Взаимодействие лекарственных веществ. Мышцы Комбинированное действие лекарственных веществ синергизм антагонизм

20.07.2019

Большинство сточных вод промышленных и бытовых предприятий имеют сложный химический состав; следо­вательно, важно знать не только токсичность отдельных компонентов, но и их комбинированное действие. Комби­нированное действие компонентов сточных вод проявля­ется в виде синергизма, антагонизма или независимого совместного действия.

Синергизм - явление взаи­модействия двух или нескольких компонентов, три котором токсический эффект выше, чем каждого компонента в отдельности.

Антагонизм - отрицательный синергизм, то есть действие компонентов, противоположное друг другу, в результате чего токсический эффект смеси сни­жается. Антагонизм может быть физиологический (про­тивоположное действие на одну и ту же функцию орга­низма) и химический (нейтрализация веществ в резуль­тате химического взаимодействия).

Синергическими являются комбинации тяжелых ме­таллов (меди и цинка, меди и кадмия, никеля и цинка), аммония и фенола, аммония и цианидов, аммония и хло­ра, муравьиной кислоты и сульфатов. Хлорирование некоторых среднетоксичных соединений приводит к рез­кому возрастанию токсичности соединения. Примером может служить синтезированный хлорированный моллюскоцидный препарат - салициланилид.

Антагонистами являются соли калия, кальция и соли натрия. Соли магния обезвреживаются солями кальция. Растворы хлористого натрия нейтрализуются солями хлористого кальция, хлористый натрий снижает токсич­ность хлористого кальция и калия. Синильная кислота снижает свою токсичность при одновременном действии окиси и закиси железа; наоборот, присутствие солей меди стабилизирует синильную кислоту.

Известковое мо­локо нейтрализует или снижает токсичность сточных вод, содержащих соли тяжелых металлов (меди, цинка, олова, железа), фторидов и кремнефторидов и другие сое­динения. Поэтому токсичность солей тяжелых металлов и фторидов в мягкой и дистиллированной воде более высокая, чем в жесткой и морской. Это свойство извести и других щелочных элементов используется на некоторых очистных сооружениях для обезвреживания сточных вод.

Соединения металлов с цианидами образуют металлцианистые комплексы, токсичность которых значительно меньше, чем цианидов и солей тяжелых металлов по­рознь. Известно также, что наблюдается снижение ток­сичности, (вплоть до полной нейтрализации, сточных вод сульфатцеллюлозных предприятий от примеси коммунально-бытовых вод.

ЧАСТНАЯ ТОКСИКОЛОГИЯ

При комбинированном применении леарственных веществ их действие может усиливаться (синергизм) или ослабляться (антагонизм).

Синергизм (от греч. syn – вместе, erg – работа) - однонаправленное действиме двух или нескольких лекарственных веществ, при котором развивается фармакологический эффект, превышающий эффекты каждого вещества в отдельности. Синергизм лекарственных веществ возникает в двух формах: суммирование и потенцирование эффектов.

Если эффект комбинированного применения лекарственных веществ равен сумме эффектов отдельных веществ, входящих в комбинацию, действие определяют как суммирование , или аддитивное действие . Суммирование возникает при введении в организм лекарственных веществ, влияющих на одни и те же субстраты (рецепторы, клетки и др.). Например, суммируются сосудосуживающие и гипертензивные эффекты норэпинефрина и фенилэфрина, стимулирующих a-адренорецепторы периферических сосудов; суммируются эффекты средств для ингаляционного наркоза.

Если одно вещество значительно усиливает фармакологический эффект другого, такое взаимодействие называют потенцированием . При потенцировании общий эффект комбинации двух веществ превышает сумму этих эффектов. Например, хлорпромазин (антипсихотическое средство) потенцирует действие средств для наркоза, что позволяет снизить концентрацию последних.

Лекарственные вещества могут действовать на один и тот же субстрат (прямой синергизм ) или иметь разную локализацию действия (косвенный синергизм ).

Явление синергизма часто применяют в медицинской практике, так как оно позволяет получить желаемый фармакологический эффект при назначении нескольких лекарственных средств в меньших дозах. При этом риск повышения побочных эффектов уменьшается.

Антагонизм (от греч. anti – против. agon – борьба) – уменьшение или полное устранение фармакологического эффекта одного лекарственного вещества другим при их совместном применении. Явление антагонизма используют при лечении отравлений и для устранения нежелательных реакций на лекарственное средство.

Различают следующие виды антагонизма: прямой функциональный антагонизм, косвенный функциональный антагонизм, физический антагонизм, химический антагонизм.

Прямой функциональный антагонизм развивается, когда лекарственные вещества оказывают противоположное (разнонаправленное) действие на одни и те же функциональные элементы (рецепторы, ферменты, транспортные системы и др.). Например, к функциональным антагонистам относятся стимуляторы и блокаторы b-адренорецпторов, стимуляторы и блокаторы М-холинорецепторов. Частный случай прямого антагонизма – конкурентный антагонизм. Он возникает, если лекарственные вещества имеют близкую химическую структуру и конкурируют за связь с рецептором. Так, в качестве конкурентного антагониста морфина и других наркотических анальгетиков применяют налоксон.

Некоторые лекарственные вещества имеют сходную химическую структуру с метаболитами микроорганизмов или опухолевых клеток и вступают с ними в конкуренцию за участие в одном из звеньев биохимического процесса. Такие вещества получили название антиметаболиты . Замещая один из элементов цепи биохимических реакций, антиметаболиты нарушают размножение микроорганизмов, опухолевых клеток. Например, сульфаниламиды – конкурентные антагонисты парааминобензойной кислоты, необходимой для развития некоторых микроорганизмов, метотрексат – конкурентный антагонист дигидрофолатредуктазы в опухолевых клетках.

Косвенный функциональный антагонизм развивается в тех случаях, когда лекарственные вещества оказывают противоположное влияние на работу какого-либо органа и при этом в основе их действия лежат разные механизмы. Например, к косвенным антагонистам в отношении действия на гладкомышечные органы относят ацеклидин (повышает тонус гладкомышечных органов, стимулируя м-холинорецепторы) и папаверин (снижает тонус гладкомышечных органов вследствие прямого миотропного действия).

Физический антагонизм возникает в результате физического взаимодействия лекарственных веществ: адсорбции одного лекарственного вещества на поверхности другого, в результате чего образуются неактивные или плохо всасывающиеся комплексы (например, адсорбция лекарственных веществ и токсинов на поверхности активированного угля). Явление физического антагонизма применяют при лечении отравлений.

Химический антагонизм возникает в результате химической реакции между веществами, в результате которой образуются неактивные соединения или комплексы. Антагонисты, действующие подобным образом, получили название антидоты . Например, при отравлении соединениями мышьяка, ртути, свинца применяют натрия тиосульфат, в результате химической реакции с которым образуются неядовитые сульфаты. При передозировке или отравлении сердечными гликозидами применяют димеркапрол, образующий с ними неактивные комплексные соединения. При передозировке гепарина вводят протиамина сульфат, катионные группы которого связываются с анионными центрами гепарина, нейтрализуя его антикоагулянтное действие.

Если в результате комбинированного применения лекарственных веществ достигнут более выраженный терапевтический эффект, ослаблены или предупреждены отрицательные реакции, такое сочетание лекарственных препаратов считают рациональным и терапевтически целесообразным. Например, для предупреждения нейротоксического действия изониазида назначают витамин В 6 , для профилактики кандидоза как осложнения при лечении антибиотиками широкого спектра действия – нистатин или леворин, для устранения гипокалиемии при лечении салуретиками – калия хлорид.

Если в результате одновременного применения нескольких лекарственных средств ослаблен, предупрежден или извращен терапевтический эффект или развиваются нежелательные эффекты, такие сочетания считают нерациональными, терапевтически нецелесообразными (несовместимость лекарственных средств ).

Просмотры: 4971

20.12.2017

Макро- и микроэлементы, составляющие основу питания и оказывающие влияние на жизнедеятельность не только растений, но и всех живых организмов, находятся в тесном взаимодействии друг с другом. Поэтому главным фактором, обеспечивающим нормальный рост, развитие и функционирование культур, является соблюдение правильного баланса химических составляющих в питательной среде и в самом растении. Всем культурам, в зависимости от их жизненного цикла, генотипических особенностей их биохимического состава и окружающей среды, требуется определенное соотношение питательных веществ. Этот баланс имеет более важное значение, чем фактическая концентрация отдельных элементов в питательном растворе. Ни один химический элемент в природе не действует изолированно от других. При этом правильное соотношение микроэлементов в питании с учетом их взаимодействия между собой является не менее значимым и сложным, чем баланс макроэлементов. Чтобы обеспечить растения сбалансированным составом элементов, необходимо учитывать не только их физиологическую роль в жизни культур по отдельности, но и оказываемое влияние на растительный организм в результате их совместного действия.



Почти все элементы, входящие в состав питательных веществ, находятся между собой в одной из двух форм взаимодействия: антагонистической либо синергической . Игнорирование этого фактора приводит к несбалансированным реакциям внутри самого растения, в результате чего оно получает стресс, который может оказаться губительным. Антагонизм между элементами возникает в том случае, если их общее участие в химических реакциях приводит к ухудшению действия одного из них. Так, избыток одного элемента может снижать уровень поглощения корневой системой растения другого элемента. Вот некоторые примеры антагонизма макро- и микроэлементов:


· чрезмерное количество N (азота) уменьшает поглощение P (фосфора), К (калия), Fe (железа) и некоторых других элементов: Ca (кальция), Mg (магния), Mn (марганца), Zn (цинкa), Cu (меди);


· чрезмерное количество Р (фосфора) уменьшает поглощение катионов таких микроэлементов как Fe (железо), Mn (марганец), Zn (цинк) и Cu (медь);


· чрезмерное количество К (калия) уменьшает поглощение Mg (магния) в большей степени и Ca (кальция) в меньшей степени;


· чрезмерное количество Ca (кальция) снижает поглощение Fe (железа);


· чрезмерное количество Fe (железа) снижает поглощение Zn (цинка);


· избыток Zn (цинка) ухудшает доступность Mn (марганца).

В отличие от антагонизма синергизм представляет собой комплексное действие элементов (двух или более), при котором достигается усиление положительного результата их влияния на растение. С помощью практических и лабораторных исследований установлены такие примеры синергизма элементов:


· достаточное количество N (азота) обеспечивает оптимальное поглощение K (калия), а также P (фосфора), Mg (магния), Fe (железа), Mn (марганца) и Zn (цинка) из почв;

· достаточный уровень Cu (меди) и B (бора) в почве улучшает поглощение N (азота);


· oптимальнoе количество Мо (молибдена) повышает усваиваемость культурами N (азота), а также увеличивает поглощение Р (фосфора);


· достаточное количество Ca (кальция) и Zn (цинка) улучшают усвоение P (фосфорa) и K (калия);


· оптимальный уровень S (серы) повышает поглощение Mn (марганца) и Zn (цинка);


· достаточное количество Mn (марганца) увеличивает поглощение Cu (меди).

Нередко помимо этих двух групп элементов (антагонистов и синергистов) выделяют также третью группу, куда входят элементы, блокирующие действие друг друга. Например, одновременное присутствие в питательном растворе Cu (меди) и Ca (кальция) приводит к поглощению растением лишь одного из этих компонентов.






Явление, когда два или более элементов при совместном действии создают эффект улучшения физиологического состояния растения, называется синергизмом. В обратном случае, когда избыток одного из элементов уменьшает поглощение другого, наблюдается физиологический антагонизм. Эти взаимодействия зависят от типа почвы, физических свойств, рН, окружающей среды, температуры и доли участвующих питательных веществ.

Синергизм и антагонизм элементов связаны с электронным строением их атомов и ионов. Если наблюдается сходство в строении двух или более элементов, то они способны замещать друг друга в биохимических системах, что и вызывает антагонизм этих питательных веществ. Агрономы всегда должны учитывать конкуренцию элементов, содержащих аналогичные по размеру, валентности и заряду ионы. Это очень важно при составлении сбалансированного комплекса удобрений, необходимых для прогрессирующего развития культур. Явления синергизма и антагонизма питательных веществ имеют особо критическое значение для растений, когда содержание этих элементов в почве приближено к дефициту.

Классификация мышц

Вспомогательный аппарат мышц

К вспомогательному аппарату мышц относятся фасции, фиброзные и костно-фиброзные каналы, удерживатели, синовиальные сумки и влагалища, а также сесамовидные кости. Фасции покрывают как отдельные мышцы, так и группы мышц. Межмышечные перегородки отходят от фасций вглубь, отделяя друг от друга группы мышц, и прикрепляются к ко­стям, образуя для них футляры, называемые фиброзными каналами . Если мышцы лежат между фасцией и костью, то канал называется костно-фиброзным .

Удерживатели – лентообразные утолщения фасций, располагаясь поперечно над сухожилиями мышц, подобно ремням фиксируют их к костям.

Синовиальные сумки, тонкостенные соединительнотканные мешочки, заполненные жидкостью, похожей на синовию, и расположенные под мышцами, между мышцами и сухожилиями или костью, уменьшают трение. Синовиальные влагалища раз­виваются в тех местах, где сухожилия прилегают к кости (т. е. в костно-фиброзных каналах). Это замкнутые образования, в виде муф­ты или цилиндра охватывающие сухожилие. Каждое синовиальное влагалище состоит из двух листков. Один листок, внутренний, охва­тывает сухожилие, а второй, наружный, выстилает стенку фиброз­ного канала. Между листками находится небольшая щель, заполненная синовиальной жидкостью, облегчающей скольжение сухожилия.

Сесамовидные кости (надколенник) развиваются в толще сухожилий, ближе к месту их прикрепления. Они изменяют угол подхода мыш­цы к кости и увеличивают плечо силы мышцы.

Вспомогательные аппараты мышц образуют дополнительную опору для мышц – мягкий скелет, обусловливают направление тяги мышц, способствуют их изолированному сокращению, не дают смещаться при сокращении, увеличивают их силу и способствуют кровообращению и лимфотоку.

Единой классификации мышц нет (табл. 2.1). Мышцы подразделяют по их положе­нию в теле человека, по форме (рис. 2.2), направлению мышечных волокон, функции, по отно­шению к суставам. Различают мышцы головы, шеи, спины, груди, живота; пояса верхних конечностей, плеча, предплечья, кисти; таза, бедра, голени, стопы. Кроме этого, могут быть выделены передняя и задняя группы мышц, поверхностные и глубокие мышцы, наружные и внутренние.

Таблица 2.1. Классификация мышц



Рис. 2.2. Формы мышц.

По форме мышцы делятся на длинные, короткие, широкие.

Существенное значение для работы мышц имеет направление их волокон. По направлению волокон выделяют мышцы с параллельными волокнами, идущими вдоль брюшка мышцы (длин­ные, веретенообразные и лентовидные мышцы), с поперечными во­локнами и с косыми волокнами. Наиболее часто встречаются веретенообразные (характерны для конечностей, прикрепляются к костям, выполняющим роль рычагов, – двуглавая мышца плеча и пр.) и широкие мышцы (участвуют в образовании стенок туловища – прямая мышца живота и пр.).

Если косые волокна присоединяются к сухожилию под углом к длине брюшка с одной стороны, то такие мышцы называются одноперистыми, если же с двух сторон – двуперистыми. Одноперистые и двуперистые мышцы имеют корот­кие многочисленные волокна и при своем сокращении могут разви­вать значительную силу.

Мышцы, имеющие круговые волокна, располагаются вокруг от­верстий и при своем сокращении суживают их (например, круговая мышца глаза, круговая мышца рта). Эти мышцы называются сжимателями или сфинктерами. Иногда мышцы имеют веерообразный ход волокон.

Мышцы скелета имеют различную сложность устройства. Мышцы с одним брюшком и двумя сухожилиями – это простые мышцы. Сложные мышцы в отличие от них имеют не одно, а два, три или четыре брюшка, называемые головками, и несколько сухожилий. В одних случаях эти головки начинаются проксимальными сухожилиями от разных костных точек, а затем сливаются в брюшко, которое прикрепляется одним дистальным сухожилием. В других случаях мышцы начинаются одним проксимальным сухо­жилием, а брюшко заканчивается несколькими дистальными сухожилиями, прикрепляющимися к разным костям. Встречаются мышцы, где брюшко разделено одним промежуточным сухожилием или несколькими сухожильными перемычками.

По положению в теле человека мышцы делятся на поверхностные, глубокие, наружные, внутренние, медиальные и лате­ральные.

Выполняя многочисленные функции, мышцы работают согла­сованно, образуя функциональные рабочие группы. Мышцы включаются в функциональные группы по направлению движения в суставе, по направлению движения части тела, по из­менению объема полости и по изменению размера отверстия. При движениях конечностей и их звеньев выделяют функциональные группы мышц – сгибающие, разгибающие, отводящие, приводящие, пронирующие и супинирующие. При движении туловища различают функциональные группы мышц – сгибающие и разгибающие, на­клоняющие вправо или влево, скручивающие вправо или влево. По отношению к движению отдельных частей тела выделяют функцио­нальные группы мышц, поднимающие и опускающие, осуществляю­щие движение вперед и назад; по изменению объема полости – функциональные группы, увеличивающие, например, внутригрудное или внутрибрюшное давление или уменьшающие его; по изменению размера отверстия – суживающие и расширяющие его.

В процессе эволюции функциональные группы мышц развива­лись парами: сгибающая группа формировалась совместно с разгибающей, пронирующая – совместно с супинирующей и т. п. Это наглядно выявляется на примерах развития суставов. Оказывается, что каждая ось вращения в суставе, выражая его форму, имеет свою функциональную пару мышц. Такие пары состоят, как прави­ло, из противоположных по функции групп мышц. Так, одноосные суставы имеют одну пару мышц, двуосные – две пары, а трехосные – три пары или соответственно две, четыре, шесть функциональных групп мышц.

Мышцы, входящие в функциональную группу, характеризуются тем, что проявляют одинаковую двигательную функцию. В частности, все они или при­тягивают кости – укорачиваются, или отпускают – удлиняются, или же проявляют относительную стабильность напряжения, раз­меров и формы.

Мышцы, совместно действующие в одной функциональной группе, называются синергистами. Мышцы противоположных по действию функциональных групп мышц называются антагонистами. Так, мышцы-сгибатели будут антагонистами мышц-разгибателей, пронаторы – антагонистами супинаторов и т. п. Однако истинного антагонизма между ними нет. Он проявляется лишь в отношении определенного движения или определенной оси вращения.

По отношению к суставам различают мышцы одно-, двух- и многосуставные. Односуставные мышцы фиксируются к соседним костям скелета и переходят через один сустав, а многосуставные мышцы переходят через два и более суставов, производят движения в них.

Страница 5 из 12

Антагонизм (от греч. anti- против, agon- борьба) лекарств в ком­бинациях проявляется в ослаблении или полном исчезновении их фармакотерапевтического действия. В медицине антагонизм как вид фармакологической несовместимости условно можно подразделить на фи­зико-химический и физиологический. К физико-химическому относят так называемые конкурентный, физический и химический антагонизмы (фар­мацевтическая несовместимость); к физиологическому- прямой и косвен­ный (фармакологическая несовместимость).

Конкурентный антагонизм в фармакологии наблюдается между структурно сходными веществами, например, сульфаниламидами и ПАБК, являющейся нормальным продуктом обмена (метаболитом) у ряда бактерий. В этом случае сульфанила­миды расцениваются как антиметаболиты. Аналогичные ситуации могут отмечаться с гормонами, витаминами и другими соединениями.

Физический антагонизм в фармакологии возможен между адсорбентами (активирован­ный уголь, белки, бентонит) и действующими лекарственными веществами, эф­фект которых исключается благодаря их адсорбции на адсорбентах.

Химический антагонизм в фармакологии проявляется в результате химического взаи­модействия лекарств в комбинациях с последующим образованием фар­макологически инертных продуктов. Например, действие катионных поверх- ностно-активных антисептиков может быть нейтрализовано анионными поверхностно-активными веществами.

Физические и химические антагонисты на практике чаще используют в качестве противоядий, или антидотов (от греч. antidotos- противоядие). Так, при отравлении бария хлоридом в качестве антидота можно использовать натрия сульфат; тяжелые металлы прочно связываются и обезвреживаются унитиолом и т. д.

Физиологический антагонизм в фармакологии обусловлен взаимодействием лекарствен­ных веществ с клетками и(или) их рецепторами. В таких случаях различают прямой антагонизм, когда лекарственные вещества в комбинации действуют противоположно (например, М-холиномиметик ацеклидин и М-холинолитик атропина сульфат, оба действующие на М-холинорецепторы), и косвенный антагонизм, когда лекарственные вещества в комбинации действуют на фи­зиологические системы-мишени, проявляющие антагонистические функции (на­пример, М-холиномиметик ацеклидин, возбуждающий тормозные М-холиноре­цепторы сердца и замедляющий частоту его сокращений, является антагонистом Р-адреномиметика изадрина, возбуждающего адренорецепторы и за счет этого ускоряющего сердцебиение).



© dagexpo.ru, 2024
Стоматологический сайт