Жиры: строение, химический состав, функции и применение. Тема лекции: «Липиды пищевого сырья и продуктов» План лекции Как образуются триглицериды в организме человека

17.07.2019

Химические свойства жиров обусловлены наличием:

1. Сложных эфирных связей,

2. Двойных связей в углеводородных радикалах жирных кислот,

3. Наличием глицерина в составе жира.

1. Обусловленные наличием сложных эфирных связей

Жиры легко подвергаются гидролитическому расщеплению при участии ферментов, образуется глицерин и жирные кислоты.

Ферментативный гидролиз происходит ступенчато. Фермент - липаза содержится во всех жирномасличных растениях. Гидролизу способствует влага и повышенная температура. Происходит гидролитическое прогоркание жира.

Указанное свойство учитывается при хранении жиров.

Жиры расщепляются под действием щелочей с образованием глицерина и солей жирных кислот. Образующиеся соли называют мылами: калиевые мыла – жидкие, натриевые - твердые.

Процесс называют омылением

C 3 H 5 (COOR) 3 + 3 NaOH C 3 H 5 (OH) 3 + 3 R`COONa

Свойство учитывают в анализе жира. Реакция омыления широко используется для приготовления бытовых и медицинских мыл, а также для выяснения состава жиров и их доброкачественности.

Чем больше число омыления, тем меньше молекулярная масса глицеридов.

2. Обусловленные наличием двойных связей в углеводородных радикалах жирных кислот

По двойньм связям жирных кислот может присоединяться водород, галогены, кислород.

1). Присоединение водорода - гидрирование жиров (гидрогенизация жиров) идет при повышенной температуре в присутствии катализатора (трубчатый никель).

Непредельные жирные кислоты переходят в предельные, жидкие масла превращаются в твердые. Получают саломассы, их используют в медицинской практике как мазевые и суппозиторные основы (бутирол) и в пищевой промышленности - производство маргарина.

Реакция гидрогенизации широко используется для получения плотных жиров из растительных масел.

2). Присоединение галогенов – это свойство используют в анализе жиров. При определении химической константы - йодного числа.

Надежным способом выявления высыхаемости масел служит определение йодного числа. Известно, что все непредельные кислоты, в том числе и жирные, способны присоединять по месту двойной связи галогены.

Чем больше в жирных кислотах будет двойных связей, тем больше присоединится галогенов.

По величине йодного числа можно легко установить, к какой группе по степени высыхаемости относится то или иное масло.

Йодное число некоторых масел

Способность некоторых масел к высыханию широко используется в народном хозяйстве (лакокрасочная промышленность).

Для медицины, наоборот, представляют интерес масла невысыхающие, поскольку они используются для парентерального введения лекарственных средств.

Олеиновая кислота обладает способностью под влиянием азотистой кислоты переходить в свои стереоизомер - элаидиновую кислоту, которая при комнатной температуре имеет твердую консистенцию.

Этой реакцией, известной под названием элаидиновая проба , широко пользуются для определения типа масла: если проба положительная, то, следовательно, исследуемое масло невысыхающее (содержит триглицериды олеиновой кислоты).

3). Присоединение кислорода воздуха приводит к окислению и прогорканию жиров. Может быть химическое окисление (альдегидное) и биохимическое при участии микроорганизмов (кетонное). Жиры приобретают специфический вкус и запах и к употреблению непригодны. Изменяется цвет жира - чаще обесцвечиваются; изменяются физические и химические свойства жира: увеличивается плотность и кислотное число, уменьшается йодное число и вязкость.

Различают 3 вида окислительного прогоркания:

1 - неферментативное - кислород присоединяется по месту двойных связей, образуя пероксиды; при разложении пероксидов жирных кислот получаются альдегиды.

R 1 – CH = CH – R 2 R 1 – CH – CH – R 2 R 1 – C = O + R 2 – C = O

Свойства жиров определяются качественным составом жирных кислот, их количественным соотношением, процентным содержанием свободных, не связанных с глицерином, жирных кислот, соотношением различных триглицеридов и т.п.

Насыщенные жирные кислоты образуют триглицериды, имеющие при обычной температуре твердую консистенцию. Среди них встречаются как животные (например, говяжий жир), так и растительные (например, масло какао) жиры. Ненасыщенные жирные кислоты образуют триглицериды, имеющие при тех же условиях жидкую консистенцию - животные жиры (например, рыбий жир) и подавляющее большинство растительных масел.

Жиры и масла жирны на ощупь, нанесенные на бумагу, оставляют характерное "жирное" пятно, не исчезающее при нагревании, а, наоборот, еще сильнее расплывающееся. При обыкновенной температуре масла не загораются, но нагретые или в виде паров горят ярким пламенем. Чистые триглицериды бесцветны, но природные жиры более или менее окрашены. Масла обычно желтоватые вследствие присутствия каротиноидов, некоторые из них могут быть окрашены хлорофиллом в зеленый цвет, или, что еще реже, в красно-оранжевый или иной цвет в зависимости от вида липохромов. Запах и вкус свежих жиров специфичны. Запах обусловлен присутствием следов эфирных масел (терпены, алифатические углеводороды и др.). В некоторых жирах содержатся обладающие запахом сложные эфиры низкомолекулярных кислот. Специфический запах рыбьих жиров обусловлен сильно ненасыщенными жирными кислотами или, вернее, продуктами их окисления.

Плотность подавляющего числа жиров находится в пределах 0,910-0,945. Лишь у немногих масел (например, касторового) плотность выше - до 0,970 (при 20°С, по ГФ X).

В воде жиры и масла нерастворимы, но их можно заэмульгировать в воде с помощью поверхностно-активных веществ. В этаноле растворяются трудно (или не растворяются), за исключением касторового масла. Легко растворимы в диэтиловом эфире, хлороформе, сероуглероде, бензине, петролейном эфире, вазелиновом масле. Жиры и масла смешиваются между собой в любых соотношениях. Они являются хорошими растворителями эфирных масел, камфоры, смол, серы, фосфора и ряда других веществ.

Температура плавления твердых жиров возрастает с числом углеродных атомов, входящих в их состав жирных кислот. Поскольку жиры представляют сложные смеси разных триглицеридов, точка плавления их обычно не бывает четко выраженной. Сказанное в равной степени относится и к температуре застывания.

Температура кипения жиров не может быть определена, поскольку при нагревании до 250°С они разрушаются с образованием из глицерина сильно раздражающего слизистые оболочки глаз альдегида акролеина.


Кипят они в высоком вакууме. Жирные масла, состоящие из простых триглицеридов, оптически неактивны, если они не содержат примеси оптически активных веществ. В случае смешанных триглицеридов некоторые жирные масла могут проявлять оптическую активность.

Показатель преломления тем выше, чем больше содержится в жире триглицеридов ненасыщенных кислот. Например, масло какао имеет показетель преломления 1,457, миндальное - 1,470, льняное - 1,482.

Химические свойства жиров проявляются в их способности к омылению, прогорканию, высыханию и гидрогенизации.

Омыление. Триглицериды жирных кислот способны к превращениям, характерным для сложных эфиров. Под влиянием едких щелочей происходит расщепление эфирных связей, в результате чего образуются свободный глицерин и щелочные соли жирных кислот (мыла).

Реакция омыления широко используется для приготовления бытовых и медицинских мыл, а также для выяснения состава жиров и их доброкачественности. С этой целью определяют число омыления , то есть количество миллиграммов едкого калия (KOH), необходимое для нейтрализации свободных и связанных в виде триглицеридов жирных кислот, содержащихся в 1 г жира.

Прогоркание. Этот сложный химический процесс происходит при хранении жира в неблагоприятных условиях (доступ воздуха и влаги, свет, тепло), в результате чего жиры приобретают горьковатый вкус и неприятный запах. Если жиры в этих условиях подвергаются действию фермента липазы, то происходит их разложение, аналогичное реакции омыления. Этот вид порчи жира легко контролируется по величине кислотного числа (КЧ). Под этой константой понимается количество милиграммов едкого калия (KOH), которое необходимо для нейтрализации свободных жирных кислот, содержащихся в 1 г жира. Доброкачественные жиры содержат небольшое количество свободных жирных кислот.

С помощью других констант можно определить природу содержащихся в масле свободных жирных кислот. Так, по числу Рейхерта-Мейсля можно судить о количестве летучих растворимых в воде кислот, а по числу Поленске - о количестве летучих кислот, нерастворимых в воде. Числом Рейхерта-Мейсля называется количество миллилитров 0,1 Мэ раствора едкого калия, необходимое для нейтрализации летучих, растворимых в воде жирных кислот, полученных при строго определенных условиях из 5 г жира. Число Поленске устанавливают вслед за определением летучих кислот в той же навеске жира. Выпавшие жирные кислоты переводят в спиртовой раствор и титруют 0,1 Мэ спиртовым раствором едкого калия.

Для более точного представления о количестве содержащихся в жирах глицеридов из числа омыления вычитают кислотное число и получают так называемое эфирное число (ЭЧ), которое характеризует только связанные жирные кислоты.

Иногда прогоркание жиров зависит от жизнедеятельности микроорганизмов, вызывающих окисление отщепленных жирных кислот в кетоны или альдегиды. Однако чаще всего прогоркание жиров обусловливается окислением ненасыщенных жирных кислот кислородом воздуха. Последний может присоединяться по месту двойных связей, образуя перекиси.

Кислород может присоединяться также и к углеродному атому, соседнему с двойной связью, образуя гидроперекиси.

Образовавшиеся перекиси и гидроперекиси подвергаются разложению с образованием альдегидов и кетонов. Для характеристики окислительного прогоркания жира используется константа, известная под названием перекисное число , которое выражается количеством иода, пошедшего на разрушение перекисей.

Высыхание. Намазанные тонким слоем жидкие жиры ведут себя на воздухе по-разному: одни остаются без изменения жидкими, другие, окисляясь, постепенно превращаются в прозрачную смолоподобную эластичную пленку - линоксин, нерастворимую в органических растворителях. Масла, не образующие пленку, называются невысыхающими. Главной составной частью в таких маслах являются глицериды олеиновой кислоты (с одной двойной связью). Масла, образующие плотную пленку, называются высыхающими. Главной составной частью в таких маслах являются глицериды линоленовой кислоты (с тремя двойными связями). Масла, образующие мягкие пленки, называются полувысыхающими. Главной составной частью в таких маслах являются глицериды линолевой кислоты (с двумя двойными связями). Способность некоторых масел к высыханию широко используется в народном хозяйстве (лакокрасочная промышленность). Для медицины, наоборот, представляют интерес масла невысыхающие, поскольку они используются для парентерального введения лекарственных средств.

Олеиновая кислота обладает способностью под влиянием азотистой кислоты переходить в свои стереоизомер - элаидиновую кислоту, которая при комнатной температуре имеет твердую консистенцию. Этой реакцией, известной под названием элаидиновая проба, широко пользуются для определения типа масла: если проба положительная, то, следовательно, исследуемое масло невысыхающее (содержит триглицериды олеиновой кислоты).

Надежным способом выявления высыхаемости масел служит определение йодного числа. Известно, что все непредельные кислоты, в том числе и жирные, способны присоединять по месту двойной связи галогены. Чем больше в жирных кислотах будет двойных связей, тем больше присоединится галогенов. Для аналитических целей обычно используют йод; под йодным числом понимается количество граммов иода, которое поглощается 100 г жира. Таким образом, по величине йодного числа можно легко установить, к какой группе по степени высыхаемости относится то или иное масло.


Жиры , вещества животного (см. ), растительного (см. ) и микробного происхождения, состоящие в основном (до 98%) из триглицеридов (ацилглицеринов) полных эфиров и жирных кислот. Содержат также ди- и моноглицериды (1-3%), и (0,5-3%), свободные жирные кислоты, и их эфиры (0,05 1,7%), красящие вещества (каротин, ксантофилл), A, D, Е и К, полифенолы и их эфиры. Химические физические и биологические свойства жиров определяются входящими в их состав триглицеридами и, в первую очередь, длиной цепи, степенью ненасыщенности жирных кислот и их расположением в триглицериде. В состав жиров входят в основном неразветвленные жирные кислоты, содержащие четное число С (от 4 до 26) как насыщенные, так моно- и полиненасыщенные; в основном это миристиновая, пальмитиновая, стеариновая, 9-гексадеценовая, олеиновая, линолевая и линоленовая кислоты. Почти все ненасыщенные кислоты растительных жиров и большинства животных жиров являются цис -изомерами. Жиры жвачных животных содержат транс -изомеры. Триглицериды, содержащие остатки различных кислот, существуют в виде нескольких изомеров положения, а также в виде различных стереоизомеров, например:

Триглицериды природных жиров содержат по крайней мере две различные жирные кислоты. Различают триглицериды, содержащие три насыщенные кислоты (S 3), две насыщыщенную и одну ненасыщенную (соотв. SSU и SUS ), одну насыщенную и две ненасыщенную (соответственно SUU и USU ) и три ненасыщенные кислоты (U 3) (см. таблицу).


В растительных жирах основная часть ненасыщенных кислот расположена в β-положениях триглицеридов. При большом количестве ненасыщенных кислот они занимают также α-положения. Насыщенные кислоты в растительных жирах расположены главным образом в α-положениях. В животных жирах ненасыщенные кислоты также преимущественно занимают β-положение. Исключением является свиной жир в нем β-положение преимущественно занято насыщенными кислотами даже при низком содержании последних.

Физические свойства жиров

и для большинства жиров составляет 39,5 кДж/г; ΔH пл 120-150 Дж/г; С 0 р ок. 2 Дж/(г.К).

Жиры - плохие проводники тепла и электричества. Коэффициент 0,170 Вт/(м.К), диэлектрическая постоянная (30-40)·10 - 30 Кл.м. Температура вспышки большинства жиров 270-330°С, температура самовоспламенения 340-360 °С; характеристикой жира является также так называемая температура дымообразования (дымления), при которой происходит визуально заметное образование вследствие разложения жира . Она падает с ростом жира и лежит в пределах 160-230°С. Жиры неограниченно растворимы в . , частично растворимы в (5-10%) и , практически не растворимы в воде, но образуют с ней . В 100 г воды эмульгируются 10 мг говяжьего жира , 50 мг свиного. Жиры растворяют небольшие количества воды (0,1-0,4%) и значительные количества (7-10% по объему N 2 , H 2 , О 2 и до 100% СО 2). Растворимость Н 2 , N 2 , O 2 возрастает с ростом температуры, растворимость СО 2 падает.

Химические свойства жиров

жиров , конечные продукты которого глицерин и жирные кислоты, осуществляют в промышленности нагреванием их с водой до 200-225°С при 2-2,5.10 6 Па (безреактивный способ) или нагреванием при нормальном давлении в присутствии (катализатор Твитчела и контакт Петрова). Щелочной применяют в процессах мыловарения (см. ) и при наличии в жирнокислотных цепях гидроксильных групп. Скорости ферментативного гидролиза α- и β-сложноэфирных групп панкреатической различны, что используют для установления строения триглицеридов жиров .

Алкоголиз жиров , в частности метанолиз, используется как первая ступень непрерывного метода мыловарения. Глицеролиз действием применяют для получения моно-и диглицеридов, используемых в качестве эмульгаторов. Ацидолиз, например, ацетолиз кокосового жира с последующей избытка уксусной кислоты глицерином, приводит к смеси, состоящей из лауроилдиацетина, миристоилдиацетина и др. смешанных триглицеридов, применяемой в качестве нитроцеллюлозы. Большое практическое значение имеет реакция двойного обмена ацильными радикалами в триглицеридах (переэтерификация), протекающая как внутри-, так и межмолекулярно и приводящая к перераспределению остатков жирных кислот. При проведении этой реакции в однофазной жидкой системе (ненаправленная переэтерификация) происходит статистическое перераспределение кислотных остатков в образующейся смеси триглицеридов. Направленная (многофазная) осуществляется при такой температуре, при которой высокоплавкие триглицериды находятся в твердом, а низкоплавкие - в жидком состоянии. При направленной переэтерификации жиры обогащаются наиболее высокоплавкими (S 3) и наиболее низкоплавкими (U 3) триглицеридами. Ненаправленная и особенно направленная натуральных жиров используется для изменения их физических свойств - температуры плавления, пластичности, вязкости. и алкоголиз жиров проводят преимущественно в присутствии кислотных , переэтерификацию - в присутствии основных. Большое значение имеют восстановление (см. ) и цис -, транс -изомеризация непредельных ацильных остатков триглицеридов. Изомеризацию цис -изомеров ненасыщенных кислот в транс -изомеры (элаидирование) проводят при 100-200°С в присутствии катализаторов - Ni, Se, оксидов N, S. При изомеризации полиненасыщенных кислот (рыбий жир ) образуются кислоты с сопряженными двойными связями, обладающие высокой способностью к высыханию.

Прогоркание жиров , проявляющееся в появлении специфического запаха и неприятного вкуса, вызвано образованием низкомолекулярных карбонильных соединений и обусловлено рядом химических процессов. Различают два вида прогоркания - биохимическое и химическое. Биохимическое прогоркание характерно для жиров , содержащих значительное количесвтво воды и примеси белков и углеводов (например, для коровьего масла). Под воздействием содержащихся в белках ферментов (липаз) происходит гидролиз жира и образование свободных жирных кислот. Увеличение кислотности может не сопровождаться появлением прогорклости. Микроорганизмы, развивающиеся в жире , выделяют другие ферменты - липооксидазы, под действием которых жирные кислоты окисляются до β-кетокислот. Метилалкилкетоны, образующиеся при распаде последних, являются причиной изменения вкуса и запаха жира . Во избежание этого производится тщательная очистка жиров от примесей белковых веществ, хранение в условиях, исключающих попадание микроорганизмов, и при низкой температуре, а также добавка консервантов (NaCl, бензойная кислота).

Химическое прогоркание - результат окисления жиров под действием О 2 воздуха (автоокисление). Первая стадия - образование пероксильных радикалов при атаке молекулярным О 2 углеводородных остатков как насыщенных, так и ненасыщенных жирных кислот. Реакция промотируется светом, теплом и соединениями, образующими свободные радикалы (пероксиды, переходные металлы). Пероксильные радикалы инициируют неразветвленные и разветвленные цепные реакции, а также распадаются с образованием ряда вторичных продуктов - гидроксикислот, эпоксидов, кетонов и альдегидов. Последние и вызывают изменение вкуса и запаха жира . Для жиров , в которых преобладают насыщенные жирные кислоты, характерно образование кетонов (кетонное прогоркание), для жиров с высоким содержанием ненасыщенных кислот - альдегидное прогоркание. Для замедления и предотвращения химического прогоркания используют ингибиторы радикальных реакций: смесь 2- и 3-трет -бутил-4-гидроксианизола (БОА), 3,5-ди-трет -бутил-4-гидрокситолуол (БОТ), эфиры галловой кислоты, а также соедиенния, образующие комплексы с тяжелыми металлами (например, лимонная, аскорбиновая кислоты).

Биологическая роль жиров

Жиры - одна из основных групп веществ, входящих, наряду с белками и углеводами, в состав всех растительных и животных клеток. В организме животных различают запасные и плазматические жиры . Запасные жиры откладываются в подкожной клетчатке и в сальниках и являются источником энергии. Плазматические жиры структурно связаны с белками и углеводами и входят в состав большинства мембран. Жиры обладают высокой энергетической ценностью: при полном окислении в живом организме 1 г жира выделяется 37,7 кДж, что в два раза больше, чем при окислении 1 г белка или углевода. Благодаря низкой жиры играют важную роль в теплорегуляции животных организмов, предохраняя животных, особенно морских, от переохлаждения. Вследствие своей эластичности жиры играют защитную роль в коже позвоночных и в наружном скелете насекомых. Жиры - необходимая составная часть пищи. Норма потребления взрослым человеком - 80-100 г/сут.

Анализ жиров

Жиры не являются индивидуальными веществами, поэтому для их определения мало применимы классические методы анализа. Для сравнительной оценки чистоты жиров и их идентификации определение температуры проводят в специальных стандартных условиях. Различают температуру подъема, при которой образец, находящийся в открытом с обоих концов капилляре и помещенный в термостат, начинает подниматься к верху капилляра; температуру растекания, при которой образец, помещенный в U-образный капилляр, начинает течь; температуру просветления, при которой образец становится совершенно прозрачным. Кроме того, определяют температуры истечения и каплепадения на приборе Уббелоде. Определяется также так называемый титр жира - температура застывания смеси жирных кислот, выделенных из данного жира . Титр жира - характерная величина, на которой не сказывается полиморфизм жирных кислот.

Под общим термином липиды (жиры) в науке объединяются все жироподобные вещества. Жиры представляют собой органические соединения, обладающие различным внутренним строением, но похожими свойствами. Эти вещества нерастворимы в воде. Но при этом они хорошо растворяются в других веществах - хлороформе, бензине. Жиры очень широко распространены в живой природе.

Исследования жиров

Строение жиров делает их незаменимым материалом для любого живого организма. Предположение о том, что эти вещества имеют одну скрытую кислоту, было сделано еще в XVII веке французским ученым Клодом Жозефом Жоруа. Он обнаружил, что процесс разложения мыла кислотой сопровождается выделением жирной массы. Ученый подчеркивал, что эта масса не является исходным жиром, поскольку отличается от него по некоторым свойствам.

Тот факт, что в строение липидов также входит глицерин, впервые был открыт шведским ученым Карлом Шееле. Полностью состав жиров был определен французским ученым Мишелем Шеврелем.

Классификация

По составу и строению жиры классифицировать очень сложно, поскольку в эту категорию входит большое количество веществ, различающихся по своему строению. Они объединяются только по одному признаку - гидрофобности. По отношению к процессу гидролиза биологи разделяют липиды на две категории - омыляемые и неомыляемые.

К первой категории относится большое число стероидных жиров, в состав которых входит холестерол, а также производные от него: стероидные витамины, гормоны, а также желчные кислоты. В категорию омыляемых жиров попадают липиды, называемые простыми и сложными. Простые - это те, что состоят из спирта, а также жирных кислот. К данной группе относятся различные типы воска, эфиры холестерола и другие вещества. Сложные жиры содержат в себе, помимо спирта и жирных кислот, другие вещества. К этой категории относятся фосфолипиды, сфинголипиды и другие.

Есть и другая классификация. Согласно ей, к первой группе жиров относятся нейтральные жиры, ко второй - жироподобные вещества (липоиды). К нейтральным относят комплексные жиры трехатомного спирта, например глицерина, или же ряда других жирных кислот, имеющих сходное строение.

Разнообразие в природе

К липоидам относят те вещества, которые встречаются в живых организмах, независимо от их внутреннего строения. Жироподобные вещества могут растворяться в эфире, хлороформе, бензоле, горячем спирте. Всего в природе найдено более 200 различных жирных кислот. При этом широкое распространение имеют не более 20 типов. Содержатся они как в животных организмах, так и в растениях. Жиры являются одной из главных групп веществ. Они обладают очень высокой энергетической ценностью - из одного грамма жира выделяется 37,7 кДж энергии.

Функции

Во многом функции, выполняемые жирами, зависят от их типа:

  • Резервно-энергетическая. Вещества подкожного жира являются основным источником питания живых существ при голодании. Также они представляют собой источник питания для поперечно-полосатых мышц, печени, почек.
  • Структурная. Жиры входят в состав межклеточных мембран. Главными их компонентами являются холестерол и гликолипиды.
  • Сигнальная. Липиды выполняют различные рецепторные функции и участвуют во взаимодействии между клетками.
  • Защитная. Подкожный жир также является хорошим термоизолирующим веществом для живых организмов. Он обеспечивает и защиту внутренних органов.

Строение жиров

Одна молекула любого липида состоит из остатка спирта - глицерина, а также трех остатков различных жирных кислот. Поэтому жиры иначе называются триглицеридами. Глицерин представляет собой бесцветную и вязкую жидкость, у которой нет запаха. Он тяжелее воды, и потому легко смешивается с ней. Температура плавления глицерина составляет +17,9 о С. Практически во все категории липидов входят жирные кислоты. По химическому строению жиры - это сложные соединения, которые включают в себя трехатомный глицерин, а также высокомолекулярные жирные кислоты.

Свойства

Липиды вступают в любые реакции, которые свойственны сложным эфирам. Однако у них есть и некоторые характерные особенности, связанные с их внутренним строением, а также наличием глицерина. По своему строению жиры также делятся на две категории - насыщенные и ненасыщенные. Насыщенные не содержат двойных атомных связей, ненасыщенные - содержат. К первым принадлежат такие вещества, как стеариновая и пальмитиновая кислоты. К ненасыщенным относится, к примеру, олеиновая кислота. Помимо различных кислот, строение жиров включает в себя также некоторые жироподобные вещества - фосфатиды и стерины. Они также имеют больше значение для живых организмов, так как участвуют в синтезе гормонов.

Большая часть жиров являются легкоплавкими - иными словами, они остаются в жидком состоянии при комнатной температуре. Животные жиры, наоборот, при комнатной температуре остаются твердыми, поскольку содержат большое количество насыщенных жирных кислот. К примеру, говяжье сало содержит следующие вещества - глицерин, пальмитиновую и стеариновую кислоты. Пальмитиновая плавится при температуре 43 о С, а стеариновая - при 60 о С.

Основной предмет, в рамках которого школьники изучают строение жиров - химия. Поэтому ученику желательно знать не только набор тех веществ, которые входят в состав различных липидов, но также иметь понимание их свойств. Например, жирные кислоты являются основой растительных жиров. Это вещества, которые получили свое название от процесса их выделения из липидов.

Липиды в организме

Химическое строение жиров - это остатки глицерина, который хорошо растворяется в воде, а также остатки жирных кислот, которые, наоборот, в воде нерастворимы. Если нанести каплю жира на поверхность воды, то в ее сторону обратится глицериновая часть, а сверху будут располагаться жирные кислоты. Эта ориентация очень важна. Слой жира, который входит в состав клеточных оболочек любого живого организма, препятствует растворению клетки в воде. Особенно важными являются вещества под названием фосфолипиды.

Фосфолипиды в клетках

Они также содержат в своем составе жирные кислоты и глицерин. Фосфолипиды отличаются от других групп жиров тем, что содержат также и остатки фосфорной кислоты. Фосфолипиды являются одними из важнейших компонентов клеточных оболочек. Также большую важность для живого организма несут и гликолипиды - вещества, содержащие в себе жиры и углеводы. Строение и функции этих веществ позволяют им осуществлять различные функции в нервной ткани. В частности, большое их количество содержится в тканях головного мозга. Гликолипиды размещаются на внешней части плазматических мембран клеток.

Строение белков, жиров и углеводов

АТФ, нуклеиновые кислоты, а также белки, жиры и углеводы относятся к органическим веществам клетки. Они состоят из макромолекул - больших и сложных по своему строению молекул, содержащих, в свою очередь, более мелкие и простые частицы. В природе встречаются три типа питательных веществ - это белки, жиры и углеводы. Строение они имеют разное. Несмотря на то, что каждый из этих трех типов веществ относится к углеродным соединениям, один и тот же атом углерода может образовывать различные внутриатомные соединения. Углеводы представляют собой органические соединения, которые состоят из углерода, водорода, а также кислорода.

Отличия в функциях

Различается не только строение углеводов и жиров, но и их функции. Углеводы расщепляются быстрее, чем остальные вещества - и поэтому они могут образовывать большее количество энергии. Находясь в организме в большом количестве, углеводы могут трансформироваться в жиры. Белки же не поддаются такой трансформации. Их строение намного сложнее, чем строение углеводов. Строение углеводов и жиров делает их основным источником энергии для живых организмов. Белки же являются теми веществами, которые расходуются в качестве строительного материала для поврежденных клеток в организме. Недаром они носят название «протеины» - слово «протос» произошло от древнегреческого языка и переводится как «тот, кто на первом месте».

Белки представляют собой линейные полимеры, содержащие в себе соединенные ковалентными связями аминокислоты. К настоящему времени они разделяются на две категории: фибриллярные и глобулярные. В строении белка различают первичную структуру и вторичную.

Состав и строение жиров делают их незаменимыми для здоровья любого живого организма. При заболеваниях и снижении аппетита отложенный жир действует в качестве дополнительного источника питания. Он является одним из главных источников энергии. Однако избыточное употребление жирных продуктов может ухудшить усвоение белка, магния, а также кальция.

Применение жиров

Люди давно научились применять эти вещества не только для питания, но и в быту. Жиры использовали для светильников еще во времена доисторической эпохи, ими смазывали полозья, при помощи которых корабли спускались на воду.

Эти вещества широко применяются в современной промышленности. Около трети всех производимых жиров имеет техническое предназначение. Остальные предназначены для употребления в пищу. В большом количестве липиды используют в парфюмерной индустрии, косметике, отрасли мыловарения. В пищу употребляются, главным образом, растительные масла - обычно они входят в состав различных продуктов питания, таких, как майонез, шоколад, консервы. В промышленной отрасли липиды используют для производства различных видов красок, лекарств. Также рыбий жир добавляют в олифу.

Технический жир обычно получают из отходов пищевого сырья и используют для производства мыла, хозяйственных средств. Также его добывают из подкожного жира различных морских животных. В фармацевтике он применяется для производства витамина А. Особенно его много в печени тресковых рыб, абрикосовом и персиковом маслах.

В группу важных органических веществ - липидов - наряду со стероидами и восками входят жиры. Их содержание в живых клетках колеблется от 5 до 10% от сухой массы клетки. Эти вещества изучают, исходя из особенностей их которые и обуславливают химические свойства жиров. Химия рассматривает эти вещества как продукт реакции этерификации между трехатомным спиртом глицерином и высшими предельными или непредельными карбоновыми кислотами.

В данной статье мы изучим не только их применение в промышленности и значение, но также получение жиров и химические свойства, характерные для данного класса соединений.

История открытия

Строение было изучено в середине 19 столетия. Французский химик Э. Шеврель нагревал их с водой в присутствии щелочи и нашел в продуктах реакции молекулы жирных карбоновых кислот и глицерола. М. Бертло провел при нагревании глицерина со смесью стеориновой и пальметиновой кислот он получил триглицерид - жир. На основании этих экспериментов было сделано заключение, что изучаемые вещества относятся к классу эстеров. Химические свойства жиров подтвердили этот вывод.

Жиры - сложные эфиры

Как было доказано опытами М. Бертло и Э. Шевреля, триглицериды представляют собой эстеры трехатомного спирта глицерина и высших одноосновных карбоновых кислот. Жир, содержащий стеориновую или пальметиновую кислоты, является твердым, например, говяжий, свиной, бараний. Если в состав триглицеридов входят ненасыщенные жирные кислоты - олеиновая, линолевая, линоленовая - такие жиры жидкие и называются маслами (подсолнечное, арахисовое, льняное).

Химические свойства жиров отличаются от других эстеров еще и тем, что в состав их молекул могут входить сразу нескольких различных карбоновых кислот.

Физические свойства

Как натуральные, так и синтетические, например, маргарин, триглицериды имеют общие признаки. Главный из них - гидрофобность, невысокая температура плавления и низкая удельная плотность. Они хорошо растворяются в органических растворителях, например, в бензоле, тетрахлорметане. Все жиры легко впитываются пористыми или волокнистыми материалами. Согласно теории органических веществ М. Бутлерова, физические и химические свойства жиров взаимосвязаны между собой. Подтверждение этому факту будет приведено ниже.

Химические реакции триглицеридов

Количественный и качественный состав молекулы жира, а также ее пространственная конфигурация подтверждает факт принадлежности триглицеридов классу эстеров. Их главное химическое свойство - это реакция с водой (гидролиз). Она легко происходит в присутствие катализаторов - щелочей, оксидов магния, цинка или кальция. В продуктах реакции обнаруживается смесь карбоновых кислот и глицерина. Так как реакция жиров с водой обратима, в промышленности создают условия, при которых она проходит до конца - в сторону образования глицерола и высших одноосновных карбоновых кислот. Для этого в реактивную смесь постоянно подают раствор щелочи, а продукты сразу выводят из сферы реакции. Эти приемы предотвращают возможность протекания обратного процесса, приводящего к образованию жира. Гидролиз широко используется в химии органического синтеза для получения вышеназванных веществ.

Реакция щелочного омыления

Продолжим изучать органические вещества - сложные эфиры. Жиры, химические свойства которых представлены реакцией гидролиза, способны также вступать во взаимодействие с щелочами. Эта реакция называется омылением и она противоположна процессу эстерификации. Полученные в результате щелочного омыления глицерол и жирные кислоты обрабатывают содой или едким натром. В результате образуется мыло.

Оно твердое, имеет формулу C 17 H 35 COONa и называется хозяйственным. Если добавить к нему красители, глицерин, косметические отдушки, получим туалетное мыло. Жидкое мыло, в отличие от твёрдых видов, получают в том случае, если жиры в реакции омыления смешивают не с гидроксидом натрия, а с едким калием. Например, пальмитат калия C 15 H 31 COOK - жидкое калиевое мыло. Исходным сырьем для реакции омыления служат дешевые жиры животного или растительного происхождения.

Жидкие жиры - масла

В их состав входят молекулы непредельных карбоновых кислот, имеющих двойные связи. синтезируются в каналах эндоплазматической сети под действием ферментов из глицерина и жирных кислот. А они, в свою очередь, образуются в реакциях цикла Кальвина, происходящих вследствие фотосинтеза. Капли масла накапливаются в семенах, плодах, реже в вегетативных частях растений и служат запасом питательных веществ. Физико-химические свойства жиров, образуемых растениями, обусловлены наличием в их молекулах двойной пи-связи. По месту ее разрыва происходят реакции присоединения, например, атомов водорода. Это приводит к образованию твердых гидрогенизированных триглицеридов.

Химические свойства растительных жиров

Как было сказано ранее, триглицериды растительного происхождения содержат в своем составе высшие ненасыщенные карбоновые кислоты. Масла можно перерабатывать благодаря гидрогенизации. Этот процесс проводят при нагревании и в присутствии катализатора - порошкообразного никеля.

Продукт реакции - твердый жир (саломас). Его используют в производстве стеорина, глицерола и в мыловарении. Если в саломас добавляют сахар, соль, молоко и пищевые красители, то получают пищевой жир - маргарин. При добавлении к нему витаминов и натурального сливочного масла получают так называемое легкое масло - спред.

Синтетические жиры

Они являются более дешевыми, чем натуральные, и отличаются от природных триглицеридов своим составом. Один из главных источников получения синтетических жиров - это природные и попутные нефтяные газы, а также сама нефть. Высшие парафины, содержащиеся в этих природных ископаемых, подвергают окислению. В результате получают синтетические жирные кислоты. Их взаимодействие с этиленгликолем приводит к получению синтетического жира. Он используется в кожевенной промышленности (для жирования меховых шкурок и кож). В косметической промышленности синтетические триглицериды применяются в производстве туалетного мыла, кремов, лосьонов. В промышленности строительных материалов искусственные жиры идут на производство лаков, мастик, краски.

Химические свойства жиров, полученных искусственным способом, не отличаются от природных. Они также вступают в в присутствии кислоты и подвергаются действию щелочей (реакция омыления).

Как образуются триглицериды в организме человека

Вследствие метаболических реакций жиры в клетках тела могут синтезироваться из избытка углеводов. Это объясняет тот факт, что неконтролируемое потребление пищи, богатой крахмалом и сахарозой (мучные изделия, рис, картофель, сладости), приводит к избыточному весу. В процессе пищеварения продукты, содержащие жиры, расщепляются в двенадцатиперстной кишке до глицерина и жирных кислот. Их гидролиз происходит при обязательном участии липазы - фермента поджелудочной железы и желчи, выделяемой печенью. Являясь детергентом, желчь эмульгирует жиры, то есть разбивает крупные молекулы на мелкодисперсные капли, легко расщепляемые липазой.

В ворсинках тонкого кишечника из них синтезируются молекулы жира, характерные для организма человека, а затем они всасываются в лимфу. По лимфатическим сосудам жиры поступают в клетки, а их избыток откладывается в подкожную жировую клетчатку или сальник.

Биологическая роль липидов

Изучая химические свойства жиров, остановимся на их способности выделять большое количество энергии: один грамм жира дает 37,8 кДж энергии при полном окислении. Поэтому триглицериды - ее универсальные поставщики. Таким образом, жиры — это ценные продукты питания. Известно, что при неправильном и длительном их хранении триглицериды «стареют» и прогоркают, приобретая неприятный запах. Это происходит вследствие контакта жира с кислородом воздуха. Начавшее портиться масло легко определить, если добавить к нему иодид калия. Пероксиды, содержащиеся в продукте, окисляют это соединение до свободного йода, вызывающего синее окрашивание при контакте с крахмалсодержащими веществами.

Жиры являются также важнейшим строительным материалом и входят в состав клеточных мембран и органоидов. Велика их роль и в теплорегуляции организмов. Например, животные, обитающие на больших глубинах, где температура воды очень низка, имеют хорошо развитый слой подкожного жира, например, у китов он может достигать толщины 1,5 м. Животные степей, пустынь и полупустынь также накапливают в своем организме достаточное количество жира. Он необходим для них как источник эндогенной воды, так как при окислении жира кроме энергии выделяется большое количество жидкости. К таким животным относятся верблюды, тушканчики, землеройки.

Липиды играют важную роль в защите внутренних органов. У человека хорошо развит сальник, защищающий желудок, пищеварительные железы от внутренних повреждений. Такие жизненно важные органы, как почки, обязательно должны находится в слое жира. При резкой потере веса у человека вследствие истончения этого слоя может наблюдаться опущение почек, что является серьёзной патологией, нарушающей работу выделительной системы.

Велико значение липидов в образовании клеточных мембран. Наряду с углеводами и белками они формируют два слоя, имеющих мозаичное строение. Соединения жиров с белками называются липопротеидами. Они обуславливают клеточных мембран.

В данной статье были рассмотрены химический состав и свойства жиров, а также их применение в промышленности.



© dagexpo.ru, 2024
Стоматологический сайт