Значение слова нейтрон

21.09.2019

НЕЙТРОН (n) (от лат. neuter - ни тот, ни другой) - элементарная частица с нулевым электрич. зарядом и массой, незначительно большей массы протона. Наряду с протоном под общим назв. нуклон входит в состав атомных ядер. H. имеет спин 1 / 2 и, следовательно, подчиняется Ферми - Дирака статистике (является фермионом). Принадлежит к семейству адра-нов; обладает барионным числом B= 1, т. е. входит в группу барионов .

Открыт в 1932 Дж. Чедвиком (J. Chadwick), показавшим, что жёсткое проникающее излучение, возникающее при бомбардировке ядер бериллия a-частицами, состоит из электрически нейтральных частиц с массой, примерно равной протонной. В 1932 Д. Д. Иваненко и В. Гей-зенберг (W. Heisenberg) выдвинули гипотезу о том, что атомные ядра состоят из протонов и H. В отличие от заряж. частиц, H. легко проникает в ядра при любой энергии и с большой вероятностью вызывает ядерные реакции захвата (n,g), (n,a), (n, p), если баланс энергии в реакции положительный. Вероятность экзотермич. увеличивается при замедлении H. обратно пропорц. его скорости. Увеличение вероятности реакций захвата H. при их замедлении в водородсодержащих средах было обнаружено Э. Ферми (E. Fermi) с сотрудниками в 1934. Способность H. вызывать деление тяжёлых ядер, открытая О. Ганом (О. Hahn) и Ф. Штрасманом (F. Strassman) в 1938 (см. Деление ядер) , послужила основой для создания ядерного оружия и . Своеобразие взаимодействия с веществом медленных H., имеющих де-бройлевскую длину волны порядка атомных расстояний (резонансные эффекты, дифракция и т. д.), служит основой широкого использования нейтронных пучков в физике твёрдого тела. (Классификацию H. по энергиям - быстрые, медленные, тепловые, холодные, ультрахолодные - см. в ст. Нейтронная физика .)

В свободном состоянии H. нестабилен - испытывает B-распад; n p + е - + v e ; его время жизни t n = = 898(14) с, граничная энергия спектра электронов 782 кэВ (см. Бета-распад нейтрона) . В связанном состоянии в составе стабильных ядер H. стабилен (по эксперим. оценкам, его время жизни превышает 10 32 лет). По астр. оценкам, 15% видимого вещества Вселенной представлено H., входящими в состав ядер 4 He. H. является осн. компонентой нейтронных звёзд . Свободные H. в природе образуются в ядерных реакциях, вызываемых a-частицами радиоактивного распада, космическими лучами и в результате спонтанного либо вынужденного деления тяжёлых ядер. Искусств. источниками H. служат ядерные реакторы, ядерные взрывы , ускорители протонов (на ср. энергии) и электронов с мишенями из тяжёлых элементов. Источниками монохроматичных пучков H. с энергией 14 МэВ являются низкоэнергетич. ускорители дейтронов с тритиевой или литиевой мишенью, а в будущем интенсивными источниками таких H. могут оказаться термоядерные установки УТС. (См. .)

Основные характеристики H .

Масса H. т п = 939,5731(27) МэВ/с 2 = = 1,008664967(34) ат. ед. массы 1,675 . 10 -24 г. Разность масс H. и протона измерена с наиб. точностью из энергетич. баланса реакции захвата H. протоном: n + p d + g (энергия g-кванта = 2,22 МэВ), m n - m p = 1,293323 (16) МэВ/с 2 .

Электрический заряд H. Q n = 0. Наиболее точные прямые измерения Q n выполнены по отклонению пучков холодных либо ультрахолодных H. в электростатич. поле: Q n <= 3·10 -21 е (е - заряд электрона). Косв. данные по электрич. нейтральности мак-роскопич. кол-ва газа дают Q n <= 2·10 -22 е .

Спин H. J = 1 / 2 был определён из прямых опытов по расщеплению пучка H. в неоднородном магн. поле на две компоненты [в общем случае число компонент равно (2J + 1)].

Последоват. описание структуры адронов на основе совр. теории сильного взаимодействия - квантовой хромодинамики - пока встречает теоретич. трудности, однако для мн. задач вполне удовлетворит. результаты даёт описание взаимодействия нуклонов, представляемых как элементарные объекты, посредством обмена мезонами. Эксперим. исследование пространств. структуры H. выполняется с помощью рассеяния высокоэнергичных лептонов (электронов, мюонов, нейтрино, рассматриваемых в совр. теории как точечные частицы) на дейтронах. Вклад рассеяния на протоне измеряется в отд. эксперименте и может быть вычтен с помощью определ. вычислит. процедуры.

Упругое и квазиупругое (с расщеплением дейтрона) рассеяние электронов на дейтроне позволяет найти распределение плотности электрич. заряда и магн. момента H. (формфактор H.). Согласно эксперименту, распределение плотности магн. момента H. с точностью порядка неск. процентов совпадает с распределением плотности электрич. заряда протона и имеет среднеквадратичный радиус ~0,8·10 -13 см (0,8 Ф). Магн. форм-фактор H. довольно хорошо описывается т. н. диполь-ной ф-лой G M n = m n (1 + q 2 /0,71) -2 , где q 2 - квадрат переданного импульса в единицах (ГэВ/с) 2 .

Более сложен вопрос о величине электрич. (зарядового) формфактора H. G E n . Из экспериментов по рассеянию на дейтроне можно сделать заключение, что G E n (q 2 ) <= 0,1 в интервале квадратов переданных импульсов (0-1) (ГэВ/с) 2 . При q 2 0 вследствие равенства нулю электрич. заряда H. G E n -> 0, однако экспериментально можно определить дG E n (q 2 )/дq 2 | q 2=0 . Эта величина наиб. точно находится из измерений длины рассеяния H. на электронной оболочке тяжёлых атомов. Осн. часть такого взаимодействия определяется магн. моментом H. Наиб. точные эксперименты дают длину ne-рассеяния а nе = -1,378(18) . 10 -16 см, что отличается от расчётной, определяемой магн. моментом H.: a nе = -1,468 . 10 -16 см. Разность этих значений даёт среднеквадратичный электрич. радиус H. <r 2 E n >= = 0,088(12) Фили дG E n (q 2)/дq 2 | q 2=0 = -0,02 F 2 . Эти циф-ры нельзя рассматривать как окончательные из-за большого разброса данных разл. экспериментов, превышающих приводимые ошибки.

Особенностью взаимодействия H. с большинством ядер является положит. длина рассеяния, что приводит к коэф. преломления < 1. Благодаря этому H., падающие из вакуума на границу вещества, могут испытывать полное внутр. отражение. При скорости u < (5-8) м/с (ультрахолодные H.) H. испытывают полное отражение от границы с углеродом, никелем, бериллием и др. при любом угле падения и могут удерживаться в замкнутых объёмах. Это свойство ультрахолодных H. широко используется в экспериментах (напр., для поиска ЭДМ H.) и позволяет реализовать нейтронооптич. устройства (см. Нейтронная оптика ).

H. и слабое (электрослабое) взаимодействие . Важным источником сведений об электрослабом взаимодействии является b-распад свободного H. .На квар-ковом уровне этот процесс соответствует переходу . Обратный процесс взаимодействия электронного с протоном, , наз. обратным b-распадом. К этому же классу процессов относится электронный захват ,имеющий место в ядрах, ре - nv e .

Распад свободного H. с учётом кинематич. параметров описывается двумя константами - векторной G V , являющейся вследствие векторного тока сохранения универс. константой слабого взаимодействия, и аксиально-векторной G A , величина к-рой определяется динамикой сильно взаимодействующих компонент нуклона - кварков и глюонов. Волновые ф-ции начального H. и конечного протона и матричный элемент перехода n p благодаря изотопич. инвариантности вычисляются достаточно точно. Вследствие этого вычисление констант G V и G A из распада свободного H. (в отличие от вычислений из b-распада ядер) не связано с учётом ядерно-структурных факторов.

Время жизни H. без учёта нек-рых поправок равно: t n = k(G 2 V + 3G 2 A ) -1 , где k включает кинематич. факторы и зависящие от граничной энергии b-распада кулонов-ские поправки и радиационные поправки .

Вероятность распада поляризов. H. со спином S , энергиями и импульсами электрона и антинейтрино и р е, в общем виде описывается выражением:

Коэф. корреляции a, А, В, D могут быть представлены в виде ф-ции от параметра а = (G A /G V ,)exp(i f). Фаза f отлична от нуля или p, если T -инвариантность нарушена. В табл. приведены эксперим. значения для этих коэф. и вытекающие из них значения a и f.


Имеется заметное отличие данных разл. экспериментов для т n , достигающее неск. процентов.

Описание электрослабого взаимодействия с участием H. при более высоких энергиях гораздо сложнее из-за необходимости учитывать структуру нуклонов. Напр., m - -захват, m - p nv m , описывается по крайней мере удвоенным числом констант. H. испытывает также электрослабое взаимодействие с др. адронами без участия лептонов. К таким процессам относятся следующие.

1) Распады гиперонов L np 0 , S + np + , S - np - и т. д. Приведённая вероятность этих распадов в неск. раз меньше, чем у нестранных частиц, что описывается введением угла Кабиббо (см. Кабиббо угол ).

2) Слабое взаимодействие n - n или n - p, к-рое проявляется как ядерные силы, не сохраняющие пространств. чётность .Обычная величина обусловленных ими эффектов порядка 10 -6 -10 -7 .

Взаимодействие H. со средними и тяжёлыми ядрами имеет ряд особенностей, приводящих в нек-рых случаях к значит. усилению эффектов несохранения чётности в ядрах . Один из таких эффектов - относит. разность сечения поглощения H. с по направлению распространения и против него, к-рая в случае ядра 139 La равна 7% при = 1,33 эВ, соответствуют щей р -волновому нейтронному резонансу. Причиной усиления является сочетание малой энергетич. ширины состояний компаунд-ядра и большой плотности уровней с противоположной чётностью у этого компаунд-ядра, обеспечивающей на 2-3 порядка большее смешивание компонент с разной чётностью, чем у низко лежащих состояний ядер. В результате ряд эффектов: асимметрия испускания g-квантов относительно спина захватываемого поляризов. H. в реакции (n, g), асимметрия вылета заряж. частиц при распаде компаунд-состояний в реакции (n, р) или асимметрия вылета лёгкого (или тяжёлого) осколка деления в реакции (n, f ). Асимметрии имеют величину 10 -4 -10 -3 при энергии тепловых H. В р -волновых нейтронных резонансах реализуется дополнит. усиление, связанное с подавленностью вероятности образования сохраняющей чётность компоненты этого компаунд-состояния (из-за малой нейтронной ширины р -резонанса) по отношению к примесной компоненте с противоположной четностью, являющейся s -резонан-сом. Именно сочетание неск. факторов усиления позволяет крайне слабому эффекту проявляться с величиной, характерной для ядерного взаимодействия.

Взаимодействия с нарушением барионного числа . Теоретич. модели великого объединения и суперобъединения предсказывают нестабильность барионов - их распад в лептоны и мезоны. Эти распады могут быть заметны только для легчайших барионов - p и п, входящих в состав атомных ядер. Для взаимодействия с изменением барионного числа на 1, DB = 1, можно было бы ожидать превращения H. типа: n е + p - , или превращения с испусканием странных мезонов. Поиски такого рода процессов производились в экспериментах с применением подземных детекторов с массой в неск. тысяч тонн. На основании этих экспериментов можно сделать заключение, что время распада H. с нарушением барионного числа составляет более 10 32 лет.

Др. возможный тип взаимодействия с DВ = 2 может привести к явлению взаимопревращения H. и антинейтронов в вакууме, т. е. к осцилляции . В отсутствие внеш. полей или при их малой величине состояния H. и антинейтрона вырождены, поскольку массы их одинаковы, поэтому даже сверхслабое взаимодействие может их перемешивать. Критерием малости внеш. полей является малость энергии взаимодействия магн. момента H. с магн. полем (n и n ~ имеют противоположные по знаку магн. моменты) по сравнению с энергией, определяемой временем T наблюдения H. (согласно соотношению неопределённостей), D <=hT -1 . При наблюдении рождения антинейтронов в пучке H. от реактора или др. источника T есть время пролёта H. до детектора. Число антинейтронов в пучке растёт с ростом времени пролёта квадратично: /N n ~ ~ (T /t осц) 2 , где t осц - время осцилляции.

Прямые эксперименты по наблюдению рождения и в пучках холодных H. от высокопоточного реактора дают ограничение t осц > 10 7 с. В готовящихся экспериментах можно ожидать увеличения чувствительности до уровня t осц ~ 10 9 с. Ограничивающими обстоятельствами являются макс. интенсивность пучков H. и имитация явлений антинейтронов в детекторе космич. лучами.

Др. метод наблюдения осцилляции - наблюдение аннигиляции антинейтронов, к-рые могут образовываться в стабильных ядрах. При этом из-за большого отличия энергий взаимодействий возникающего антинейтрона в ядре от энергии связи H. эфф. время наблюдения становится ~ 10 -22 с, но большое число наблюдаемых ядер (~10 32) частично компенсирует уменьшение чувствительности по сравнению с экспериментом на пучках H. Из данных подземных экспериментов по поиску распада протона об отсутствии событий с энерговыделением ~2 ГэВ можно заключить с нек-рой неопределённостью, зависящей от незнания точного вида взаимодействия антинейтрона внутри ядра, что t осц > (1-3) . 10 7 с. Существ. повышение предела t осц в этих экспериментах затруднено фоном, обусловленным взаимодействием космич. нейтрино с ядрами в подземных детекторах.

Следует отметить, что поиски распада нуклона с DB = 1 и поиски -осцилляции являются независимыми экспериментами, т. к. вызываются принципиально разл. видами взаимодействий.

Гравитационное взаимодействие H . Нейтрон - одна из немногих элементарных частиц, падение к-рой в гравитац. поле Земли можно наблюдать экспериментально. Прямое измерение для H. выполнено с точностью 0,3% и не отличается от макроскопического. Актуальным остаётся вопрос о соблюдении эквивалентности принципа (равенства инертной и гравитац. масс) для H. и протонов.

Самые точные эксперименты выполнены методом Эт-веша для тел, имеющих разные ср. значения отношения A/Z , где А - ат. номер, Z - заряд ядер (в ед. элементарного заряда е) . Из этих опытов следует одинаковость ускорения свободного падения для H. и протонов на уровне 2·10 -9 , а равенство гравитац. и инертной масс на уровне ~10 -12 .

Гравитац. ускорение и замедление широко используются в опытах с ультрахолодными H. Применение гравитац. рефрактометра для холодных и ультрахолодных H. позволяет с большой точностью измерить длины когерентного рассеяния H. на веществе.

H. в космологии и астрофизике

Согласно совр. представлениям, в модели Горячей Вселенной (см. Горячей Вселенной теория )образование барионов, в т. ч. протонов и H., происходит в первые минуты жизни Вселенной. В дальнейшем нек-рая часть H., не успевших распасться, захватывается протонами с образованием 4 He. Соотношение водорода и 4 He при этом составляет по массе 70% к 30%. При формировании звёзд и их эволюции происходит дальнейший нуклеосинтез , вплоть до ядер железа. Образование более тяжёлых ядер происходит в результате взрывов сверхновых с рождением нейтронных звёзд, создающих возможность последоват. захвата H. нуклидами. При этом комбинация т. н. s -процесса - медленного захвата H. с b-распадом между последовательными захватами и r -процесса - быстрого последоват. захвата при взрывах звёзд в осн. может объяснить наблюдаемую распространённость элементов в космич. объектах.

В первичной компоненте космич. лучей H. из-за своей нестабильности вероятно отсутствуют. H., образующиеся у поверхности Земли, диффундирующие в космич. пространство и распадающиеся там, по-видимому, вносят вклад в формирование электронной и протонной компоненты радиационных поясов Земли.

Лит.: Гуревич И. С., Тарасов Л. В., Физика нейтронов низких энергий, M., 1965; Александров Ю. А.,. Фундаментальные свойства нейтрона, 2 изд., M., 1982.

Нейтрон - нейтральная частица, относящаяся к классу адронов. Открыта в 1932 г. английским физиком Дж. Чедвиком. Вместе с протонами нейтроны входят в состав атомных ядер. Электрический заряд нейтрона равен нулю. Это подтверждается прямыми измерениями заряда по отклонению пучка нейтронов в сильных электрических полях, показавшими, что (здесь - элементарный электрический заряд, т. е. абсолютная величина заряда электрона). Косвенные данные дают оценку . Спин нейтрона равен 1/2. Как адрон с полуцелым спином он относится к группе барионов (см. Протон). У каждого бариона есть античастица; антинейтрон был открыт в 1956 г. в опытах по рассеянию антипротонов на ядрах. Антинейтрон отличается от нейтрона знаком барионного заряда; у нейтрона, как и у протона, барионный заряд равен .

Как и протон и прочие адроны, нейтрон не является истинно элементарной частицей: он состоит из одного м-кварка с электрическим зарядом и двух -кварков с зарядом - , связанных между собой глюонным полем (см. Элементарные частицы, Кварки, Сильные взаимодействия).

Нейтроны устойчивы лишь в составе стабильных атомных ядер. Свободный нейтрон - нестабильная частица, распадающаяся на протон , электрон и электронное антинейтрино (см. Бета-распад): . Время жизни нейтрона составляет с, т. е. около 15 мин. В веществе в свободном виде нейтроны существуют еще меньше вследствие сильного поглощения их ядрами. Поэтому они возникают в природе или получаются в лаборатории только в результате ядерных реакций.

По энергетическому балансу различных ядерных реакций определена величина разности масс нейтрона и протона: МэВ. Из сопоставления ее с массой протона получим массу нейтрона: МэВ; это соответствует г, или , где - масса электрона.

Нейтрон участвует во всех видах фундаментальных взаимодействий (см. Единство сил природы). Сильные взаимодействия связывают нейтроны и протоны в атомных ядрах. Пример слабого взаимодействия - бета-распад нейтрона - здесь уже рассматривался. Участвует ли эта нейтральная частица в электромагнитных взаимодействиях? Нейтрон обладает внутренней структурой, и в нем при общей нейтральности существуют электрические токи, приводящие, в частности, к появлению у нейтрона магнитного момента. Иными словами, в магнитном поле нейтрон ведет себя подобно стрелке компаса.

Это лишь один из примеров его электромагнитного взаимодействия.

Большой интерес приобрели поиски диполь-ного электрического момента нейтрона, для которого была получена верхняя граница: . Здесь самые эффективные опыты удалось поставить ученым Ленинградского института ядерной физики АН СССР. Поиски дипольного момента нейтронов важны для понимания механизмов нарушения инвариантности относительно обращения времени в микропроцессах (см. Четность).

Гравитационные взаимодействия нейтронов наблюдались непосредственно по их падению в поле тяготения Земли.

Сейчас принята условная классификация нейтронов по их кинетической энергии: медленные нейтроны эВ, есть много их разновидностей), быстрые нейтроны ( эВ), высокоэнергичные эВ). Весьма интересными свойствами обладают очень медленные нейтроны ( эВ), получившие название ультрахолодных. Оказалось, что ультрахолодные нейтроны можно накапливать в «магнитных ловушках» и даже ориентировать там их спины в определенном направлении. С помощью магнитных полей специальной конфигурации ультрахолодные нейтроны изолируются от поглощающих стенок и могут «жить» в ловушке, пока не распадутся. Это позволяет проводить многие тонкие эксперименты по изучению свойств нейтронов.

Другой метод хранения ультрахолодных нейтронов основан на их волновых свойствах. При малой энергии длина волны де Бройля (см. Квантовая механика) настолько велика, что нейтроны отражаются от ядер вещества подобно тому, как свет отражается от зеркала. Такие нейтроны можно просто хранить в замкнутой «банке». Эта идея была высказана советским физиком Я. Б. Зельдовичем в конце 1950-х гг., и первые результаты были получены в Дубне, в Объединенном институте ядерных исследований спустя почти десятилетие. Недавно советским ученым удалось построить сосуд, в котором ультрахолодные нейтроны живут до своего естественного распада.

Свободные нейтроны способны активно взаимодействовать с атомными ядрами, вызывая ядерные реакции. В результате взаимодействия медленных нейтронов с веществом можно наблюдать резонансные эффекты, дифракционное рассеяние в кристаллах и т. п. Благодаря этим своим особенностям нейтроны широко используются в ядерной физике и физике твердого тела. Они играют важную роль в ядерной энергетике, в производстве трансурановых элементов и радиоактивных изотопов, находят практическое применение в химическом анализе и в геологической разведке.

Свойства нейтрона

Нейтрон (лат. neuter – ни тот, ни другой) – элементарная частица с нулевым электрическим зарядом и массой немного больше массы протона. Масса нейтрона m n =939,5731(27) Мэв/с 2 =1,008664967 а.е.м . =1,675 10 -27 кг . Электрический заряд =0. Спин =1/2, нейтрон подчиняется статистике Ферми. Внутренняя четность положительна. Изотопический спин Т=1/2. Третья проекция изоспина Т 3 = -1/2. Магнитный момент = -1,9130 . Энергия связи в ядре энергия покоя Е 0 = m n c 2 = 939,5 Мэв . Свободный нейтрон распадается с периодом полураспада Т 1/2 = 11 мин по каналу за счет слабого взаимодействия. В связанном состоянии (в ядре) нейтрон живет вечно. «Исключительное положение нейтрона в ядерной физике, подобно положению электрона в электронике». Благодаря отсутствию электрического заряда нейтрон любой энергии легко проникает в ядро, и вызывает разнообразные ядерные превращения.

Примерная классификация нейтронов по энергиям приведена в табл.1.3

Название Область энергии (эв ) Средняя энергия Е(эв ) Скорость см/сек Длина волны λ (см ) Температура Т(К о)
ультрахолодные <3 10 - 7 10 - 7 5 10 2 5 10 -6 10 -3
холодные 5 10 -3 ÷10 -7 10 -3 4,37 10 4 9,04 10 -8 11,6
тепловые 5 10 -3 ÷0,5 0,0252 2,198 10 5 1,8 10 -8
резонансные 0,5÷50 1,0 1,38 10 6 2,86 10 -9 1,16 10 4
медленные 50÷500 1,38 10 7 2,86 10 -10 1,16 10 6
промежуточные 500÷10 5 10 4 1,38 10 8 2,86 10 -11 1,16 10 8
быстрые 10 5 ÷10 7 10 6 =1Мэв 1,38 10 9 2,86 10 -12 1,16 10 10
Высокоэнергет. 10 7 ÷10 9 10 8 1,28 10 10 2,79 10 -13 1,16 10 12
релятивистские >10 9 =1 Гэв 10 10 2,9910 10 1,14 10 -14 1,16 10 14

Реакции под действием нейтронов многочисленны: (n, γ ), (n,p ), (n,n’ ), (n, α), (n ,2n ), (n,f ).

Реакции радиационного захвата(n, γ ) нейтрона с последующим испусканием γ –кванта идут на медленных нейтронах с энергией от 0÷500 кэв .

Пример: Мэв .

Упругое рассеяние нейтронов (n, n ) широко используется для регистрации быстрых нейтронов методом ядер отдачи в трековых методах и для замедления нейтронов.

При неупругом рассеянии нейтронов (n,n’ ) происходит захват нейтрона с образованием составного ядра, которое распадается, выбрасывая нейтрон с энергией меньшей, чем имел первоначальный нейтрон. Неупругое рассеяние нейтронов возможно, если энергия нейтрона в раз превышает энергию первого возбужденного состояния ядра мишени. Неупругое рассеяние - пороговый процесс.

Нейтронная реакция с образованием протонов (n,p ) происходит под действием быстрых нейтронов с энергиями 0,5÷10 мэв. Наиболее важными являются реакции получения изотопа трития из гелия-3:

Мэв с сечением σ тепл = 5400 барн ,

и регистрация нейтронов методом фотоэмульсий:

0,63 Мэв с сечением σ тепл = 1,75 барн .

Нейтронные реакции (n, α) с образованием α-частиц эффективно протекают на нейтронах с энергией 0,5÷10 Мэв. Иногда реакции идут на тепловых нейтронах: реакция выработки трития в термоядерных устройствах.

Глава первая. СВОЙСТВА СТАБИЛЬНЫХ ЯДЕР

Выше уже было сказано, что ядро состоит из протонов и нейтронов, связанных ядерными силами. Если измерять массу ядра в атомных единицах массы, то она должна быть близка к массе протона, умноженной на целое число называемое массовым числом. Если заряд ядра а массовое число то это означает, что в состав ядра входит протонов и нейтронов. (Число нейтронов в составе ядра обозначается обычно через

Эти свойства ядра отражены в символических обозначениях, которые будут использованы в дальнейшем в виде

где X - название элемента, атому которого принадлежит ядро (например, ядра: гелия - , кислорода - , железа - урана

К числу основных характеристик стабильных ядер можно отнести: заряд, массу, радиус, механический и магнитный моменты, спектр возбужденных состояний, четность и квадрупольный момент. Радиоактивные (нестабильные) ядра дополнительно характеризуются временем жизни, типом радиоактивных превращений, энергией испускаемых частиц и рядом других специальных свойств, о которых будет сказано далее.

Прежде всего рассмотрим свойства элементарных частиц, из которых состоит ядро: протона и нейтрона.

§ 1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПРОТОНА И НЕЙТРОНА

Масса. В единицах массы электрона: масса протона масса нейтрона .

В атомных единицах массы: масса протона масса нейтрона

В энергетических единицах масса покоя протона масса покоя нейтрона

Электрический заряд. q - параметр, характеризующий взаимодействие частицы с электрическим полем, выражается в единицах заряда электрона где

Все элементарные частицы несут количество электричества, равное либо 0, либо Заряд протона Заряд нейтрона равен нулю.

Спин. Спины протона и нейтрона равны Обе частицы являются фермионами и подчиняются статистике Ферми-Дирака, а следовательно, и принципу Паули.

Магнитный момент. Если подставить в формулу (10), определяющую магнитный момент электрона вместо массы электрона массу протона, получим

Величина называется ядерным магнитоном. Можно было предположить по аналогии с электроном, что спиновый магнитный момент протона равен Однако опыт показал, что собственный магнитный момент протона больше ядерного магнетона: по современным данным

Кроме того, оказалось, что незаряженная частица - нейтрон - также имеет магнитный момент, отличный от нуля и равный

Наличие магнитного момента у нейтрона и столь большое значение магнитного момента у протона противоречат предположениям о точечности этих частиц. Ряд экспериментальных данных, полученных в последние годы, свидетельствует о том, что и протон и нейтрон обладают сложной неоднородной структурой. В центре нейтрона при этом находится положительный заряд, а на периферии равный ему по величине распределенный в объеме частицы отрицательный заряд. Но поскольку магнитный момент определяется не только величиной обтекающего тока, но и охватываемой им площадью, то создаваемые ими магнитные моменты не будут равны. Поэтому нейтрон может обладать магнитным моментом, оставаясь в целом нейтральным.

Взаимные превращения нуклонов. Масса нейтрона больше массы протона на 0,14%, или на 2,5 массы электрона,

В свободном состоянии нейтрон распадается на протон, электрон и антинейтрино: Среднее время жизни его близко к 17 мин.

Протон - частица стабильная. Однако внутри ядра он может превращаться в нейтрон; при этом реакция идет по схеме

Разница в массах частиц, стоящих слева и справа, компенсируется за счет энергии, сообщаемой протону другими нуклонами ядра.

Протон и нейтрон имеют одинаковые спины, почти одинаковые массы и могут превращаться друг в друга. В дальнейшем будет показано, что и ядерные силы, действующие между этими частицами попарно, тоже одинаковы. Поэтому их называют общим наименованием - нуклон и говорят, что нуклон может находиться в двух состояниях: протон и нейтрон, отличающихся своим отношением к электромагнитному полю.

Нейтроны и протоны взаимодействуют благодаря существованию ядерных сил, имеющих неэлектрическую природу. Своим происхождением ядерные силы обязаны обмену мезонами. Если изобразить зависимость потенциальной энергии взаимодействия протона и нейтрона малых энергий от расстояния между ними то приближенно она будет иметь вид графика, представленного на рис. 5, а, т. е. имеет форму потенциальной ямы.

Рис. 5. Зависимость потенциальной энергии взаимодействия от расстояния между нуклонами: а - для пар нейтрон - нейтрон или нейтрон - протон; б - для пары протон - протон

Cтраница 1


Заряд нейтрона равен нулю. Следовательно, нейтроны не играют роли в величине заряда ядра атома. Этой же величине равен и порядковый номер хрома.  

Заряд протона qp e Заряд нейтрона равен нулю.  

Легко увидеть, что при этом заряд нейтрона равен нулю, а протона 1, как и полагается. Получаются все барионы, входящие в два семейства - восьмерку и десятку. Мезоны состоят из кварка и антикварка. Чертой обозначаются антикварки; их электрический заряд отличается знаком от заряда соответствующего кварка. В пи-мезон странный кварк не входит, пи-мезоны, как мы уже говорили, - частицы со странностью и спином, равными нулю.  

Так как заряд протона равен заряду электрона и заряд нейтрона равен пулю, то если выключить сильный взаимодействия, взаимодействие протона с электромагнитным полем А будет обычным взаимодействием дираковской частицы - Yp / V У нейтрона же электромагнитное взаимодействие отсутствовало бы.  

Обозначения: 67 - разность зарядов электрона и протона; q - заряд нейтрона; qg - абсолютная величина заряда электрона.  


Ядро состоит из заряженных положительно элементарных частиц - протонов и не несущих заряда нейтронов.  

В основу современных представлений о строении материи положено утверждение о существовании атомов вещества, состоящих из положительно заряженных протонов и не имеющих заряда нейтронов, образующих положительно заряженное ядро, и отрицательно заряженных вращающихся вокруг ядра электронов. Энергетические уровни электронов, согласно этой теории, носят дискретный характер, а потеря или приобретение ими некоторой дополнительной энергии рассматривается как переход с одного разрешенного энергетического уровня на другой. При этом дискретный характер энергетических электронных уровней становится причиной такого же дискретного поглощения или излучения электроном энергии при переходе с одного энергетического уровня на другой.  

Мы принимали, что заряд атома или молекулы полностью определяется скалярной суммой q Z (q Nqn, где Z - число пар электрон - протон, (q qp - qe - разность зарядов электрона и протона, Л - число нейтронов, a qn - заряд нейтрона.  

Заряд ядра определяется только числом протонов Z, а его массовое число А совпадает с полным числом протонов и нейтронов. Поскольку заряд нейтрона равен нулю, электрическое взаимодействие по закону Кулона между двумя нейтронами, а также между протоном и нейтроном отсутствует. В то же время между двумя протонами действует электрическая сила отталкивания.  


Далее, в пределах точности измерений, ни разу не был зарегистрирован ни один процесс столкновения, при котором не соблюдался бы закон сохранения заряда. Например, неотклоняемость нейтронов в однородных электрических полях позволяет рассматривать заряд нейтрона как равный нулю с точностью до 1 (Н7 заряда электрона.  

Мы уже говорили, что отличие магнитного момента протона от одного ядерного магнетона является удивительным результатом. Еще более удивительным (Представляется существование магнитного момента у не имеющего заряда нейтрона.  

Легко убедиться в том, что эти силы не сводятся ни к одному из типов сил, рассмотренных в предыдущих частях курса физики. В самом деле, если предположить, например, что между нуклонами в ядрах действуют гравитационные силы, то легко подсчитать по известным массам протона и нейтрона, что энергия связи на одну частицу окажется ничтожной - она будет в 1036 раз меньше той, которая наблюдается экспериментально. Отпадает также и предположение об электрическом характере ядерных сил. Действительно, в этом случае невозможно представить себе устойчивого ядра, состоящего из одного заряженного протона и не имеющего заряда нейтрона.  

Прочная связь, существующая между нуклонами в ядре, свидетельствует о наличии в атомных ядрах особых, так называемых ядерных сил. Легко убедиться в том, что эти силы не сводятся ни к одному из типов сил, рассмотренных в предыдущих частях курса физики. В самом деле, если предположить, например, что между нуклонами в ядрах действуют гравитационные силы, то легко подсчитать по известным массам протона и нейтрона, что энергия связи на одну частицу окажется ничтожной - она будет в 1038 раз меньше той, которая наблюдается экспериментально. Отпадает также и предположение об электрическом характере ядерных сил. Действительно, в этом случае невозможно представить себе устойчивого ядра, состоящего из одного заряженного протона и не имеющего заряда нейтрона.  



© dagexpo.ru, 2024
Стоматологический сайт