна у 18-месячных детей, а затем она быстро снижается до 12 т.н.п. к пятилетнему возрасту. После этого скорость укорачивания снижается .

Теломеры укорачиваются у разных людей с разной скоростью. Так, на эту скорость сильно влияют стрессы. Э. Блекберн (лауреат Нобелевской премии по физиологии и медицине 2009 г.) установлено, что женщины, постоянно испытывающие стресс (например, матери хронически больных детей), имеют значительно более короткие теломеры по сравнению со сверстницами (примерно на десять лет!). Лабораторией Э. Блекберн разработан коммерческий тест для определения «биологического возраста» людей на основании длины теломер.

Любопытно, что у мышей очень длинные теломеры (50–40 т.н.п., по сравнению с 10–15 т.н.п. у человека). У некоторых линий лабораторных мышей длина теломер достигает 150 т.н.п. Более того, у мышей теломераза всегда активна, что не дает теломерам укорачиваться. Однако это, как всем известно, не делает мышей бессмертными. Мало того: у них опухоли развиваются намного чаще, чем у людей, что позволяет предположить, что укорачивание теломер как механизм защиты от опухолей у мышей не работает .

При сравнении длины теломер и теломеразной активности у разных млекопитающих оказалось, что виды, для которых характерно репликативное старение клеток, имеют большую продолжительность жизни и большой вес. Это, например, киты, продолжительность жизни которых может достигать 200 лет. Таким организмам репликативное старение просто необходимо, поскольку слишком большое число делений порождает множество мутаций, с которыми необходимо как-то бороться. Предположительно, репликативное старение и есть такой механизм борьбы, который сопровождается к тому же репрессией теломеразы .

Старение диференцированных клеток происходит иначе. Стареют и нейроны, и кардиомиоциты, а ведь они не делятся! Например, в них накапливается липофусцин - старческий пигмент, который нарушает функционирование клеток и запускает апоптоз. В клетках печени и селезенки с возрастом накапливается жир.

Связь репликативного старения клеток со старением организма, строго говоря, не доказана, но возрастная патология сопровождается и старением клеток (рис. 4). Злокачественные новообразования пожилого возраста в большинстве своем связаны с обновляемыми тканями. Онкологические заболевания в развитых странах - одна из основных причин заболеваемости и смертности, причем независимым фактором риска раковых заболеваний является просто... возраст. Число смертей от опухолевых заболеваний увеличивается с возрастом по экспоненте, так же как и общая смертность. Это говорит нам, что между старением и канцерогенезом существует фундаментальная связь.

Рисунок 4. Гистохимически окрашенные на наличие β-галактозидазной активности фибробласты человека линии WI-38. A - молодые; B - старые (сенесцентные).

Теломераза - фермент, который был предсказан

В организме должен существовать механизм, компенсирующий укорочение теломер, - такое предположение сделал А.М. Оловников . Действительно, в 1984 г. такой фермент был открыт Кэрол Грейдер и назван теломеразой . Теломераза (рис. 5) - это обратная транскриптаза, которая увеличивает длину теломер, компенсируя их недорепликацию. В 2009 году Э. Блэкберн, К. Грэйдер и Д. Шостак за открытие этого фермента и цикл работ по изучению теломер и теломеразы была присуждена Нобелевская премия (см: «„Нестареющая“ Нобелевская премия: в 2009 году отмечены работы по теломерам и теломеразе » ).

Рисунок 5. Теломераза содержит каталитический компонент (обратную транскриптазу ТERT), теломеразную РНК (hTR или TERC), содержащую две копии теломерного повтора и являющуюся матрицей для синтеза теломеров, и белок дискерин.

По данным Э. Блекберн, теломераза участвует в регуляции активности примерно 70 генов. Теломераза активна в зародышевых и эмбриональных тканях, в стволовых и пролиферирующих клетках. Ее обнаруживают в 90% раковых опухолей, что обеспечивает неудержимое размножение раковых клеток. В настоящее время среди препаратов, которые используют для лечения рака, есть и ингибитор теломеразы. Но в большинстве соматических клеток взрослого организма теломераза не активна.

В состояние сенесценции клетку могут привести многие стимулы - дисфункция теломер, повреждения ДНК, причиной которых могут быть мутагенные воздействия окружающей среды, эндогенные процессы, сильные митогенные сигналы (сверхэкспрессия онкогенов Ras, Raf, Mek, Mos, E2F-1 и др.), нарушения хроматина, стрессы и др. Фактически, клетки перестают делиться - становятся сенесцентными - в ответ на потенциально вызывающие рак события.

Страж генома

Дисфункция теломер, которая происходит при их укорачивании либо нарушении работы шелтерина, активирует белок р53 . Этот транскрипционный фактор приводит клетку в состояние сенесценции, либо вызывает апоптоз . При отсутствии р53 развивается нестабильность хромосом, характерная для карцином человека. Мутации в белке р53 обнаруживаются в 50% аденокарцином груди и в 40–60% случаев колоректальной аденокарциномы. Поэтому p53 зачастую называют «стражем генома».

Теломераза реактивируется в большинстве опухолей эпителиального происхождения, которые характерны для пожилых людей. Считается, что реактивация теломеразы - важный этап злокачественных процессов, поскольку это позволяет раковым клеткам «не обращать внимания» на лимит Хейфлика. Дисфункция теломер способствует хромосомным слияниям и аберрациям, что в отсутствии p53 чаще всего приводит к злокачественным новообразованиям.

О молекулярных механизмах старения клеток

Рисунок 6. Схема клеточного цикла. Клеточный цикл подразделяют на четыре стадии: 1. G1 (предсинтетическая) - период, когда клетка готовится к репликации ДНК. В этой стадии может произойти остановка клеточного цикла в случае обнаружения повреждений ДНК (на время репарации). Если обнаруживаются ошибки в репликации ДНК, и они не могут быть исправлены репарацией, клетка не переходит на стадию S. 2. S (cинтетическая) - когда происходит репликация ДНК. 3. G2 (постсинтетическая) - подготовка клетки к митозу, когда происходит проверка точности репликации ДНК; если обнаружены недореплицированные фрагменты или другие нарушения в синтезе, переход на следующую стадию (митоз) не происходит. 4. М (митоз) - формирование клеточного веретена, сегрегация (расхождение хромосом) и формирование двух дочерних клеток (собственно деление).

Чтобы были понятны молекулярные механизмы перехода клетки в состояние сенесцентности, я напомню вам, как происходит деление клетки.

Процесс размножения клеток называют пролиферацией . Время существования клетки от деления до деления именуют клеточным циклом . Процесс пролиферации регулируется как самой клеткой - аутокринными ростовыми факторами, - так и ее микроокружением - паракринными сигналами.

Активация пролиферации происходит через клеточную мембрану, в которой присутствуют рецепторы, воспринимающие митогенные сигналы - это в основном ростовые факторы и межклеточные контактные сигналы. Ростовые факторы обычно имеют пептидную природу (к настоящему времени их известно около 100). Это, например, фактор роста тромбоцитов, который участвует в тромбообразовании и заживлении ран, эпителиальный фактор роста, различные цитокины - интерлейкины, фактор некроза опухолей, колониестимулирующие факторы и т.д. После активации пролиферации клетка выходит из фазы покоя G0 и начинается клеточный цикл (рис. 6).

Клеточный цикл регулируется циклин-зависимыми киназами , разными для каждой стадии клеточного цикла. Они активируются циклинами и инактивируются рядом ингибиторов. Цель такой сложной регуляции - обеспечить синтез ДНК с как можно меньшим числом ошибок, чтобы и дочерние клетки имели абсолютно идентичный наследственный материал. Проверка правильности копирования ДНК осуществляется в четырех «контрольных точках» цикла: если обнаруживаются ошибки, то клеточный цикл останавливается, и включается репарация ДНК . Если нарушения структуры ДНК удается исправить - клеточный цикл продолжается. Если нет - клетке лучше «покончить с собой» (путем апоптоза), чтобы избежать вероятности превращения в раковую.

Молекулярные механизмы, приводящие к необратимой остановке клеточного цикла, контролируются генами-супрессорами опухолей, среди которых p53 и pRB, связанные с ингибиторами циклин-зависимых киназ. Супрессию клеточного цикла в фазе G1 осуществляет белок p53, действующий через ингибитор циклин-зависимой киназы р21. Транскрипционный фактор р53 активируется при повреждениях ДНК, и функция его заключается в удалении из пула реплицирующихся клеток тех, которые являются потенциально онкогенными (отсюда и прозвище р53 - «страж генома»). Данное представление подтверждается тем фактом, что мутации р53 обнаруживают в ~50% случаев злокачественных опохолей. Другое проявление активности р53 связано с апоптозом наиболее поврежденных клеток.

Сенесценция клеток и возраст-зависимые заболевания

Рисунок 7. Взаимосвязь между старением клеток и старением организма.

Сенесцентные клетки накапливаются с возрастом и способствуют возрастным заболеваниям. Они снижают пролиферативный потенциал ткани и истощают пул стволовых клеток, что приводит к дегенеративным нарушениям ткани и снижает способность к регенерации и обновлению.

Сенесцентные клетки характеризуются специфической экспрессией генов: они секретируют воспалительные цитокины и металлопротеиназы, разрушающие межклеточный матрикс. Получается, что старые клетки обеспечивают вялотекущее старческое воспаление, а накопление старых фибробластов в коже служит причиной возрастного снижения способности к заживлению ран (рис. 7). Старые клетки также стимулируют пролиферацию и малигнизацию близлежащих предраковых клеток, благодаря секреции эпителиального фактора роста .

Сенесцентные клетки накапливаются во многих тканях человека, присутствуют в атеросклеротических бляшках, в язвах кожи, в пораженных артритом суставах, а также в доброкачественных и пренеопластических гиперпролиферативных поражениях простаты и печени. При облучении раковых опухолей некоторые клетки также переходят в состояние сенесценции, тем самым обеспечивая рецидивы заболевания.

Таким образом, клеточное старение демонстрирует эффект отрицательной плейотропии, суть которого состоит в том, что хорошее для молодого организма, может стать плохим для старого. Самый яркий пример - процессы воспаления. Выраженная реакция воспаления способствует быстрому выздоровлению молодого организма при инфекционных заболеваниях. В пожилом же возрасте активные воспалительные процессы приводят к возрастным заболеваниям. Сейчас принято считать, что воспаление играет определяющую роль практически при всех возраст-зависимых заболеваниях, начиная с нейродегенеративных.

Кандидат химических наук Мария Зверева, кандидат химических наук Мария Рубцова (МГУ им. М. В. Ломоносова, химический факультет).

В октябре 2009 года в Стокгольме объявлены имена лауреатов Нобелевской премии по физиологии и медицине. Это американские учёные Элизабет Блэкбёрн (Elizabeth H. Blackburn), Кэрол Грейдер (Carol W. Greider) и Джек Шостак (Jack W. Szostak), удостоившиеся самой престижной научной награды дословно «за открытие того, как теломеры и фермент теломераза защищают хромосомы». Попробуем разобраться, что такое теломеры и теломераза, почему и каким образом они защищают хромосомы?

Элизабет Блэкбёрн.

Кэрол Грейдер.

Джек Шостак.

Теломераза активна не во всех клеточных популяциях. Максимальная активность наблюдается в «вечно молодых» эмбриональных клетках. В стволовых клетках теломераза работает не в полную силу.

Теломеры: фунции и синтез.

ХРОМОСОМЫ НУЖДАЮТСЯ В ЗАЩИТЕ

Генетическая информация хранится в ядрах клеток в виде дезоксирибонуклеиновой кислоты (ДНК), которая плотно упакована в линейные хромосомы. В середине 1970-х годов Джек Шостак в своей лаборатории в Медицинской школе Гарварда провёл эксперимент. Он добавил в дрожжевые клетки фрагменты чужеродных молекул ДНК и обнаружил, что они не могут долго оставаться в клетке в исходном виде и встраиваются в хромосомы. Так выяснилось, что обломки хромосом нестабильны: они постоянно обмениваются участками с другими хромосомами, перестраиваются, в их нуклеотидных цепочках образуются разрывы, в то время как сами хромосомы остаются в неизменном виде. К счастью, клетки обладают функцией репарации - в них имеется система молекулярной «починки» случайных разрывов в хромосомных цепочках.

Всё же оставалось неясным, почему ДНК в составе хромосом стабильна, а обломки без концевых последовательностей подвержены перестройкам. Исследования Пауля Германа Мюллера (лауреат Нобелевской премии по физиологии и медицине 1946 года) и Барбары Мак-Клинток (лауреат Нобелевской премии по физиологии и медицине 1983 года) в начале 1940-х годов показали, что концевые участки защищают хромосомы от перестроек и разрывов. Мюллер назвал эти особые участки теломерами - от двух греческих слов: telos - конец и meros - участок. Но что представляют собой эти участки и какую функцию они выполняют в клетке, учёные тогда ещё не знали.

ТЕЛОМЕРЫ СТАБИЛИЗИРУЮТ ХРОМОСОМЫ

В 1975 году Элизабет Блэкбёрн в лаборатории Джозефа Гала в Йельском университете, изучая внехромосомные молекулы ДНК инфузории, обнаружила, что концевые участки этих молекул содержат тандемные повторяющиеся последовательности, состоящие из шести нуклеотидов: на каждом конце таких повторов было от 20 до 70.

В дальнейших экспериментах Блэкбёрн и Шостак добавили в дрожжи молекулы ДНК с присоединёнными к ним повторами из инфузории и обнаружили, что молекулы ДНК стали стабильнее. В 1982 году в совместной публикации они предположили, что эти повторяющиеся последовательности нуклеотидов и есть теломеры.

Их догадка подтвердилась. Теперь уже точно известно, что теломеры состоят из повторяющихся нуклеотидных участков и набора специальных белков, особым образом организующих эти участки в пространстве. Теломерные повторы - весьма консервативные последовательности, например, повторы всех позвоночных состоят из шести нуклеотидов - TTAGGG, повторы всех насекомых из пяти - TTAGG, повторы большинства растений из семи - TTTAGGG. Благодаря наличию в теломерах устойчивых повторов клеточная система репарации не путает теломерный участок со случайным разрывом. Таким путём обеспечивается стабильность хромосом: конец одной хромосомы не может соединиться с разрывом другой.

ТЕЛОМЕРЫ ПОСТОЯННО УКОРАЧИВАЮТСЯ

Теломерные повторы не просто стабилизируют хромосомы, они выполняют ещё одну важную функцию. Как известно, воспроизведение генетического материала от поколения к поколению происходит за счёт удвоения молекул ДНК с помощью специального фермента (ДНК-полимеразы). Этот процесс называется репликацией. Проблему «концевой репликации» ещё в 1970-х годах независимо сформулировали Алексей Матвеевич Оловников и нобелевский лауреат Джеймс Уотсон. Она заключается в том, что ДНК-полимераза неспособна полностью скопировать концевые участки линейных молекул ДНК, она лишь наращивает уже имеющуюся полинуклеотидную нить.

Откуда же берётся начальный участок? Специальный фермент синтезирует небольшую РНК-«затравку». Её размер (<20 нуклеотидов) невелик по сравнению с размером всей цепи ДНК. Впоследствии РНК-«затравка» удаляется специальным ферментом, а образовавшаяся при этом брешь заделывается ДНК-полимеразой. Удаление крайних РНК-«затравок» приводит к тому, что «дочерние» молекулы ДНК оказываются короче «материнских». То есть теоретически при каждом цикле деления клеток должна происходить потеря генетической информации. Но так происходит далеко не во всех клеточных популяциях. Почему?

ТЕЛОМЕРАЗА НЕ ДАЁТ ТЕЛОМЕРАМ УКОРАЧИВАТЬСЯ

Чтобы клетки не растеряли при делении часть генетического материала, теломерные повторы обладают способностью восстанавливать свою длину. В этом и заключается суть процесса «концевой репликации». Но учёные не сразу поняли, каким образом наращиваются концевые последовательности. Было предложено несколько различных моделей. Российский учёный А. М. Оловников предположил существование специального фермента (теломеразы), наращивающего теломерные повторы и тем самым поддерживающего длину теломер постоянной.

В середине 1980-х годов в лабораторию Блэкбёрн пришла работать Кэрол Грейдер, и именно она обнаружила, что в клеточных экстрактах инфузории происходит присоединение теломерных повторов к синтетической теломероподобной «затравке». Очевидно, в экстракте содержался какой-то белок, способствовавший наращиванию теломер. Так блестяще подтвердилась догадка Оловникова и был открыт фермент теломераза. Кроме того, Грейдер и Блэкбёрн определили, что в состав теломеразы входят белковая молекула, которая, собственно, осуществляет синтез теломер, и молекула РНК, служащая матрицей для их синтеза.

БЕЗ ТЕЛОМЕРАЗЫ КЛЕТКА СТАРЕЕТ, А С ТЕЛОМЕРАЗОЙ - ПЕРЕРОЖДАЕТСЯ

Позднее в лаборатории Шостака обнаружили, что определённые мутации в некоторых генах дрожжей приводят к быстрому укорочению теломер после каждого цикла деления клеток, в результате чего хромосомы становятся нестабильными, а клетки переходят в состояние старения (сенессенса). Теперь мы знаем, что эти гены кодируют теломеразу. Полученные данные подтвердили ещё одну гипотезу А. М. Оловникова о том, что потеря длины теломерных повторов в каждом раунде репликации хромосом зависит от числа делений клетки.

Итак, теломераза решает проблему «концевой репликации»: синтезирует повторы и поддерживает длину теломер. В отсутствие теломеразы с каждым клеточным делением теломеры становятся короче и короче, и в какой-то момент теломерный комплекс разрушается, что служит сигналом к программируемой гибели клетки. То есть длина теломер определяет, какое количество делений клетка может совершить до своей естественной гибели.

На самом деле у разных клеток могут быть разные сроки жизни. В эмбриональных стволовых клеточных линиях теломераза очень активна, поэтому длина теломер поддерживается на постоянном уровне. Вот почему эмбриональные клетки - «вечно молодые» и способны к неограниченному размножению. В обычных стволовых клетках активность теломеразы ниже, поэтому укорачивание теломер скомпенсировано лишь отчасти. В соматических клетках теломераза вовсе не работает, поэтому теломеры укорачиваются с каждым клеточным циклом. Укорочение теломер приводит к достижению предела Хайфлика - к переходу клеток в состояние сенессенса. После этого наступает массовая клеточная смерть. Уцелевшие клетки перерождаются в раковые (как правило, в этом процессе задействована теломераза). Раковые клетки способны к неограниченному делению и поддержанию длины теломер.

Наличие теломеразной активности в тех соматических клетках, где она обычно не проявляется, может быть маркёром злокачественной опухоли и индикатором неблагоприятного прогноза. Так, если активность теломеразы появляется в самом начале лимфогранулематоза, то можно говорить об онкологии. При раке шейки матки теломераза активна уже на первой стадии.

Мутации в генах, кодирующих компоненты теломеразы или других белков, участвующих в поддержании длины теломер, являются причиной наследственной гипопластической анемии (нарушения кроветворения, связанные с истощением костного мозга) и врождённого Х-сцеплённого дискератоза (тяжёлое наследственное заболевание, сопровождающееся умственной отсталостью, глухотой, неправильным развитием слёзных каналов, дистрофией ногтей, различными дефектами кожи, развитием опухолей, нарушениями иммунитета и др.).

ЗАЧЕМ ИЗУЧАТЬ ТЕЛОМЕРЫ И ТЕЛОМЕРАЗУ

Сейчас многие учёные заняты поиском взаимосвязи между активностью теломеразы и старением. Тут необходимо осознать, что длина теломер может контролировать продолжительность жизни клеток, но не всего организма. Старение как биологическое явление - более сложный многофакторный процесс. Гораздо более важна взаимосвязь между активностью теломеразы и риском развития раковых заболеваний. Учёные ищут вещества, влияющие на активность теломеразы и на структуру теломер, с целью создания новых противоопухолевых лекарственных препаратов.

Вот мы и пришли к заключению, что «открытие того, как теломеры и фермент теломераза защищают хромосомы» - это, безусловно, великое достижение современной науки, позволяющее понять, как генетическая информация передаётся от материнской клетки к дочерней без потерь, чем определяется продолжительность жизни клеток, а также некоторые особенности их злокачественного перерождения. Обретённые знания помогут в будущем создать лекарственные препараты, избавляющие людей от неизлечимых болезней. Это действительно выдающееся научное открытие. Но не стоит забывать о выдающихся гипотезах русского учёного А. М. Оловникова, которые подтвердились в работах нынешних нобелевских лауреатов.

Самым обсуждаемым в последние годы способом борьбы со старением оказались вовсе не пластические операции, а новинка из области генетики - активатор теломеразы ТА-65. С 2013 года этот препарат появился на российском рынке. О том, как стареет человеческий организм и о том, как можно замедлить и обратить вспять этот процесс, по просьбе сайт рассказывает Галина Орлова, генеральный директор «Теломерейс Активейшн Сайенсес», врач-гинеколог:

  • ООО «Теломерейс Активейшн Сайенсес» - российская компания, основанная в 2011 году, являющаяся официальным эксклюзивным дистрибьютером в России и СНГ.

Галина, мы знаем, что ученые бьются над проблемой старения уже тысячи лет. Можно ли говорить о том, что современная наука достоверно разобралась в причинах этого процесса?

Мы начинаем стареть с момента нашего зачатия. Клетки приступают к делению сразу, как только начинают формироваться органы и ткани. Мы рождаемся, взрослеем, затем приходит период увядания - наши органы и ткани изнашиваются, стареет кожа, ощущается недостаток физических сил. Существует множество теорий старения, три основных продемонстрированы в таблице:

Теория
В чем суть?
Цель корректирующих мероприятий
Свободно-радикальная В процессе старения увеличивается количество свободных радикалов, приводящих к окослительному стрессу, повреждающему жизненно важные макромолекулы Борьба с окислительным стрессом
Эндокринная (Дильмана) Морфологические и функциональные изменения в органах происходят в связи с дефицитом гормонов, среди которых наиболее значим дефицит половых гормонов Устранение гормонального дефицита
Теломерная При каждом делении клетки теломеры сокращаются, достигая в определенный момент критического уровня, при котором клетка больше не может делиться - она стареет либо умирает Восстановление длины критически коротких теломер, предотвращение их эрозии

Основная и связующая для всех теорий - теломерная, изучать которую начали еще в середине прошлого столетия. В 1961 году ученый по фамилии Хейфлик установил, что клетка может делиться лишь строго определенное количество раз. Этот лимит в дальнейшем получил название «лимит Хейфлика ». Клетку, которая перестала делиться, то есть стала сенесцентной (престарелой), ждут три варианта развития событий:

  • первый - впасть в анабиотическое состояние, когда клетка и не живет и не умирает, выделяя продукты жизнедеятельности;
  • второй вариант - это умереть или окончить жизнь самоубийством (апоптоз);
  • и третий вариант - мутировать и переродиться в раковую. То есть, когда клетка становится старой, один из главных рисков - развитие ракового процесса.

С нами происходит то же самое, что и с клеткой. Когда мы становимся старыми, мы можем впасть в неактивное состояние, заболеть раком или умереть. Чем старше мы становимся, тем выше риск каждого из этих исходов.

Отчего же зависит продолжительность жизни клетки? Почему она перестает делиться?

Всем известно, что внутри клетки находится ядро, а внутри ядра - хромосомы, своеобразные сейфы с генетической информацией. Ученые открыли, что на концах каждой хромосомы есть теломеры - особые образования, которые не несут генетической информации, а выполняют защитную функцию.

Теломеры играют важную роль в процессе деления клетки - они обеспечивают стабильность генома:

  • защищают хромосомы от деградации и слияния в процессе репликации;
  • обеспечивают структурную целостность окончаний хромосом;
  • защищают клетки от мутаций, старения и смерти.

Именно длина теломер и определяет биологический возраст человека. Ученые выяснили, что клетка перестает делиться в тот момент, когда длина хотя бы одной теломеры достигает предельно короткой величины. Природа все создала умно: чтобы уберечь наш геном и предотвратить возможные мутации, клетка перестает делиться именно тогда, когда кончается защита.

При этом, состояние теломер определяет не только продолжительность жизни одной клетки, но и состояние органов, систем и организма в целом. Люди с короткими теломерами быстро устают, теряют жизненные силы, у них рано появляются морщины, часто возникают простудные заболевания, повышен риск получения сердечно-сосудистых патологий, канцерогенеза, заболеваний репродуктивной системы, органов зрения и других возрастных недугов.

Какие заболевания развиваются у людей с короткими теломерами в первую очередь?

Наиболее распространенными являются болезни сердечно-сосудистой системы. У лиц с короткими теломерами в 3 раза выше риск внезапной смерти от сердечного приступа и развития болезней коронарных артерий. Выявлена также взаимосвязь коротких теломер с развитием артериальной гипертензии и хронической сердечной недостаточности.

Существует множество доказательств того, что укорочение теломер связано с развитием рака. У пациентов с дискератозом (врожденная патология - «болезнь коротких теломер») в 1000 раз повышен риск развития рака языка и примерно в 200 раз - риск развития острой миелоидной лейкемии. Кроме того, врожденный дискератоз вызывает преждевременное старение кожи. При анемии для пациентов с наиболее короткими теломерами в 4-5 раз повышен риск трансформации заболевания в миелодисплазию или лейкемию.

Лишенные теломер концевые участки хромосом выявляются в клетках костного мозга пациентов за годы до появления клинических симптомов. Кроме того, имеются данные о взаимосвязи между длиной теломер и риском развития слабоумия и сахарного диабета.

А существуют ли способы вернуть коротким теломерам исходную длину?

Именно такой вопрос был поставлен учеными сразу после обнаружения взаимосвязи между старением и длиной теломер. В 1971 году советский ученый Алексей Матвеевич Оловников предположил, что в организме человека есть не только теломеры, но и фермент, который может их наращивать - он получил название теломераза. В период с 1985 по 2005 год трое американских ученых - Элизабет Блекберн, Кэрол Грейдер и Джек Шостак - обнаружили теломеразу и доказали, что она способна наращивать теломеры. В 2009 году это открытие было удостоено Нобелевской премии.

Однако, судя по всему, теломераза активна далеко не всегда? Иначе проблема старения не стояла бы перед человеком столь остро?

Этот фермент есть в организме каждого из нас, но в большинстве клеток он «дремлет»или имеет низкую активность, которая еще более затухает с возрастом. Но есть исключения. В половых клетках человека(сперматозоиды и яйцеклетки) высокая теломеразная активность наблюдается в течение всей его жизни. Аналогично и в стволовых клетках, которые способны делиться неограниченно долго. Более того, у стволовой клетки всегда есть возможность дать две дочерние клетки, одна из которых останется стволовой ("бессмертной"), а другая вступит в процесс дифференцировки (приобретет свое функциональное предназначение в организме). Именно поэтому они являются постоянным источником разнообразных клеток организма.

Как только потомки половых или стволовых клеток начинают дифференцироваться, активность теломеразы падает и их теломеры начинают укорачиваться. В клетках, дифференцировка которых завершена, активность теломеразы падает до нуля, и с каждым клеточным делением они с неизбежностью приближаются к моменту, когда навсегда перестанут делиться. Вслед за этим наступает кризис и большинство клеток погибают.

Активность теломеразы рассматривается как возможный маркер физиологического резерва организма. А длина теломер - это «клеточные часы»,ограничивающие число возможных делений клетки, а значит и продолжительность ее здоровой жизни. Нобелевский лауреат 2009 года Элизабет Блэкберн предположила, что теломераза, помимо удлинения концов теломер, защищает их структуру, нарушение которой также грозит гибелью клетки. Интересен и тот факт, что отдельные структурные элементы теломеразы имеют также свое функциональное предназначение в клетке.

Может ли человек самостоятельно активировать теломеразу в своем организме?

Да, активность теломеразы можно стимулировать. К некоторому повышению функции этого фермента, а значит и увеличению длины теломер, приводит умеренная физическая нагрузка, в меньшей степени - витамины и полиненасыщенные жирные кислоты, содержащиеся в здоровой пище.

В целом, длина теломер у людей, ведущих правильный образ жизни, значительно больше, чему тех, кто злоупотребляет алкоголем, курит, не следит за своим питанием и весом, ведет малоактивный образ жизни. К ее ускоренному сокращению ведут также стресс и вирусные заболевания.

Разумеется, с момента появления теломер-теломеразной гипотезы старения начались и поиски вещества, способного активировать теломеразу, с целью замедления процесса старения. Крупнейшая Американская биотехнологическая компания Geron Inc нашла молекулу, ставшую основой .

Что представляет из себя этот препарат?

Вышеупомянутая молекула была выделена из экстракта корня астрагала перепончатого- лекарственного растения, издавна применяющегося в китайской медицине как средство, предотвращающее развитие рака. В химическом составе данного экстракта содержится более 2000 молекул. И только одна из них способна активировать теломеразу наших клеток - она была названа TA-65.

Сам процесс экстрагирования и очистки этой молекулы - технологически очень сложный и многоступенчатый. Необходимо не только распознать ее среди остальных, но и добиться максимальной степени отделения от примесей. Запатентована и сама молекула и способ ее получения и переработки. Для изготовления минимальной партии ТА-65 необходимо переработать около 5-6 тонн корня астрагала. Очевидно, что доза активного веществаTA-65, находящаяся в 1 капсуле, сопоставима с несколькими литрами экстракта. Учитывая, что для получения выраженного эффекта необходим как минимум трехмесячный курс лечения, заменить его ежедневным приемом нескольких литров обычного экстракта корня астрагала невозможно.

Как ведет себя ТА-65 при попадании в организм?

Попадая в кровь, молекула проникает в клетку и включает ген, отвечающий за временную актививацию теломеразы. Активированная теломераза начинает достраивать конечные участки хромосом, путем добавления нуклеотидных оснований. Нарастив таким способом теломеры, клетка получает дополнительную возможность делиться, функционировать и продолжать жить -по сути превращаясь из стареющей в молодую и активную. Весь этот процесс зеркально отражается и на организме в целом.

После прекращения приема TA-65 теломераза вновь «засыпает». Таким образом, ее активация является временной и контролируемой. Максимальная концентрация действующего вещества в крови достигается через 3 часа после приема препарата.

Мы сейчас говорим о гипотезах или же существуют научные подтверждения эффективности ТА-65?

К настоящему времени мы располагаем данными довольно большого количества научных исследований, которые проводились в трех направлениях:

  • на клетках вне организма (клеточных культурах) - invitro;
  • на животных;
  • на людях.

Исследования первой группы показали, что добавление ТА-65 к клеточной культуре клеток продлевает жизненный цикл клетки и позволяет преодолеть лимит Хейфлика.

Первое документальное подтверждение обратимости возрастных изменений у млекопитающих под воздействием активатора теломеразы было опубликовано в журнале The Nature в 2011 году. Подопытные мыши имели короткие теломеры и минимальную активность фермента теломеразы. У них наблюдались выраженные дегенеративные нарушения в органах, повреждения ДНК в хромосомах, сильно пострадал мозг. Мыши не имели потомства, быстро старели и жили в среднем 43 недели.

В возрасте 30-35 недель, т.е. уже весьма преклонном, им ежедневно в течение месяца вводился активатор теломеразы. В результате длительность жизни мышей увеличивалась до 80 недель. У них удлинялись теломеры, восстанавливалась активность теломеразы, уменьшались повреждения ДНК в хромосомах и дегенеративные изменения в органах: яичках, селезенке, кишечнике и мозге. Восстанавливалась способность давать потомство. Таким образом, наблюдалось очевидное и выраженное омоложение животных. При этом, ни у одной из мышей не развился рак.

Вот что сказал о полученных результатах руководитель работы доктор Рональд ДеПиньо: «Представьте, что человека в возрасте 75-80 лет вернули к состоянию 40-50-летнего. Примерно это мы успешно проделали на мышах».

А как повел себя препарат при тестировании на людях?

В январе 2007 года была запущена программа PattonProtocol-1 («Протокол Паттона») с участием добровольцев. Активатор теломеразы ТА-65 принимали 114 человек в возрасте63 ± 12 лет, 72% из которых были мужчины, 54% участников - носители цитомегаловирусной инфекции. Результаты исследования были опубликованы в журнале «Rejuvenation Research» в 2010 году. Оказалось, что ТА-65:

  • удлиняет критически короткие теломеры (что было подтверждено измерениями в 2-х независимых лабораториях Repeat Diagnostics и Richard Cawthon;
  • омолаживает иммунную систему;
  • не приводит к развитию побочных эффектов.

Участники исследования сообщили об улучшении зрения, половой функции, нормализации веса, повышении уровня энергии и выносливости, гибкости, остроты мышления. Кроме того, отмечалось уменьшение количества появлений возрастных пигментных пятен, улучшение общего состояния кожи, волос и ногтей.

В дополнение к очевидной положительной иммунной реконструкции, прием ТА-65 оказался способен улучшить показатели метаболизма углеводов и липидов, а также состояние сердечно-сосудистой и костной систем.

  • Основные завершенные исследования ТА-65:
Тип исследования
Автор
Содержание и выводы
Эпидемиологические Katharine Shaefer 110 000 добровольцев, 3 года наблюдений. В группе пациентов, у которых теломеры были на 10% короче, уровень смертности был на 23% выше
P. Willeit 787 добровольцев, 10 лет наблюдений. Добровольцы с критически короткими теломерами в 3 раза больше рискуют заболеть раком и в 11 больше - умереть от него по сравнению с теми, у кого длина теломер была максимальной
In vitro Woody Wright Добавление активатора теломеразы к клеточной культуре продлевает жизненный цикл клетки и позволяет преодолеть предел Хейфлика
Fauce SR, Jamieson BD, Chin AC TA-65 является эффективным активатором теломеразы в неонатальных кератиноцитах и фибробластах, вызывает временную контролируемую активацию теломеразы в соматических клетках
На лабораторных животных Mariela Jaskelioff, Florian L. Muller, Ji-Hye Paik Возрастные изменения у млекопитающих обратимы: применение активатора теломеразы у мышей позволило продлить жизнь с 43 до 86 недель, уменьшились дегенеративные изменения в органах, восстановилась способность давать потомство. Ни у одной мыши не было случаев развития рака
Maria Blasco TA-65 удлиняет короткие теломеры и увеличивает продолжительность периода здоровой жизни взрослых мышей без увеличения заболеваемости раком
Открытое клиническое исследование Patton N, Harley CB Открытое исследованиеб 114 добровольцев. Снижение процента стареющих цитотоксических (CD8+/CD28-) Т-клеток, снижение процента коротких теломер. TA-65 является эффективным активатором теломеразы в клетках иммунной системы человека
  • Текущие исследования и их цели:
Исследование Автор и содержание
Окончание
ЦМВ (Цитомегаловирусная инфекция) Antonio Celada, Antiaging Group University of Barcelona, Spain. 125 человек 12 месяцев. Контролируемое исследование сравнения длины теломер, иммунологических и других биомаркеров старения у взрослых ЦМВ+, принимающих ТА-65 в высокой, низкой дозе или плацебо
Метаболический синдром University of Connecticut. 45 человек, 6 месяцев. Пилотное клиническое исследование эффективности ТА-65 при метаболическом синдроме (оценка влияния на инсулинорезистентность, оксидативный стресс и воспаление) Закончено, обработка результатов
ВМД (возрастная макулярная дегенерация - дистрофия сетчатки глаза) Chippewa Valley Eye Clinic, Wisconsin. 44 человека 18 месяцев. Пилотное исследование оценки эффективности ТА-65 на ранних стадиях ВМД I квартал 2015 года

Как давно этот препарат поставляется в РФ и где его можно купить?

В России «ТА-65» представлен с июня 2013 года. Реализуетсяв сети аптек A5, AVE, Самсон Фарма, Вита (Самара), Планета Здоровья (Пермь, Москва) и ведущих клиниках столичного региона (Клиника Профессора Калинченко, Клиника Валлекс-М), Тюмени (Нео-Клиник). Ежедневная доза зависит от возраста: от 40 до 50 лет рекомендуется 1 капсула в сутки, в возрасте от 50 до 60 лет - 2 капсулы в сутки, старше 60 лет - 4 капсулы в сутки.

Собрана ли уже какая-то статистика по результатам использования ТА-65 именно в нашей стране?

Длину теломер можно измерить с помощью лабораторных методов анализа. В США и Европе такие измерения проводятся с 2007 года, с момента появления продукта. Когда препарат появился в России, мы задумались о возможности проведения таких анализов у нас. Методики измерения теломер уже имелись, но, за отсутствием спроса, никто из врачей не назначал такой анализ, а сами пациенты о нем не знали.

Совместно с лабораторией Архимед мы запустили проект по измерению теломер в Москве. Также, открыта лаборатория в Тюмени в NEO-Clinic и в Санкт-Петербурге в клинике «Древо Жизни». С мая 2014 года лаборатории активно работают, у нас уже есть первые данные по пациентам, которые сдавали кровь до начала применения минимального курса и после. Исходя из полученных результатов можно сделать вывод оположительной тенденции в процессе увеличения длины теломер на российских пациентах.

Сегодня наша компания предоставляет бесплатную возможность сдать кровь на длину теломер всем пациентам, купившим одну упаковку ТА-65 90 капсул. Для этого необходимо зарегистрироваться на нашем сайте www.ta-65.ru в личном кабинете и ввести уникальный код, располагающийся под крышкой картонной упаковки. После этой процедуры вы получите возможность дважды сдать кровь на определение длины теломер (до начала приема ТА-65 и через 6 месяцев после начала приема). Здесь же можно проверить подлинность купленной вами упаковки по уникальному коду. Говоря об эффектах от приема ТА-65 важно отметить его положительное воздействие на иммунную систему. Именно поэтому пациенты, принимающие активатор, чувствуют прилив сил, реже подвергаются простудным заболеваниям, у них реже происходит обострение хронических заболеваний, например, при герпесе. Известно, что иммунная система играет важную роль в защите нашего организма и от раковых процессов.

А вот что говорит об опыте использования ТА-65 у своих пациентов профессор кафедры эндокринологии РУДН, ФПК МР, Леонид Олегович Ворслов:

«Первое, что отмечают наши пациенты - это прилив сил, жизненной энергии, которых так не хватает после сорокалетнего рубежа. Связано это со старением иммунной системы. Именно она отвечает за наше хорошее самочувствие, способность противостоять болезням и сохранять энергию молодости. И именно иммунная система в первую очередь реагирует на прием ТА-65, запуская механизмы обновления и увеличения продолжительности жизни иммунных клеток.

Отвечая на вопрос «как быстро пациент ощутит эффект?», правильнее говорить о результатах после курса приема, который составляет 3 месяца. И этот результат будет индивидуален для каждого, в зависимости от исходного уровня и состояния пациента, а также от его возраста. Понятно, что в 38-45 лет человека еще не слишком беспокоят усталость, нарушения памяти и внимания. И в этом возрасте правильнее говорить о сохранении вышеперечисленных функций на должном уровне, об их поддержании. Т.е., если вы начали принимать ТА-65 в 38-40 лет, у вас есть возможность в 50 лет выглядеть и чувствовать себя на 38-40. А вот те пациенты, которые начали прием с 50-ти лет - смогут в полной мере ощутить подъем жизненной энергии и положительные изменения в своем организме.

Вирусные заболевания при приеме ТА-65 отступают. Люди, подверженные частым простудным заболеваниями или входящие в группу риска (медицинские работники, учителя и др) сообщают об уменьении или полном их отсутствии в сезоны вспышек. Отмечают также уменьшение количества эпизодов герпесо-вирусной инфекции или полностью избавились от обострений.

Конечно, женская часть наших пациентов в первую очередь обращает внимание на улучшение состояния волос, ногтей и кожи. Клетки эпидермиса (кожа) - это вторая система, после иммунной, которая очень быстро реагирует на прием активатора теломеразы. Безусловно, улучшение общего самочувствия, появление сил и бодрости, повышение настроения и собственной привлекательности положительно сказываются на сексуальной активности и успехах в этой сфере нашей жизни»

В целом, наблюдения за пациентами, принимающими TA-65, ведутся с 2007 года, с того самого момента, как продукт появился в продаже. Среди десятков тысяч людей, принимающих его на протяжении всего этого времени, не выявлено серьезных побочных эффектов.

А возможно ли что активация теломеразы стимулирует удлинение теломер не для отдельных клеток, а для всех тканей организма в целом, не исключая и клетки с различными патологиями (в т.ч. онкологическими). Проще говоря, может ли активация теломеразы вызвать рак?

Ваш вопрос возвращает нас к началу интервью. Одна из основных функций теломер - это защита генетической информации хромосом при делении клеток. Как я говорила ранее, существует множество доказательств того, что именно укорочение теломер связано с развитием рака и является предрасполагающим фактором кразвитию ряда онкологических заболеваний. Так, короткие теломеры лейкоцитов могут предсказывать развитие рака, синдрома Беретта и язвенного колита.

Критически короткие теломеры неспособны защитить хромосомы от повреж¬дения при делении клетки. И если критически короткой величины достигает хотя бы одна теломера, в клетке происходит резкое изменение метаболизма, в первую очередь - нарушение репликации ДНК. В этот момент запускаются механизмы клеточного старения и разрушения. Затем до окончательной гибели клетки может пройти от нескольких месяцев до нескольких лет. Именно в этот период под воздействием генетических мутаций клетка может переродиться в раковую. Таким образом, риск развития рака у человека появляется как только его теломеры достигают предельно короткой длины, а не наоборот.

В то же время, у большинства раковых клеток теломеры бесконечно длинные. Чем же это обьясняется?

Раковый процесс очень сложен по своей природе и активация теломеразы не является пусковым механизмом в нем, а следовательно, не выступает причиной рака. Представьте себе клетку, у которой теломеры сократились до критически короткой величины. Клетка попадает в кризисное состояние и может быть подвержена генетическому сбою или мутации, что приведет к раковому процессу. Этот сбой или мутация никак не связаны с активностью теломеразы извне или внутри. А15% всех опухолей поддерживают длину теломер на должном уровне в отсутствии теломеразы. Таким образом, в этих злокачественных клетках действует другой (не теломеразный, а скорее рекомбинантный) механизм, известный как «альтернативное удлинение теломер» («Alternative Lengthening of Telomeres»).

Риск возникновения рака возникает тогда, когда более выражены признаки клеточного старения, что наиболее характерно для пожилых людей. Современный образ жизни, стресс, злоупотребление лекарствами приводят к недостатку отдельных теломеразных компонентов, и к более раннему фенотипическому старению с потерей функции на клеточном и системном уровне. Активация теломеразы может предотвратить раковое перерождение:

  • во-первых, потому что за счет омоложения снижается вероятность хромосомных перестроек в клетках,
  • а во-вторых, потому что теломераза может увеличить продолжительность жизни иммунных клеток, улучшив их способность находить и уничтожать раковые клетки.

Ранее уже указывалось, что активация теломеразы в нормальных клетках приводит к их омоложению без признаков озлокачествления. В 2012 году в Японии было проведено исследование, в ходе которого подтвердилось, что активация теломеразы извне не может привести к раковому процессу либо как-то его усугубить.

Первая система, которая реагирует на прием TA-65 - это иммунная система, которая играет огромную роль как в самом раковом процессе, так и в его предотвращении. Каждый миг в организме человека образуются раковые клетки. Этот процесс является непрерывным. Но иммунная система их распознает и уничтожает. С возрастом теломеры в иммунных клетках становятся короче, система теряет способность справляться с раковыми и патологическими образованиями. Наращивая теломеры в имунных клетках, ТА-65 позволяет поддерживать иммунитет организма на очень высоком уровне. Умеренная и контролируемая активация теломеразы не только снижает и предотвращает риски развития онкологических процессов, но и, вероятно, помогает с ними бороться.

Еще одно исследование показало, что длина теломер влияет на дифференцировку раковых клеток in vivo. Ученые из института рака в Японии продемонстрировали, что принудительное удлинение теломер в раковых клетках способствует их дифференцировке, что может уменьшить степень злокачественности опухоли. Результаты указывают на то, что удлинение теломер раковых клеток смягчает поведение уже существующей опухоли.

Существуют ли аналоги TA-65? В чем преимущество данного препарата?

К сожалению, у ТА-65 нет конкурентов. Год назад мне посчастливилось прочесть книгу, которая называется «Грани бессмертия», в ней описывается поиск и открытие теломеразы и то, как ее исследователи получили Нобелевскую премию. Авторы подтверждают, что на сегодняшний день ТА-65 - это единственный доступный людям активатор теломеразы. Надеюсь, в будущем появятся новые средства, позволяющие продлить здоровую жизнь.

Обещает ли производитель добиться повышения эффективности ТА-65?

Да, мы думаем об этом. Более того, есть планы уже в этом году вывести на рынок новый продукт, который будет следующей ступенью в anti-age направлении, позволит сохранить всю уникальность существующих наработок и усилить воздействие на процессы, связанные со старением, а так же совместит в себе дополнительную протекцию от наиболее губительных процессов в организме, присоединяющихся с возрастом.

Как видят производители дальнейшую судьбу препарата и пациетов, принимающих его?

С научной точки зрения, активация теломеразы и ТА-65 - это не только омоложение и, даже не столько омоложение - это вопрос о сохранении здоровья и поддержания качества жизни. Ведь все болезни у нас, как правило, появляются после сорока лет.200 лет назад, когда продолжительность жизни была заметно меньше, чем сегодня, человек не сталкивался со многими современными недугами. Например, женщина не знала что такое климакс, так как умирала еще до его наступления. В наше время, имея возможность прожить и 80, и 90 лет, мы увеличили время не только своего счастливого существования, но и количество заболеваний, ассоциированных с возрастом. Канцерогенез, заболевния органов зрения, репродуктивной, костной и сердечно-сосудистой системы - все они связаны со старением клеток и, соответственно, с сокращением длины теломер.

TA-65 и теломерная теория - это не только молодость и продление жизни, это повышение качества жизни, ее уровня. Благодаря эстетической медицине в 60 лет можно казаться на 10-15 лет моложе, но то, что происходит внутри организма сказывается на всем, в том числе и на нашей способности носить эту молодость, пребывая в бодрости и хорошем самочувствии.

Очень важно не казаться моложе, а быть моложе - это один из основных тезисов, который мы пытаемся донести до наших врачей и пациентов

В Европе и США теломерная теория старения изучается достаточно давно. В прошлом году я побывала на конгрессе, который так и назывался «Теломеры, теломераза и заболевания». В течение трех дней работы обсуждался вопрос влияния длины теломер на развитие самых разных патологий. Были представлены результаты научных исследований, демонстрирующие важность сохранения длины теломер.

В России эти данные появились совсем недавно, и для меня это означает только одно: если раньше мы не знали о существовании взаимосвязи между длиной теломер и патогенезом многих заболеваний, то в будущем нас ожидает множество открытий, которые помогут предотвратить эти заболевания, вывести нас на качественно новый уровень жизни, поможет привнести больше радости, успеха и благополучия в нашу жизнь. Только представьте сколько еще открытий может совершить человек, сколько жизненных целей достичь, разрешить загадки Вселенной, если у него для этого будет самое главное - его Здоровье! А сейчас у нас в руках есть реальный инструмент для управления своим возрастом и здоровьем изнутри и снаружи - ТА-65!

23 Мая 2014

Не существует лабораторных исследований, результаты которых свидетельствовали бы о том, что активация собственной теломеразы повышает риск развития рака. Согласно современным представлениям , теломераза – не необходимое условие запуска процесса озлокачествления ее экспрессия является обязательной только для поддержания роста большинства прогрессирующих злокачественных опухолей. Последние исследования, проведенные лабораторией Роберта де Пино (Robert de Pinho) из Гарвардского университета и испанской лаборатории Марии Бласко (Maria Blasco), посвящены изучению возможности манипуляций с теломеразой для снижения риска развития рака. Следует отметить, что ранние исследования, на основании которых десять лет назад было высказано беспокойство по поводу безопасности работы с теломеразой, были проведены этими же учеными.

Также проведено большое количество исследований, продемонстрировавших, что (а) экспрессия теломеразы не повышает риск развития рака у лабораторных животных и (b) короткие теломеры ассоциированы с очень высоким риском развития рака. По мнению автора, использование активаторов теломеразы значительно снизит вероятность развития рака. Это произойдет, во-первых, благодаря уничтожению провоспалительных клеток, являющихся потенциально канцерогенными из-за укороченных теломер, и во-вторых, за счет омоложения иммунной системы, обеспечивающей защиту организма от развития рака. В прошлом году автор опубликовал статью, посвященную этому вопросу (J.J.Mitteldorf, Telomere biology: Cancer firewall or aging clock? , Biokhimiya, 2013, Vol. 78, No. 9, pp. 1345–1353; перевод на русский доступен в «бумажном» издании журнала «Биохимия»).

Почему мы можем ожидать от удлинения теломер значительного увеличения продолжительности жизни

Ответ на этот вопрос очевиден, поэтому сформулируем его по-другому: какие факторы указывают на то, что увеличение длины теломер окажет очень мощное влияние на разнообразные аспекты биологии старения?

А) Укорочение теломер является древним механизмом старения

Протисты – это первые одноклеточные эукариоты, появившиеся на Земле миллиард лет назад (их структура значительно сложнее структуры бактерий, появившихся примерно на 3 миллиарда лет раньше). Протисты имеют линейную ДНК и, соответственно, потребность в теломеразе. Так как протисты размножаются простым делением, можно было бы предположить, что эти клетки не должны «стареть» или даже то, что концепция старения не имеет смысла для их клеточного цикла. Однако клеточные линии протистов могут стареть, а с некоторыми это в действительности происходит. В основе этого лежит самый старый из известных механизмов старения, заключающийся в воздержании от использования теломеразы.

В качестве примера можно привести парамеции (инфузории-туфельки). Репродукция парамеций заключается в делении клетки и репликации ДНК в отсутствии экспрессии теломеразы. В результате при каждом делении клетки происходит укорочение ее теломер. Парамеции могут вступать в конъюгацию, являющуюся примитивной формой полового обмена генетической информацией. Клетки двух парамеций сливаются и обмениваются ДНК, после чего разделяются. Экспрессия теломеразы характерна исключительно для процесса конъюгации. Поэтому любая не вступающая в конъюгацию клеточная линия вымирает через несколько сотен поколений. Это предотвращает возникновение чрезмерной однородности клеточных колоний. Таким образом, можно утверждать, что возраст механизма старения составляет миллиард лет, а некоторые из его генетических компонентов сохранялись и передавались через все трансформации многоклеточных форм жизни. William R Clark написал на эту тему де книги, находящиеся в открытом доступе [ , ].

В) Теломеры человека укорачиваются с возрастом

Е) При анализе результатов с учетом возраста, животные с короткими теломерами также входят в группу высокого риска скорой смерти

Это было продемонстрировано в исследованиях на нескольких видах птиц [ , , ] и павианах . Уже в 2003 году было установлено , что теломеры особей долгоживущих видов укорачиваются медленнее, чем теломеры представителей видов с малой продолжительностью жизни.

F) Небольшие исследования на мышах продемонстрировали способность стимуляторов теломеразы омолаживать организм животных
(Считается, что мыши являются значительно менее эффективной мишенью данной стратегии по сравнению с человеком, так как, судя по всему, старение человека намного сильнее зависит от укорочения теломер, чем старение мышей.)

Первый подобный эксперимент был проведен в 2008 году. Испанский исследователь Томас Лоба (Tomas-Loba) из лаборатории Марии Бласко создал генетически модифицированных мышей, одновременно устойчивых к раку и имеющих дополнительную копию гена теломеразы, экспрессируемую в некоторых тканях, для которых в норме экспрессия этого гена нехарактерна даже у мышей. Продолжительность жизни этих животных была на 18% выше продолжительности жизни устойчивых к раку мышей, имеющих только обычный ген теломеразы.

Однако вскоре было установлено, что предосторожности, предпринятые в отношении риска развития рака, могли быть излишними. Другой исследователь из той же лаборатории Бернардез де Хесус (Bernardes de Jesus, 2011) опубликовал данные , согласно которым ему удалось увеличить продолжительность жизни мышей с помощью коммерчески доступного продукта TA-65 (широко известного как циклоастрогенол) без увеличения риска развития рака. Циклоастрогенол является слабым активатором теломеразы, по сравнению с синтетическими соединениями, разработанными специалистами компании Sierra Sciences. Его активность сопоставима с активностью ряда других растительных экстрактов. Однако исследователи лаборатории Марии Бласко продемонстрировали, что краткосрочная терапия TA-65 обеспечивала удлинение даже наиболее коротких теломер мышей. Это сопровождалось улучшением целого ряда показателей состояния здоровья, в том числе чувствительности тканей к инсулину.

Впоследствии лаборатория Blasco работала с более мощным (хотя и более опасным) методом индукции теломеразы – инфицированием модифицированным ретровирусом, встраивающим ген теломеразы в ядерную ДНК инфицированных клеток. «Введение мышам в возрасте 1 и 2 года терапевтического аденоассоциированного вируса широкого тропизма, экспрессирующего мышиный ген TERT, оказывало выраженное влияние на состояние здоровья и выносливость животных, в том числе на такие показатели, как чувствительность тканей к инсулину, выраженность симптомов остеопороза, нервно-мышечная координация и несколько молекулярных биомаркеров старения» (Bernardes de Jesus et al., 2012). При начале терапии в 2-летнем возрасте продолжительность жизни мышей увеличивалась на 13%, а при начале терапии в возрасте 1 год – на 24%. При этом увеличения частоты развития рака не наблюдалось.

Н) На примере одного человека продемонстрировано, что прием больших доз активаторов теломеразы растительного происхождения обеспечивает омоложение

С недавнего времени автор поддерживает отношения с физиком из Канзаса, который в течение шести лет принимает огромные дозы активирующих теломеразу растительных препаратов и пищевых добавок и заявляет, что это улучшило его внешний вид и самочувствие, а также положительно сказалось на его физических способностях. Он может быть интересен для изучения проблемы на примере одного случая. Jim Green комментирует эксперимент над собственным организмом в своем блоге .

Выводы

По мнению автора, активация теломеразы является направлением, открывающим наиболее перспективные возможности увеличения продолжительность жизни человека уже в течение ближайших нескольких лет. Исследования в этой области ведутся очень медленно из-за дефицита финансирования и недостатка внимания.

1.2. КОРОТКИЕ ТЕЛОМЕРЫ И РАЗВИТИЕ ЗЛОКАЧЕСТВЕННЫХ ЗАБОЛЕВАНИЙ

Существует множество доказательств того, что укорочение теломер ассоциировано с развитием рака и, возможно, является предрасполагающим фактором для развития ряда онкологических заболеваний. Примером тому служат врожденные заболевания, в основе которых лежит первичная дисфункция теломеразы и, в частности, врожденный дискератоз. Врожденный дискератоз был первым идентифицированным у человека генетическим заболеванием, причиной которого является нарушение системы поддержания длины теломер. Это заболевание характеризуется гиперпигментацией кожи, ороговением эпителия, дистрофией ногтей и прогрессивной апластической анемией. У пациентов с врожденным дискератозом в 1000 раз повышен риск развития рака языка и примерно в 200 раз - риск развития острой миелоидной лейкемии . При апластической анемии, не связанной с дискератозом, для пациентов с наиболее короткими теломерами (при отсутствии мутаций) риск злокачественной трансформации заболевания в миелодисплазию или лейкемию повышен в 4-5 раз.

Наряду с другими изменениями, лишенные теломер концевые участки хромосом выявляются в культурах клеток костного мозга пациентов за годы до появления клинических симптомов злокачественных заболеваний. Так короткие теломеры лейкоцитов являются прогностическим фактором развития рака при синдроме Беретта (метаплазия слизистой оболочки и стриктуры пищевода в результате пищеводного рефлюкса) и язвенном колите .

Сотрудники Инсбрукского медицинского университета наблюдали за 787 участниками итальянского проспективного исследования Bruneck с 1995 по 2005 год. Возраст добровольцев составлял от 40 до 79 лет. В начале исследования у них определили длину теломер в лейкоцитах капиллярной крови. На тот момент у всех участников признаков рака обнаружено не было. За годы исследования у 11,7% добровольцев появилось какое-либо злокачественное новообразование. Рак кожи, кроме меланомы, не учитывался. Средняя длина теломер у пациентов с раком оказалась значительно меньше, чем у остальных участников исследования. После введения поправки на другие факторы риска оказалось, что по сравнению с теми, у кого длина теломер максимальна, добровольцы с самыми короткими теломерами в 3 раза больше рискуют заболеть раком и в 11 раз больше - умереть от него в 10-летний период. У участников исследования со средней длиной теломер риск рака оказался вдвое выше, чем у участников с наиболее длинными теломерами. При этом более короткие теломеры были чаще связаны с наиболее злокачественными опухолями, такими как рак желудка, легких и яичников . В чем же состоит взаимосвязь между существованием коротких теломер в клетке и развитием рака?

1.3. ПРОЦЕССЫ СТАРЕНИЯ И АПОПТОЗА

Одна из основных функций теломер - это защита генетической информации хромосом при делении клеток. Критически короткие теломеры неспособны защитить хромосомы от повреж¬дения при митозе (деление клетки). Их появление является сигналом для выхода клеток из митотического цикла. Критическим укорочением теломеры считается величина 3000-5000 пар нуклеотидов или менее 2 кb. Если этой величины достигает хотя бы одна теломера, то в клетке происходит резкое изменение метаболизма, и в первую очередь нарушение репликации ДНК, которые запускают механизмы клеточного сенесенса (репликативное старение) и апоптоза (гибель, разрушение клетки). Исключением из этого правила являются так называемые «иммортальные» (бессмертные) клетки, к которым относятся половые клетки, стволовые тотипотентные (способные дифференцироваться в любые клетки организма) клетки, а также клетки злокачественных опухолей, способные делиться неограниченное число раз.

В нормальной соматической клетке процесс сенесенса клетки в конечном итоге должен закончиться апоптозом - апофеозом или самоубийством нежизнеспособной клетки. Это генетически запрограммированный процесс, основные моменты которого упрощенно можно представить так: отсутствие теломеры на конце хромосомы останавливает митоз в точках G1 и G2. Остановка митоза в клетках, достигших лимита Хейфлика, по принципу обратной связи вызывает активацию гена р53, ответственного за выработку белка р53, индуцирующего апоптоз. В результате стареющая клетка прекращает свое существование. Старение и апоптоз- два взаимосвязанных процесса, которые служат для человека мощным барьером на пути развития рака. Однако апоптоз может происходить в стареющих клетках не сразу. Период от критического укорочения теломер до гибели клетки может длиться в течение нескольких месяцев и даже лет. Сравнительно небольшая длина теломер у большинства раковых клеток наводит на мысль о том, что они происходят из клеток, достигших предкризисного состояния. Уже известно, что в подавляющем большинстве случаев раковое перерождение происходит тогда, когда клетка не переходит в стадию репликативного старения или в клетке происходит нарушение течения самой стадии репликативного старения.

Профессор Ян Карлседер, и его команда из Инсбрукской лаборатории молекулярной и клеточной биологии считают, что: «Цепь, контролирующая остановку роста в G1-фазе, обычно изменена в раковых клетках, позволяя им делиться, несмотря на укороченные теломеры, что может привести к нестабильности генома, наблюдаемой в злокачественных клетках» . Специалисты Института биологических исследований Дж. Солка в Ла-Ойе (Сан-Диего, США) исследовали молекулярный механизм активации гена р53, который обычно защищает генетический материал клетки и подавляет опухоли, как ключевой фактор при реакции на снятие защиты теломер. Когда клетки теряют функцию p53, гена в центре цепи ДНК, нарушается механизм остановки роста клеток в фазе G1, важном моменте в клеточном цикле для ремонта повреждений ДНК или, если повреждение не может быть восстановлено, ген программирует клетки на уничтожение. Чаще всего, p53 исчезает в раковых клетках из-за мутации гена или деактивации функции белка p53 через инфекции от вызывающих рак вирусов. Клетки без функционального р53 способны делиться с незащищёнными теломерами, несмотря на чрезмерное укорачивание теломер, вплоть до их полного исчезновения, что вызывает нестабильность генома. При нестабильности генома высока вероятность возникновения спонтанных хромосомных аберраций, начиная от количественных изменений и заканчивая структурными аномалиями: транслокациями, инсерциями, делециями и ассоциированными с теломерами концевыми слияниями хромосом. Концевые слияния хромосом происходят за счет того, что сверхкороткие теломеры воспринимаются клеткой, как разрывы хромосом. Такие разрывы “чинятся” путем их соединения, т.е. происходят теломерные слияния. В результате образуются хромосомы, имеющие по две центромеры. При прохождении через митоз дицентрик, с большой вероятностью, образует хромосомный мост, который разрешается случайным разрывом хромосомы. Образуются две клетки: одна с нехваткой генов, другая с лишними копиями и с хромосомным разрывом. Клетка с нехваткой генов обычно погибает, а с лишними копиями и хромосомным разрывом продолжает размножаться. Последовательность событий “слияние-мост- разрыв” многократно повторяется, генерируя на каждом этапе новый генотип, состоящий из базового набора генов и некоторого меняющегося довеска. На каком-то этапе хромосомный разрыв может “залечиться” и превратиться в теломеру. Процесс “слияние-мост-разрыв” приводит к многократному увеличению скорости изменчивости клеток и появлению «дефектных» клеток.

Однако не всякая дефектная клетка сразу становится злокачественной. Раковое перерождение клетки в большинстве случаев многоступенчатый процесс, затрагивающий многочисленные хромосомные перестройки. В клетках опухолей человека подчас находят более 10 мутаций.

Необходимо отметить, что большинство дефектных клеток, в конце концов, погибают от апотоза или уничтожаются клетками иммунной системы. В противном случае была бы слишком высока вероятность того, что все человечество погибло бы от рака. Апоптоз охарактеризовал себя как отличный подавитель роста раковых клеток. Однако у части злокачественных клеток в результате случайных мутаций может активироваться постоянная экспрессия генов теломеразы, которая поддерживает длину теломер на уровне, необходимом и достаточном для их функционирования. Это характерный путь для быстрой пролиферации 85% злокачественных опухолей.

1.4. СТРУКТУРА ТЕЛОМЕРАЗЫ

Структура теломеразы еще не полностью изучена. Дело в том, что содержание фермента в клетке чрезвычайно низкое, имеются большие трудности получения ее компонентов в растворимой форме и в достаточном количестве и др. Но уже точно известны два основных компонента, составляющие коровый комплекс (сердце) теломеразы: это теломеразная обратная транскриптаза - TERT(наиболее важный домен-hTERT каталитическая субъединица) и TER- специальная теломеразная РНК. Предположительно, теломераза содержит и другие структурные комплексы, которые помогают ей работать в клетке: субъединица, отвечающая за поиск и связывание 3’-конца хромосомы (якорная функция), субъединица, ответственная за транслокацию, субъединицы, связывающие продукт реакции (однотяжевую ДНК), белковая субъединица с нуклеазной активностью, которая, по-видимому, отщепляет от 3’-конца теломерной ДНК один за другим несколько нуклеотидов до тех пор, пока на этом конце не окажется последовательность, комплементарная нужному участку матричного сегмента теломеразной РНК и др.

1.5. ФУНКЦИИ ТЕЛОМЕРАЗЫ

Основная и наиболее изученная функция теломеразы - наращивание теломерных районов хромосом, и в частности, 3’-конца хромосомной ДНК. Последние работы показали, что коровый комплекс теломеразы может влиять на рост клеток, их фенотип, независимо от эффекта на длину теломер. Нобелевский лауреат 2009 года Элизабет Блэкберн предложила следующее объяснение наблюдаемым явлениям: теломераза, помимо удлинения концов теломер, проявляет защитные функции на теломере . К настоящему времени появилось уже довольно много работ, свидетельствующих о том, что не столько укорочение теломер приводит к сенессенсу, сколько нарушение их структуры. Тем самым теломераза, не только препятствует укорочению теломер, но и защищает их структуру. Интересен тот факт, что отдельные структурные элементы теломеразы имеют свое функциональное предназначение в клетке. Оказалось, что непосредственно TERT участвует в транскрипции генов «Wnt-?-catenin» сигнального пути, который стимулирует пролиферацию эмбриональных и стволовых клеток. Такая функция TERT представляет собой, по сути, координацию аппарата поддержания теломер в делящихся клетках с помощью теломеразы с экспрессией генов, необходимых для пролиферации.

1.6. АКТИВНОСТЬ ТЕЛОМЕРАЗЫ В НОРМАЛЬНЫХ И ЗЛОКАЧЕСТВЕННЫХ КЛЕТКАХ

Все клетки человека в раннем эмбриогенезе обладают теломеразной активностью, которая по мере развития организма выключается во все большей доле клеток. К моменту рождения в подавляющем большинстве клеток человеческого организма происходит очень надежная репрессия теломеразы за счет подавления экспрессии гена ее каталитической субъединицы (обратной транскриптазы). Исключением являются клетки организма, которым суждено много пролиферировать Они сохраняют ограниченную, временно индуцируемую теломеразную активность. Наличие небольшой теломеразной активности дает возможность пролиферирующим клеткам с течением времени не подвергаться большой изменчивости. У здорового человека активность этого фермента можно выявить на сравнительно низком, но детектируемом уровне в стволовых, половых клетках, в слизистых клетках кишечника, в лимфоцитах периферической крови (ПК) и тимуса (Osterhage J.L., 2009). Установлено, что экспрессия теломеразы в лимфоцитах строго контролируется в течение их развития, дифференцировки и активации . Предполагается, что активность теломеразы усиливается на короткий срок в период интенсивной пролиферации (например, после встречи предшественника В-лимфоцита с антигеном). В результате стимуляции зрелые лимфоциты становятся способны экспрессировать теломеразу на довольно высоком уровне, причем после любой повторной стимуляции экспрессия теломеразы возрастает, но ее уровень уже не достигает уровня ответа на первичный стимул . Ферментативная активность теломеразы возрастает в основном за счет фосфорилирования TERT, вызывающего изменение локализации белка в клетке.

Несмотря на репрессию hTERT, другие составляющие теломеразы, включая теломеразную РНК, образуются в соматических клетках, хотя и в меньших количествах, чем в их “бессмертных” прародителях, но постоянно (или, как говорят, конститутивно). Открытие этого важного факта Дж. Шеем, В. Райтом и их сотрудниками и стало основой для сенсационной работы по преодолению “лимита Хейфлика”. В нормальные соматические клетки были внесены гены теломеразной обратной транскриптазы с помощью специальных векторов, сконструированных из вирусных ДНК. В практике клеточных технологий принято влиять на экспрессию генов через геномы вирусов, с определенными участками ДНК, которые внедряются в клетку-хозяина и быстро там размножаются. Результаты их экспериментов можно суммировать кратко: клетки, в которых теломераза поддерживала длину теломер на уровне, характерном для молодых клеток, продолжали делиться тогда, как контрольные клетки (без теломеразы) дряхлели и умирали.

Известно, что клетки большинства исследованных на сегодня раковых опухолей характеризуются достаточно высокой активностью теломеразы, которая поддерживает длину теломер на постоянном уровне. Этот уровень заметно ниже, чем, например, у эмбриональных клеток, но он достаточен, чтобы обеспечить опухолевым клеткам возможность безграничной пролиферации, что в свою очередь предоставляет им время и, соответственно, возможность изменяться, выживать и захватывать новые ниши в организме. Если бы в процессе канцерогенеза не происходило активации теломеразы, то клетки, в большинстве случаев, не смогли бы дожить до злокачественных стадий, и не было бы абсолютного большинства раковых опухолей. К, сожалению, на сегодняшний день нет объяснения тому факту, что при различных формах рака теломераза может активироваться как на ранних, так и на поздних стадиях. Так, при миелолекозе активность теломеразы определяется на ранних стадиях, а при раке почки или менингеоме активация теломеразы происходит уже в клетках сформировавшейся опухоли.

Существует гипотеза, у которой немало сторонников, предполагающая, что потеря теломеразной активности соматическими клетками современных организмов есть благоприобретенное в процессе эволюции свойство, уберегающее их от злокачественного перерождения. Но этот механизм, по-видимому, не единственный. Было установлено, что в 15% всех опухолей, злокачественные клетки поддерживают длину теломер на должном уровне в отсутствии теломеразы. Таким образом, в этих злокачественных клетках действует другой (не теломеразный, а скорее рекомбинантный) ALT механизм «альтернативного удлинения теломер», (аббревиатура от «Alternative Lengthening of Telomeres»). Во всех ALT- индуцированных опухолях высоко содержание APB - ALT-ассоциированных ядерных белков. APB-структуры хорошо видны при флуоресцентной микроскопии клеток, что использовалось для идентификации ALT- опухолей (так как, у нормальных клеток эти структуры отсутствуют). Инн Чанг и Карстен Риппе из Онкологического центра Германии в ходе совместного исследования с Генрихом Леонардом из Мюнхенского университета Людвига- Максимилиана применили новый подход к изучению APB. Им удалось искусственно создать APB-белки в живых клетках, «привязав» к теломерам белки промиелоцитарной лейкемии (promyeloeytie leukaemia) - PML. Таким образом, ученым удалось впервые доказать, что APB удлиняют теломеры, тем самым продлевая жизнь раковых клеток без теломеразы .

Однако сама по себе активация теломеразы в нормальных клетках не приводит к раковому перерождению.

В опытах Дж. Шеея, В. Райта (1998), Bodnar (1997), White (2000), Hannon et al. (1999; 2000), Franzese et al. (2001), and Yudoh et al. (2001) активность теломеразы обычно увеличивалась благодаря сверхэкспрессии hTRT или экспрессии белков, которые являются промежуточными компонентами теломеразы . Их результаты не выявили каких-либо нарушений в регуляции размножения или озлокачествления теломеризованых клеток. Более того, в последнее время появились данные о том, что, просто активации теломеразы недостаточно для иммортализации разных клонов клеток. В работах профессора Кионо с соавторами, введение каталитического компонента теломеразы hTERT или теломеразной активности с помощью онкобелка вируса папилломы человека E7 в кератиноциты или клетки эпителия человека не приводило к их полной иммортализации. Она наступала лишь при дополнительном торможении определенных онкогенов. Причем, для разных типов клеток требуется, по-видимому, инактивация разных супрессоров [ Wynford-Thomas, et all. 1997 ]. Так, в человеческих кератиноцитах и эпителиоцитах молочной железы иммортализация наблюдается при трансдукции TERT и одновременной инактивации белков либо pRb , либо p16INK4a , тогда как элиминация р53 или p19ARF не вызывает такого эффекта [ Kiyono, et all. 1998]

Эти научные факты еще раз подчеркивают, что экзогенная стимуляция активности теломеразы не вызывает в нормальных клетках ракового перерождения, и что особенно важно изолированная экспрессия гена теломеразы не ведет к иммортализации раковых клеток.

1.7. ИНГИБИРОВАНИЕ ТЕЛОМЕРАЗЫ КАК МЕТОД БОРЬБЫ С РАКОМ

Выше уже говорилось о том, что активность теломеразы повышена во многих злокачественных клетках и клеточных линиях. Это позволило искать пути борьбы с раковыми клетками через ингибирование теломеразы. Пока большинство работ связано с испытанием ингибиторов обратных транскриптаз (каталитических субъединиц теломераз). Однако проведенные исследования по эффективности и безопасности данного класса препаратов неоднозначны. По мнению профессора Егорова Е.Е., антираковая терапия с помощью подавления теломеразы является малоэффективной, потому, что в большинстве случаев, реактивация теломеразы при канцерогенезе происходит в процессе выхода клеток из состояния кризиса, когда наблюдается многократное повышение генетической изменчивости. Поскольку эти клетки попали в состояние кризиса, то в них разрушены или нейтрализованы механизмы репликативного старения. Поэтому подавление теломеразы в опухолевых клетках человека возвращает их в состояние кризиса, но не вызывает репликативного старения и следующего за ним апоптоза. А это значит, что снова будет происходить чрезмерное увеличение генетической нестабильности. В отличие от кризиса в процессе становления опухоли, этот кризис будет захватывать существенно большее число клеток. Эффект после подавления теломеразы наступает с задержкой, необходимой для укорачивания теломер вследствие недорепликации. Время этой задержки составляет десятки удвоений популяции, что равноценно десяткам дней. Поэтому, несмотря на то, что большинство клеток все же будет погибать, довольно быстро возникнут клетки, устойчивые к предложенной терапии. Кроме того, проблема данного класса препаратов состоит в их выраженной токсичности для нормальных клеток. И потому более перспективными являются работы, в которых описано избирательное подавление теломеразной РНК, так как действие искомого ингибитора должно быть направлено именно на теломеразную ДНК-синтезирующую активность .

Несомненно, что изучение путей ингибирования теломеразы актуально для снижения смертности от рака, однако изучение путей активации теломеразы представляется не менее важным направлением для профилактики рака, особенно у лиц пожилого возраста.

2. АКТИВАТОР ТЕЛОМЕРАЗЫ ТА-65 И КАНЦЕРОГЕНЕЗ

В процессе старения человека происходит гибель клеток организма, которая не может быть восполнена регенерацией. Со временем потеря клеток приводит к ослаблению функций органов и тканей, уменьшению их надежности, развитию болезней, связанных со старением, и в итоге к гибели организма. По данным Американского общества рака, 78% всех случаев рака диагностируют у лиц старше пятидесяти семи лет. Риск возникновения рака возникает тогда, когда более выражены признаки клеточного старения, что наиболее характерно для пожилых людей. Современный образ жизни, стресс, злоупотребление лекарствами приводят к недостатку отдельных теломеразных компонентов, и к более раннему фенотипическому старению с потерей функции на клеточном и системном уровне. Этот факт заставил исследователей искать пути продления жизни клетки через активацию теломеразы.

На сегодняшний день единственным биологическим комплексом с доказанным эффектом снижения процента критически коротких теломер в клетке, является ТА-65. Его действие направлено на индукцию активности теломеразы, которая способствует добавлению теломерных повторов, прежде всего, к коротким теломерам, тем самым омолаживая стареющие клетки и наделяя их способностью пролиферировать.

Потенциальный терапевтический эффект ТА-65 направлен на увеличение активности теломеразы, прежде всего, в стволовых клетках, клетках костного мозга, стромальных клетках костного мозга, молодых фибробластах кожи, предшественниках инсулоцитов, нейросферических клетках, адренокортикальных клетках, мышечных, остеопластических, ретинальных пигментированных эпителиалиальных клетках, клетках иммунной системы, включая клетки лимфоидного, миелоидного и эритроидного ростков, таких как В- и Т- лимфоциты, моноциты, циркулирующие и специализированные тканевые макрофаги, нейтрофилы, эозинофилы, базофилы, NK-клетки и их соответствующие предшественники. В этой связи основными показаниями для использования ТА-65 могут быть: обусловленные стрессом и возрастом нарушения иммунной системы, включая нарушение обновления тканей, которое происходит при естественном старении, раке, лечении рака, острых или хронических инфекциях или при генетических нарушениях, вызывающих ускоренную гибель клеток, апластических анемиях и других дегенеративных заболеваниях. Использование ТА-65 для профилактики рака выглядит на первый взгляд парадоксально. Каким же образом, активация теломеразы может предотвратить раковое перерождение клеток. Это происходит, во-первых, потому что за счет омоложения снижается вероятность хромосомных перестроек в клетках, а во-вторых, потому что теломераза может увеличить продолжительность жизни иммунных клеток, улучшив их способность находить и уничтожать раковые клетки. Ранее уже указывалось, что активация теломеразы «генетическим способом» в нормальных клетках приводит к их омоложению без признаков озлокачествления. Научная работа исследователей из Испанского Национального центра по изучению рака продемонстрировала, что TA-65 обладает подобным действием у мышей. В результате исследования были доказаны эффекты ТА-65 по удлинению коротких теломер, и улучшению здоровья старых мышей, включая состояния толерантности к глюкозе, остеопороза и дряблости кожи, без увеличения заболеваемости раком. Еще одно исследование на людях, известное под названием «Протокол Патона» показало, что у пациентов, использующих ТА-65 в течение года, как составляющий компонент программы омоложения не выявило не одного нового случая рака.

В одной из научных работ профессора иммунологии калифорнийского университета, занимающегося проблемами старения и ВИЧ-инфекции Риты Эфрос с соавторами проводилось исследование влияния молекулы ТАТ-2 на функции Т- и В-лимфоцитов. ТАТ-2 по химической структуре представляет собой циклоастрогенол. Аналогичная молекула входит в состав ТА-65. Исследование позволило сделать следующее заключение о безопасности ТАТ-2: «Во всех проведенных на сегодняшний день исследованиях в естественных условиях, не было получено никаких доказательств, что TAT2 способствовало потере контроля роста и преобразования. Например, TAT2 не приводит к какому-либо значительному увеличению конститутивной активности теломеразы в линии Jurkat Т клеток опухоли Supplemental. Кроме того, хроническое воздействие TAT2 не изменяет скорость EBV трансформации нормальных В-лимфоцитов в культуре клеток Важно отметить, что наблюдаемые эффекты регулирования теломеразы являются краткосрочными и обратимым. Удаление TAT2 из клеток возвращает уровни теломеразы к исходным в течение нескольких дней без каких-либо последствий для жизнеспособности клеток.»

3. ЗАКЛЮЧЕНИЕ

Все вышесказанное можно обобщить в следующих выводах:

1. Существует тесная взаимосвязь между существованием коротких теломер в клетке и развитием опухолевого процесса. Свидетельствами тому служат заболевания, при которых отмечаются короткие теломеры: врожденный дискератоз, апластическая анемия, синдром Баретта др.

2. Наличие критически коротких теломер в клетке - признак ее старения и нестабильности. В этот период велика возможность перехода клетки в кризисное состояние, при котором высок риск возникновения хромосомных мутаций, приводящих к развитию рака.

3. Теломераза препятствует укорочению теломер, защищает их структуру. Недостаток теломеразы в активно пролиферирующих клетках (стволовых клетках, клетках костного мозга, стромальных клетках костного мозга, молодых фибробластах кожи, предшественниках инсулоцитов, нейросферических клетках, адренокортикальных клетках, мышечных, остеопластических, ретинальных пигментированных эпителиалиальных клетках, клетках иммунной системы, включая клетки лимфоидного, миелоидного и эритроидного ростков, таких как В- и Т- лимфоциты, моноциты, циркулирующие и специализированные тканевые макрофаги, нейтрофилы, эозинофилы, базофилы) ведет к нарушению их функционирования и к быстрому старению.

4. Малигнизация клетки - сложный многоступенчатый процесс, при котором происходят множественные мутации генетического материала клетки.

5. Для иммортализации злокачественного клона не достаточно экспрессии (активации) гена теломеразы, необходимо еще «отключение» определенных сигнальных механизмов, которые предохраняют клетку от перерождения.

6. Сама по себе теломераза не является онкогеном. Изолированная активация теломеразы за счет генетических манипуляций с геном теломеразы, а также за счет фармакологической стимуляции ТА-65 не приводит к малигнизации клетки. Этот факт доказан множеством научных и экспериментальных работ.

7. ТА-65 способствует профилактике ракового перерождения за счет щадящей активации теломеразы и снижения процента коротких теломер. При этом снижается вероятность хромосомных перестроек в клетках, увеличивается продолжительность жизни иммунных клеток, улучшается их способность находить и уничтожать раковые клетки.

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА:

  1. Blackburn, E.H. (2005) FEBS Lett.,579, 859-862.
  2. Билибин Д.П роль апоптоза в патологии. Москва 2003
  3. Bodnar, A.G. et al., «Extension of life-span by introduction of telomerase into normal human cells», Science279 (5349): 349-52 (Jan. 16, 1998);
  4. Chung, I., Leonhardt, H., and Rippe, K. De novo assembly of a PML nuclear subcompartment occurs via multiple pathways and induces telomere elongation. Journal of Cell Science 124, 2011 3603-3618
  5. Chiu, C.P. et al., «Replicative senescence and cell immortality: the role of telomeres and telomerase» Proc.Soc. Exp. Biol. Med. 214 (2): 99-106 (Feb. 1997);
  6. Егоров Е.Е. Роль теломер и теломеразы в процессах клеточного старения и канцерогенеза.\автореферат докторской диссертации. Москва 2003 с300
  7. Fujimoto, R. et al., «Expression of telomerase components in oral keratinocytes and squamous cell carcinomas»,Oral Oncology 37 (2): 132-40 (Feb. 2001);
  8. Harle-Bachor, C. et al., «Telomerase activity in the regenerative basal layer of the epidermis inhuman skin and inimmortal and carcinoma-derived skin keratinocytes», Proc. Natl. Acad. Sci. USA 93 (13): 6476-81 (Jun. 25, 1996);
  9. Harley, C.B. et al., «Telomeres shorten during ageing of human fi broblasts», Nature 345 (6274): 458-60 (May 31, 1990);
  10. Harley, C.B. et al., «Telomerase, cell immortality, and cancer», Cold Spring Harb. Symp. Quant. Biol. 59:307-15 (1994);
  11. Harley, C.B. et al., «Telomeres and telomerase in aging and cancer», Curr. Opin. Genet. Dev. 5 (2): 249-55 (Apr. 1995);
  12. Harley, C.B. et al., «Telomerase and cancer», Inzportarzt. Adv. Oncol. 57-67 (1996);
  13. Harley, C.B., «Telomerase is not an oncogene», Oncogene 21: 494-502 (2002);
  14. Hannon, G.J. and Beach, D.H., «Increasing proliferative capacity and preventing replicative senescence by increasing telomerase activity and inhibiting pathways inhibiting cell roliferation)), PCT Int. Appl. Pubn. No.WO 2000/031238 (June 2000);
  15. Kiyono, T., Foster, S.A., Koop, J.I., McDougall, J.K., Galloway, D.A., and Klingelhutz, A.J. / Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells.(1998) Nature, 396, 84-88.
  16. Liu, K., Hodes, R.J., Weng, N. (2001)J. Immunol., 166, 4826-4830.
  17. Mitchell, J.R., Wood, E., Collins, K. (1999) Nature, 402, 551-555.
  18. Osterhage JL, Friedman KL. J Biol Chem. Chromosome end maintenance by telomerase.2009 Jun 12;284(24):16061-5. doi: 10.1074/jbc.R900011200. Epub 2009 Mar 12.
  19. Verdun, R.E., Crabbe, L., Haggblom, C. and Karlseder, J. (2005) Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol Cell 20:551-561. Yudoh, K. et al., «Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomereshorting and replicative senescence in human osteoblasts», J. Bosle and Mineral Res. 16 (8): 1453-1464 (2001).
  20. White, M.A., «Assembly of telomerase components and chaperonins and methods and compositions forinhibiting or stimulating telomerase assembly», PCT Int. Appl. Pubn. No. WO 2000/08135 (Feb. 2000);
  21. Willeit P et.all, Telomere Length and Risk of Incident Cancer and Cancer Mortality, JAMA. 2010; 304(1):69-75.
  22. Steven Russell Fauce,* Beth D. Jamieson,† Allison C. Chin,2,‡ Ronald T. Mitsuyasu,† Stan T. Parish,* Hwee L. Ng,† Christina M. Ramirez Kitchen,§ Otto O. Yang,† Calvin B. Harley,‡ and Rita B. Effros3,* Telomerase-Based Pharmacologic Enhancement of Antiviral Function of Human CD8+ T Lymphocytes The Journal of Immunology November 15, 2008 vol. 181 no. 10 7400-7406


© dagexpo.ru, 2024
Стоматологический сайт