Второй закон максвелла. Уравнения максвелла в интегральной форме

21.09.2019

Введение Максвеллом понятия тока смещения, привело к завершению созданной им макроскопической теории электромагнитного поля, которая позволяет с единой точки зрения объяснить не только электрические и магнитные явления, но и предсказать новые, существования которых было впоследствии подтверждено.

В основе теории Максвелла лежат 4 уравнения:

1. Электрическое поле может быть как потенциальным, так и вихревым, поэтому напряженность результирующего поля равна:

Это уравнение показывает, что магнитные поля могут возбуждаться либо движущимися зарядами (электрическими токами), либо переменными электрическими полями.

3. Теорема Гаусса для поля :

Получаем

Итак, полная система уравнений Максвелла в интегральной форме:

1),

2),

Величины, входящие в уравнения Максвелла, не являются независимыми и между ними существует связь.

Для изотропных, несегнетоэлектрических и неферромагнитных сред запишем формулы связи:

б) ,

в) ,

где - электрическая постоянная, - магнитная постоянная,

Диэлектрическая проницаемость среды, m - магнитная проницаемость среды,

r - удельное электрическое сопротивление, - удельная электрическая проводимость.

Из уравнений Максвелла вытекает, что:

источником электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, которые могут возбуждаться либо движущимися электрическими зарядами (токами), либо переменными электрическими полями.

Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе не существует магнитных зарядов.

Если и (стационарные поля), то уравнения Максвелла принимают следующий вид:

Источниками электрического стационарного поля являются только электрические заряды, источниками стационарного магнитного поля - только токи проводимости.

Электрическое и магнитное поле в данном случае независимы друг от друга, что и позволяет изучать отдельно постоянные электрическое и магнитное поля.

Дифференциальная форма записи уравнений Максвелла:

3) ,

Интегральная форма записи уравнений Максвелла является более общей, если имеются поверхности разрыва. Дифференциальная форма записи уравнения Максвелла предполагает, что все величины в пространстве и времени изменяются непрерывно.

Уравнения Максвелла – наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же важную роль, как и законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с переменным электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнитным полем, т.е. электрическое и магнитное поле неразрывно связаны друг с другом – они образуют единое электромагнитное поле.

Свойства уравнений Максвелла

Уравнения Максвелла линейны. Они содержат только первые производные полей Е и В по времени и пространственным координатам и первые степени плотности электрических зарядов и токов j . Свойство линейности уравнений Максвелла связано с принципом суперпозиции, если два каких-нибудь поля удовлетворяют уравнениям Максвелла, то это относится и к сумме этих полей.

Уравнения Максвелла содержат уравнения непрерывности, выражающие закон сохранения электрического заряда. Чтобы получить уравнение непрерывности необходимо взять дивергенцию от обеих частей первого из уравнений Максвелла в дифференциальной форме записи:

Уравнения Максвелла выполняются во всех инерциальных системах отсчета. Они являются релятивистки инвариантными. Это есть следствие принципа относительности, согласно которому все инерциальные системы отсчета физически эквивалентны друг другу. Вид уравнений Максвелла при переходе от одной инерциальной системы отсчета к другой не меняется, однако входящие в них величины преобразуются по определенным правилам. Т.е. уравнения Максвелла являются правильными релятивистскими уравнениями в отличие, например, от уравнений механики Ньютона.

Уравнения Максвелла несимметричны относительно электрического и магнитного полей. Это обусловлено тем, что в природе электрические заряды существуют, а магнитные заряды нет.

Из уравнений Максвелла следует важный вывод о существовании принципиально нового явления: электромагнитное поле способно существовать самостоятельно – без электрических зарядов и токов. При этом изменение его имеет обязательно волновой характер. Поля такого рода называют электромагнитными волнами. В вакууме они всегда распространяются со скоростью равной скорости света. Теория Максвелла предсказала существование электромагнитных волн и позволила установить все их основные свойства.

МАКСВЕЛЛА УРАВНЕНИЯ

1. Краткая история

2. Каноническая форма

3. Максвелла уравнения в интегральной форме

4. Общая характеристика Максвелла уравнений

5. Максвелла уравнения для комплексных амплитуд

6. Алгебраические Максвелла уравнения

7. Материальные уравнения

8. Граничные условия

3. Максвелла уравнения в интегральной форме

Наконец, M. у. в интегральной форме облегчают физ. интерпретацию MH. эл--магн. явлений и поэтому нагляднее сопоставляются с теми экспериментально установленными законами, к-рым они обязаны своим происхождением. Так, ур-ние (1a ) есть обобщение Био - Савара закона (с добавлением к току максвелловского смещения тока ).

Ур-ние (2a) выражает закон индукции Фарадея; иногда его правую часть переобозначают через "магн. ток смещения"

где- плотность "магн. тока смещения", Ф В - магн. поток. Ур-ние (За) связывают с именем Гаусса , установившим соленоидальность поля В , обусловленную отсутствием истинных магн. зарядов. Впрочем вопрос о существовании магнитных монополей пока остаётся открытым. Но соответствующее обобщение M. у. произведено (Хевисайд, 1885) на основе принципа двойственной симметрии M. у. (см. в разделе 9), для чего в (2) и (2a) наряду с магн. током смещения вводится ещё и "истинный" магн. ток (процедура, обратная проделанной когда-то Максвеллом с электрич. током в первом ур-нии), а в ур-ние Гаусса (3), (За) - магн. заряд


где - плотность магн. заряда. Фактически все экспериментальные установки для регистрации ожидаемых магнитных монополей основаны на этом предположении. Наконец, ур-ние (4a ) определяет поле свободного электрич. заряда; его иногда называют законом Кулона (Ch. A. Coulomb), хотя, строго говоря, оно не содержит утверждения о силе взаимодействия между зарядами, да и к тому же справедливо не только в электростатике, но и для систем с произвольным изменением поля во времени. На тех же основаниях иногда и ур-нпе (Ia) связывают с именем Ампера (A. Ampere).

4. Общая характеристика Максвелла уравнений

Совокупность M. у. (1) - (4) составляет систему из восьми (двух векторных и двух скалярных) линейных дифференц. ур-ний 1-го порядка для четырёх векторов Источники (скаляри вектор) не могут быть заданы произвольно; применяя операцию к ур-нию (1) и подставляя результат в (4), получаем:

или в интегральной форме:

Это ур-ние непрерывности для тока, содержащее в себе закон сохранения заряда для замкнутых изолнров. областей,- один из фундам. физ. принципов, подтверждаемых в любых экспериментах.

Ур-ния (1) - (4) распадаются на два самостоят, "блока": ур-ния (1) и (4), содержащие векторы и источники и ур-ния (2) и (3) - однородные ур-ния для не содержащие источников. Ур-ння (2) и (3) допускают получение общего решения, в к-ромвыражаются через т. H. потенциалы электромагнитного поля При этом ур-ние (3) "почти следует" из (2), т. к. операция (у), применённая к (2), даёт что отличается от (3) только константой, определяемой нач. условиями. Аналогично ур-ние (4) "почти следует" из (1) и ур-ния непрерывности (5).

Система M. у. (1) - (4) не является полной: по существу, она связывает 4 векторные величины двумя векторными ур-ниями. Её замыкание осуществляется путём добавления соотношений, связывающих векторы 1-го "блока"с векторами 2-го "блока" Эти соотношения зависят от свойств сред (материальных сред), в к-рых происходят эл--магн. процессы, и наз. материальными ур-ниями (см. раздел 7).

5. Максвелла уравнения для комплексных амплитуд

В силу линейности системы (1) - (4) для её решений справедлив суперпозиции принцип .Часто оказывается удобным фурье-представление общего решения (1) - (4) как ф-ции времени (см. Фурье преобразование) . Записывая временной фактор в виде , для комплексных фурье-амплитуди т. д.) получаем систему ур-ний


Система (1б) - (4б) в нек-ром смысле удобнее (1) - (4), ибо упрощает применение к эл--динамич. системам, обладающим временной дисперсией (см. раздел 7), т. е. зависимостью параметров от частоты

6. Алгебраические Максвелла уравнения

Если распространить (в силу линейности M. у.) фурье-разложение и на зависимость полей от пространственных координат, т. е. представить общее решение ур-ний (1) - (4) в виде суперпозиции плоских волн типа (k - ), то для фурье-компонентов нолейk и т. д.) получим систему алгебраич. ур-ний:


Такое сведение M. у. к набору ур-ний для осцилляторов (осцилляторов поля) составляет важный этап перехода к квантовой электродинамике, где эл--магн. поле рассматривается как совокупность фотонов, характеризуемых энергиями и импульсами Однако и в макроэлектродинамике представления (1в ) - (4в ) оказываются иногда вполне адекватными физ. сущности процессов: напр., при выделении откликов высокодобротных систем (см. Объёмный резонатор) или при изучении "механизма формирования" мод со сложной пространственной структурой из набора плоских волн и т. п. Наконец, M. у. в форме (1в ) - (4в ) удобны для описания свойств эл--динамич. систем, обладающих не только временной, но и пространственной дисперсией, если последняя задаётся в виде зависимости параметров от волнового вектора k.

7. Материальные уравнения

В макроэлектродинамике материальные связи, характеризующие эл--магн. свойства сред, вводятся феноменологически; они находятся либо непосредственно из эксперимента, либо на основании модельных представлений. Существуют два способа описания: в одном векторы E и H считаются исходными и материальные ур-ния задаются в виде D = D (E , H ) и В = В (Е,Н ), в другом - за исходные берутся векторы 2-го "блока" E и В , и соответствующие материальные связи представляются иначе: D = D (E,В ), H= H (E , В ). Оба описания совпадают для вакуума, где материальные уравнения вырождаются в равенства D = E и B = H .

Рассмотрим простейшую модель среды, характеризуемую мгновенным, локальным поляризац. откликом на появляющиеся в ней поля E и H . Под действием поля E в такой среде возникает электрич. (см. Поляризации вектор) , а под действием поля H - магн. поляризация . Чаще её наз. намагниченностью и обозначают М .

Материальные ур-ния для таких сред имеют вид

При этом индуцированные в среде электрич. заряды наз. связанными или поляризац. зарядами с плотностью , а токи, обусловленные их изменениями,- поляризац. токами с плотностью:


Эти понятия были перенесены и на магн. поля, что можно выразить в виде системы ур-ний, аналогичной


и только потом выяснилось, что истинными источниками намагничивания среды оказались электрич. токи , а не магн. заряды. Поэтому терминология сложилась на основе физически некорректной системы


тогда как следовало бы принять беззарядовые ур-ния

что равносильно замыканию исходных M. у. (1) - (4) с помощью материальных связей

Из (6) и (7a) следует, что 2-й вариант представления материальных соотношений, в к-ром постулируются в качестве исходных векторы E и B , физически предпочтительнее.

В модели Лоренца - Максвелла усреднение микрополя Н микро, произведённое с учётом вклада со стороны индуциров. полей, приводит к ур-ниям (9) и соответственно <Н микро>= В . Однако обычно параметры сред вводятся с помощью ур-ний (7), что облегчает двойственную симметризацию ф-л (подробнее см. в разделе 9). Напр., скалярные восприимчивости сред (c e , c m) определяются соотношениями

Простейшие модели сред характеризуются пост, значениямиВ случае вакуума0.

Классификация разл. сред ооычно основывается на материальных ур-ниях типа (10) и их обобщениях. Если проницаемости e и m не зависят от полей, то M. у. (1) - (4) вместе с материальными ур-ниями (10) остаются линейными, поэтому о таких средах говорят как о линейных средах. При наличии зависимостейсреды наз. нелинейными: решения M. у. в нелинейных средах не удовлетворяют принципу суперпозиции. Если проницаемости зависят от координат то говорят о неоднородных средах, при зависимости от времени - о нестац попарных средах (иногда такие эл--динамич. системы наз. параметрическими). Для анизотропных сред скаляры e, m в (10) заменяются на тензоры : (по дважды встречающимся индексам производится суммирование). Важное значение имеют также эффекты запаздывания и нелокальности отклика среды на внеш. поля.

Значение индуциров. поляризации Р е , напр, в момент г, может определяться, вообще говоря, значениями полей во все предыдущие моменты времени, т. е.


что при преобразовании Фурье по времени приводит к зависимости [соответственноi]. Такие среды наз. средами с временной (частотной) дисперсией или просто диспергирующими средами . Аналогичная связь устанавливается и для нелокальных взаимодействий, когда отклик в точке г зависит от значения полей, строго говоря, во всех окружающих точкахно обычно всё-таки в пределах нек-рой конечной её окрестности: При преобразовании Фурье по г это приводит к появлению зависимостей такие среды наз. средами с пространственной дисперсией (см. Дисперсия пространственная ).

В проводящих средах входящая в M. у. (1) - (5) плотность тока состоит из двух слагаемых: одно по-прежнему является сторонним токомобусловленным заданным перемещением электрич. зарядов под действием сторонних сил (обычно неэлектрич. происхождения), а другое - током проводимостизависящим от полей, определяемых системой M. у., и связанным с ними материальными ур-ниями вида В простейшем случае эта зависимость сводится к локальному Ома закону ,

где - электропроводность (проводимость) среды. Иногда в (11) вводят обозначение, благодаря к-рому различают системы с заданными токами и системы с заданными полями (напряжениями). Для синусоидальных во времени полей, подчинённых ур-ниям (1б) - (4б) и материальным связям (10) и (11), вводится комплексная диэлектрич. проницаемость, объединяющая (10) и (11),, мнимая часть к-рой обусловлена проводимостью и определяет диссипацию энергии эл--магн. поля в среде. По аналогии вводится комплексная магн. проницаемость, мнимая часть к-рой обусловливает потери, связанные с перемагничиванием среды. Комплексные проницаемости в общем случае зависят от частоты w и волнового вектораэти зависимости не могут быть произвольными: причинности принцип связывает их действительные и мнимые части Крамерса - Кронига соотношениями .

В общем случае вид материальных ур-ний зависит также и от системы отсчёта, в к-рой эти ур-ния рассматривают. Так, если в неподвижной системе К среда характеризуется простейшими ур-ниями (10), то в инер-циальной системе К" , движущейся относительно К с пост, скоростью и, появляется анизотропия:


где индексыобозначают продольные и поперечные ксоставляющие векторов. В рамках алгебраич. M. у. (1в) - (4в) материальные ур-ния (12) могут быть переписаны в виде

что можно трактовать как наличие временной и пространственной дисперсии. Исследование процессов с материальными связями типа (12) составляет предмет электродинамики движущихся сред . Заметим, что хотя характеристики е и m удобно симметризуют материальные ур-ния, их введение не является непременным условием замыкания M. у. Соответствующей перенормировкой допустимо свести описание магн. поля к одно-векторному, т. е. сделать но при этом даже для изотропной среды диэлектрич. проницаемость становится тензором, она различна для вихревых и потенциальных полей. Физически это связано с неоднозначностью модельного представления диполь-ных моментов, во всяком случае приони могут равноправно интерпретироваться и как зарядовые, и как токовые.

8. Граничные условия

Поскольку M. у. справедливы для любых (в рамках применимости макроэлектродинамики) неоднородных сред, то в областях резкого изменения их параметров иногда можно игнорировать тонкую структуру распределения полей в переходном слое и ограничиться "сшиванием" полей по разные стороны от него, заменяя тем самым переходный слой матем. поверхностью - границей, лишённой толщины. Если внутри переходной области имелись заряды с объёмной плотностьюили токи с объёмной плотностьюто при сжатии слоя в поверхность сохраняются их интегральные значения ·- вводятся поверхностные заряды r пов и поверхностные токи

Толщина переходного слоя.

Применение M. у. и ур-ния непрерывности приводит к следующим граничным условиям:


Здесь индексы 1 и 2 характеризуют поля по разные стороны от границы, а- единичный вектор нормали к поверхности, направленный из среды 1 в среду 2. Правила (1г ) - (5г ) пригодны для перехода через любые поверхности, независимо от того, совпадают ли они с границами раздела сред или проходят по однородным областям, поэтому их иногда наз. поверхностными M. у.

Иногда граничные условия (1г ) - (5г ) порождают краевые условия, т. е. задают не правила перехода через границу, а сами поля на ней. Напр., внутри идеального проводника в силу (11) (иначе возник бы ток неограниченной плотности), поэтому на границе раздела - идеальный проводник в согласии с (2г )Такие границы наз. идеальными электрич. стенками. Аналогично вводится понятие идеальной магн. стенки, на к-рой Если структура полей по одну сторону от границы универсальна, т. е. не зависит от распределения полей по др. сторону, то краевые условия могут состоять в задании не самих полей, а лишь связей между ними, напр. где Z - нек-рая скалярная или тензорная ф-ция координат границы (- тангенциальный компонент). К условиям такого рода относится, в частности, Леонтовича граничное условие для синусоидально меняющихся во времени полей на поверхности хороших проводников.

9. Двойственная симметрия Максвелла уравнений

Двойственная симметрия M. у. имеет место для любой формы их записи. Она состоит в инвариантности M. у. относительно линейных преобразований нолей, производимых по след, правилам:

Здесь- произвольный угл. параметр; в частности, при= О получаются тождественные преобразования, а при - стандартные преобразования перестановочной двойственности (операция ): замена даёт в областях, свободных от источников, новое решение M. у. При этом, однако, оно меняет местами ур-ния

И, следовательно, там, где раньше были распределены электрич. источники, возникают источники магнитные

Поэтому с точки зрения двойственной симметрии M. у. задание материальных связей в виде представляется вполне удобным. Дуально-симметричные M. у. обладают рядом достоинств, по крайней мере в чисто методич. плане. Так, напр., они симметризуют скачки тангенциальных компонентов магн. и электрич. полей и, если задание ff Tall на поверхности идеальной электрич. стенки эквивалентно заданию поверхностного электрич. тока, то задание Я 1а „ на идеальной магн. стенке сводится к заданию магн. поверхностного тока:

Таким сведением задач с заданнымиполями к задачам с заданными токами широко пользуются в теории , в частности в дифракции радиоволн.

Принцип перестановочной двойственности является представителем класса дискретных преобразований (см. Симметрия ),оставляющих инвариантными M. у. Такого же сорта преобразованиями являются, в частности, операция обращения времени

последовательно осуществляемые комбинации операций

10. Максвелла уравнения в четырёхмерном представлении

Придавая времени t смысл четвёртой координаты и представляя её чисто мнимой величиной (см. Минковского пространство-время ),можно заключить описание электромагнетизма в компактную форму. Эл--магн. поле в 4-описании может быть задано двумя антисимметричными тензорами


где- Леви-Чивиты символ ,лат. индексы пробегают значения 1, 2, 3, 4, а греческие - 1, 2, 3. В 4-век-торе тока объединены обычная плотность тока j e и плотность электрич. заряда


аналогично вводят 4-вектор магн. тока.

В этих обозначениях M. у. допускают компактное 4-мерное представление:


Взаимной заменой векторов поля и индукции в ф-лах (13),(14) вводятся тензоры индукции эл--магн. поля


через к-рые также могут быть записаны M. у.:


Любая пара тензорных ур-ний, содержащая в правых частях оба 4-тока (электрич. и мат.), тождественна системе M. у. Чаще используют пару ур-ний (15 а), (18), при этом материальные ур-ния сводятся к функциональной связи между тензорами (последний чаще обозначают через.

Из антисимметрии тензоров поля, индукции и M. у. в форме (17) - (18) следует равенство нулю 4-дивергенций 4-токов:


к-рое представляет собой 4-мерную запись ур-ний непрерывности для электрич. (магн.) зарядов. T. о., 4-векторы токов являются чисто вихревыми, и соотношения (17), (18) можно рассматривать как их представление в виде 4-роторов соответствующих тензоров. Наряду с представленным здесь вариантом часто используется также 4-мерное описание, в к-ром временная координата (обычно с индексом О) берётся действительной, но 4-мерному пространству приписывается гипербодич. сигнатура в таком пространстве приходится различать ко- и контравариантные компоненты векторов и тензоров (см. Ковариантность и контравариантность) .

11. Лоренц-инвариантность Максвелла уравнений

Все экспериментально регистрируемые эл--динамич. явления удовлетворяют относительности принципу .Вид M. у. сохраняется при линейных преобразованиях, оставляющих неизменным интервал и составляющих 10-мерную Пуанкаре группу : 4 трансляции , 3 пространственных (орто-) поворота и 3 пространственно-временных (орто-хроно-) поворота, иногда называемых ло-ренцевыми вращениями. Последние соответствуют перемещениям системы отсчёта вдоль осей x a с пост, скоростямиВ частности, для получается простейшая разновидность Лоренца преобразований:

Где Соответственно поля преобразуются по правилам:


Релятивистски-ковариантная запись M. у. позволяет легко находить инвариантные комбинации полей, токов и потенциалов (4-скаляров или инвариантов Лоренца группы) , сохраняющихся, в частности, при переходе от одной инерциальной системы отсчёта к другой. Во-первых, это чисто полевые инварианты (см. Инварианты электромагнитного поля ).Во-вторых, это токовые (источниковые) инварианты:


В-третьих, это потенциальные инварианты:


где- магн. потенциалы (получающиеся из А е и преобразованием перестановочной двойственности), источниками к-рых являются магн. токи j m и заряды. И, наконец, многочисл. коыбиниров. инварианты типаи им подобные. Число таких комбиниров. инвариантов (квадратичных, кубичных и т. д.) по полям н источникам неограниченно.

12. Лагранжиан для электромагнитного поля

M. у. могут быть получены из наименьшего действия принципа , т. е. их можно совместить с Эйлера - Лаг-ранжа уравнениями , обеспечивающими вариационную акстремальность ф-ции действия :


здесь - лагранжиан ,являющийся релятивистски-инвариантной величиной; интегрирование ведётся по 4-мерному объёму V, (t 2 - t 1 ) с фиксиров. границами. В качестве обобщённых координат принято обычно использовать потенциалы А a и f. Поскольку лагран-жев формализм должен давать полное (замкнутое) динамич. описание системы, то при его построении нужно принимать во внимание материальные ур-ния. Они фигурируют как зависимости связанных зарядов и токов от полей В и Е ·


В результате лагранжиан принимает вид инвариантной комбинации полей, потенциалов и источников:


А ур-ния Эйлера - Лагранжа для нек-рой обобщённой координаты получают приравниванием нулю соответствующих вариационных производных:

Для приходим к (4), для- к ур-нию (1) в соответствующих обозначениях. Вариационный подход позволяет придать теории универсальную форму описания, распространяемую и на описания динамики любых взаимодействий, даёт возможность получать ур-ния для комбиниров. динамич. систем, напр, электромеханических. В частности, для систем с сосредоточенными параметрами, характеризуемых конечным числом степеней свободы, соответствующие ур-ния наз. ур-ниями Лагранжа - Максвелла.

13. Единственность решений Максвелла уравнений

Различают теоремы единственности для стационарных и нестационарных процессов. Условия единственности нестационарных решений извлекаются из Пойн-тинга теоремы , где источники считаются заданными ф-циями координат и времени. Если бы они порождали два разл. поля, то разность этих полей в вакууме (или в любой линейной материальной среде) вследствие принципа суперпозиции была бы решением однородных M. у. Для обращения этой разности в нуль и, следовательно, получения единств, решения достаточно удовлетворить след, трём условиям. 1) На поверхности S , окружающей область V , где ищется поле, должны быть заданы тангенциальные составляющие поля Е тан или поля Н тан либо соотношения между ними импедансного типа: (п - нормаль к S ) со значениями Z, исключающими приток энергии извне. К таковым относятся, в частности, условия излучения (см. Зоммерфельда условия излучения ),к-рым удовлетворяют волны в однородной среде на больших расстояниях от источников. Во всех случаях поток энергии для разностного поля вообще исчезает или направлен наружу (из объёма). 2) В нач. момент времени должны быть заданы все поля всюду внутри V . 3) Плотность энергии электромагнитного поля HB ) должна быть положительна (вакуум, среды с . Эта частная теорема единственности обобщается на среды с нелокальными связями, а также на нек-рые виды параметрич. сред. Однако в нелинейных средах, где принцип суперпозиции не работает, никаких общих утверждений о единственности не существует.

В стационарных режимах нач. условия выпадают, и теоремы единственности формулируются непосредственно для установившихся решений. Так, в электростатике достаточно задать все источники r e ст, все полные заряды на изолиров. проводниках или их потенциалы, чтобы при соответствующих условиях на бесконечности (нужное спадание поля) решение было бы единственным. Аналогичные теоремы устанавливаются для магнитостатики и электродинамики пост, токов в проводящих средах.

Особо выделяется случай синусоидальных во времени процессов, для к-рых формулируют след, признаки, достаточные для получения единств, решения: 1) задание источников задание E тан или Н тан на ограничивающей объём V поверхности S или соответствующих импедансных условий, обеспечивающих отсутствие потока вектора Пойнтинга внутрь V; 3) наличие малого поглощения внутри V или малой утечки энергии через S для исключения существования собств. колебаний на частоте

14. Классификация приближений Максвелла уравнений

Классификация приближений M. у. обычно основывается на безразмерных параметрах, определяющих и критерии подобия для эл--магн. полей. В вакууме таким параметром является отношение , где - характерный масштаб изменения полей (либо размер области, в к-рой ищется решение), - характерный временной масштаб изменения полей.

а) а = 0 - статич. приближение, статика.

Система M. у. распадается на три.


Материальная связь в простейшем случае имеет вид . Это система M. у. для электростатики, в к-рой источниками служат заданные распределения плотности электрич. заряда и сторонней поляризации . В однородной среде эл--статич. потенциал f определяется Пуассона уравнением


Для более сложных материальных <ур-ний различают электростатику анизотропных сред , нелинейную электростатику , электростатику сред с пространственной дисперсией , важным частным случаем к-рых являются движущиеся среды с временной дисперсией (здесь может даже меняться тип ур-ния для потенциала с эллиптического на параболический) и т. п.

II. Поля в магнитостатике описываются ур-ниями


где в случае простейшей материальной связи индуци-ров. определяется соотношением


Источниками в ур-ниях магнитостатики являются заданные распределения плотности электрич. тока и сторонней намагниченности В однородной среде

векторный потенциал магн. поля(калибровка кулоновская) определяется векторным ур-нием Пуассона

В общем случае возможны такие же разновидности сред, что и в электростатике.

III. K статич. электродинамике относят и процессы протекания пост, токов в распределённых проводящих средах. Токовая статика охватывается ур-ниями


Источниками являются силы неэлектрич. происхождения, действующие на заряды, характеризующиеся напряжённостью Электрич. заряды присутствуют лишь в местах неоднородности среды, напр, на границах проводящих сред. Распределение токов в проводящих средах сопоставимо с распределением электрич. и магн. полей в электростатике и магнитостатике. Часто благодаря этой аналогии говорят, напр., о магн. цепях, по к-рым "текут" магн. потоки аналогичные электрич. токам в электрич. цепях.

б) - квазистатика, обобщающая соответствующие статич. приближения.

В квазиэлектростатике вакуумные электрич. поля описываются ур-ниями статики (I.), а в ур-ниях для магн. поля в качество заданного источника фигурирует и ток смещения. Квазимагнитостатика описывается статич. ур-ниями для магн. полей с учётом закона индукции (2) для электрич. поля. Поскольку вихревое электрич. поле меняет электрич. токи в проводниках, являющиеся источниками магн. поля, то этот раздел квазистатики более богат, чем предыдущий; он описывает широкий круг явлений, происходящих в цепях перем, тока с сосредоточенными параметрами: ёмкостями, индуктивностями и сопротивлениями.

Квазистатика в распределённых проводящих средах описывается ур-ниями квазистационарного (квазистатического) приближения , в к-рых током смещения пренебрегают по сравнению с токами проводимости. В этом приближении распределения электрич. токов, электрич. и магн. полей описываются одинаковыми ур-ниями диффузионного типа:


Эти ур-ния определяют, напр., распределение токов Фуко, проникновение перем. эл--магп. поля в проводник (скин-эффект )и т. п.

в) Резонансные волновые поля описываются точной системой M. у., однако их иногда выделяют из общего класса полей, особенно в тех случаях, когда их структура (пространственное распределение) фиксируется границами области, внутри к-рой эти поля могут быть возбуждены (напр., внутри полых резонаторов с металлическими стенками или в поперечном сечении волноводов либо в окрестности тонкой проволочной или щелевой антенны) . При этом обычно обращаются к фурье-преобразованию M. у. и представлению поля в виде набора дискретных или квазидискретных мод.

г). В рамках этого неравенства существуют ква-зиоптич. и оптич. приближения (см. Квазиоптика, Геометрической оптики метод) , относящиеся к протяжённым в масштабе длины волны распространениям полей (волновым пучкам, многомодовым конфигурациям и т. п.). Под характерным масштабом, входящим в параметр а, здесь подразумевается масштаб изменения амплитуды поля.

15. Максвелла уравнения в различных системах единиц

Выше использовалась симметричная гауссова абс. система единиц. Удобство гауссовой системы единиц состоит в том, то все 4 вектора поля обладают в ней одинаковыми размерностями и потому в классическом "линейном" вакууме можно избежать введения ненужных констант: в силу безразмерные проницаемости вакуума обращаются в единицыДр. достоинством одинаковой размерности эл--магн. полей является их ес-теств. объединение в единые тензоры поля вида (13), (14) без внесения корректирующих множителей.

Если принять запись ур-ния непрерывности в форме (5), а также соблюдение принципа дуальной симметрии, то M. у. можно придать вид


где константы связаны соотношением

Для простейших материальных связей типа (10) можно ввести проницаемости вакуумаи относит, проницаемости среды Тогда из волнового ур-ния в вакууме следует естеств. соотношение между константами


где с - скорость распространения любого эл--магн. возмущения (в частности, света) в вакууме. В гауссовой системе

Существует операция рационализации, предложенная Хевисайдом и состоящая в устранении иррациональных числовых множителей из M. у. Простейший путь принят в рационализов. системе Xe-висайда - Лоренца.

Значение уравнений Максвелла

Уравнения Дж. Максвелла создают основу для предложенной им теории электромагнитных явлений, которая объяснила все известные в то время эмпирические факты, некоторые эффекты предсказала. Главным выводом теории Максвелла стало положение о существовании электромагнитных волн, которые распространяются со скоростью света.

Замечание

Уравнения, предложенные Максвеллом, в электромагнетизме играют роль подобную роли законов Ньютона в классической механике. Они явились обобщением экспериментальных законов и продолжением идей ученых (Кулона, Ампера, Фарадея и др.) изучавших электромагнетизм до Максвелла.

Замечание 1

Сам Максвелл предложил двадцать уравнений в дифференциальной форме с двадцатью неизвестными величинами. В современном виде мы имеем систему уравнений Максвелла благодаря немецкому физику Г. Герцу и англичанину О. Хэвисайду . С помощью этих уравнений можно описать все электромагнитные явления.

Система уравнений Максвелла

Определение 1

Систему уравнений Максвелла составляют:

\ \ \ \

Выражения (1)-(4) называют полевыми уравнениями , они применимы для описания всех макроскопических электромагнитных явлений. Иногда уравнения системы Максвелла группируют в пары, первую пару составляют из второго и третьего уравнения, вторую пару -- из первого и четвертого уравнений. При этом говорят, что в первую пару уравнений входят только основные характеристики поля ($\overrightarrow{E}\ и\ \overrightarrow{B}$), а во вторую пару - вспомогательные ($\overrightarrow{D}\ и\ \overrightarrow{H}$).

Каждое из векторных уравнений (1) и (2) эквивалентно трем скалярным уравнениям. Эти уравнения связывают компоненты векторов, которые находятся в левой и правой частях выражений. Так, в скалярном виде уравнение (1) представляется как:

В скалярном виде уравнение (2) запишем как:

Третье уравнение из системы Максвелла в скалярном виде:

Четвертое уравнение в скалярной форме примет следующий вид:

Для того чтобы рассмотреть конкретную ситуацию, систему уравнений (1)-(4) дополняют следующими материальными уравнениями, которые учитывают электромагнитные свойства среды:

Замечание 2

Необходимо отметить, что существует целый ряд явлений, в которых материальные уравнения существенно отличны от уравнений (5), например, если речь идет о нелинейных явлениях. В таких случаях получение материальных уравнений составляет отдельную научную задачу.

Физический смысл уравнений Максвелла

Уравнение (1) системы указывает на то, что двумя возможными источниками магнитного поля являются токи проводимости ($\overrightarrow{j}$) и токи смещения ($\frac{\partial \overrightarrow{D}}{\partial t}$).

Уравнение (2) является законом электромагнитной индукции и отображает тот факт, что переменное магнитное поле -- один из источников возникновения электрического поля.

Следующим источником электрического поля служат электрические заряды, что и отображает уравнение (4), которое является, по сути, законом Кулона.

Уравнение (3) означает, что линии магнитной индукции не имеют источников (они либо замкнуты, либо уходят в бесконечность), что приводит к выводу об отсутствии магнитных зарядов, которые создают магнитное поле.

Материальные уравнения (5) -- это соотношения между векторами поля и токами. Диэлектрические свойства среды заключены в диэлектрической проницаемости ($\varepsilon $). Магнитные свойства, которые описывает намагниченность, учтены в магнитной проницаемости ($\mu $). Проводящие свойства среды сосредоточены в удельной проводимости ($\sigma $).

Уравнения поля линейны и учитывают принцип суперпозиции.

Границы применимости уравнений Максвелла

Система уравнений Максвелла ограничена следующими условиями:

    Материальные тела должны быть неподвижны в поле.

    Постоянные $\varepsilon ,\ \mu ,\sigma $ могут зависеть от координат, но не должны зависеть от времени и векторов поля.

    В поле не должно находиться постоянных магнитов и ферромагнитных тел.

Если существует необходимость учета движения среды, то уравнения системы Максвелла оставляют неизменными, а движение учитывается в материальных уравнениях, которые становятся зависимыми от скорости среды и существенно усложняются. Кроме прочего материальные уравнения перестают быть соотношениями между парами величин, как в (5). Например, плотность тока проводимости становится зависимой от индукции магнитного поля, а не только от напряженности электрического поля.

Замечание 3

Магнитное поле постоянных магнитов, например, можно описать, используя систему Максвелла, если известна намагниченность. Но, если заданы токи, то в присутствии ферромагнетиков описать поле при помощи данных уравнений не получится.

Пример 1

Задание: Докажите, что из уравнений Максвелла следует закон сохранения заряда.

Решение:

В качестве основания для решения задачи используем из системы Максвелла уравнение:

Проведем операцию дивергирования в обеих частях выражения (1.1):

Для выражения (1.2) в соответствии с теоремой равенстве нулю дивергенции ротора имеем:

Следовательно, получаем:

Рассмотрим второе слагаемое в правой части. Мы можем поменять порядок дифференцирования, так как время и пространственные координаты независимы, то есть записать:

В соответствии с системой Максвелла мы знаем, что источниками электрических полей служат заряды или:

Что позволяет нам записать уравнение (1.4) в виде:

Что дает нам закон сохранения заряда, который записан в виде:

Данное уравнение называют уравнением непрерывности тока, оно содержит в себе закон сохранения заряда, что совершенно очевидно, если выражение (1.8), записать в интегральной форме:

\[\oint\limits_S{\overrightarrow{j}}d\overrightarrow{S}=-\frac{\partial }{\partial t}\int{\rho dV}(1.9).\]

тогда если области замкнуты и изолированы получаем:

\[\oint\limits_S{\overrightarrow{j}}d\overrightarrow{S}=0\to \int{\rho dV}=const.\]

Что требовалось доказать.

Пример 2

Задание: Покажите, что уравнения $rot\overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t}$ и $div\overrightarrow{B}=0$ , входящие в систему Максвелла не противоречат друг другу.

Решение:

За основу решения примем уравнение:

Возьмём дивергенцию от обеих частей уравнения:

В соответствии с теоремой равенстве нулю дивергенции ротора имеем:

Соответственно, получаем, что

Выражение $div\overrightarrow{B}=const$ не противоречит тому, что $div\overrightarrow{B}=0$.

Мы получили, что уравнения $rot\overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t}$ и $div\overrightarrow{B}=0$ совместны, что требовалось показать.

в произвольной среде. Максвелла уравнения сформулированы Дж. К. Максвеллом в 60-х годах 19 века на основе обобщения эмпирических законов электрических и магнитных явлений. Опираясь на эти законы и развивая плодотворную идею М. Фарадея о том, что взаимодействия между электрически заряженными телами осуществляются посредством электромагнитного поля , Максвелл создал теорию электромагнитных процессов, математически выражаемую Максвелла уравнения Современная форма Максвелла уравнения дана немецким физиком Г. Герцем и английским физиком О. Хевисайдом .

Максвелла уравнения связывают величины, характеризующие электромагнитное поле, с его источниками, то есть с распределением в пространстве электрических зарядов и токов. В пустоте электромагнитное поле характеризуется двумя векторными величинами, зависящими от пространственных координат и времени: напряжённостью электрического поля Е и магнитной индукцией В . Эти величины определяют силы, действующие со стороны поля на заряды и токи, распределение которых в пространстве задаётся плотностью заряда r (зарядом в единице объёма) и плотностью тока j (зарядом, переносимым в единицу времени через единичную площадку, перпендикулярную направлению движения зарядов). Для описания электромагнитных процессов в материальной среде (в веществе), кроме векторов Е и В , вводятся вспомогательные векторные величины, зависящие от состояния и свойств среды: электрическая индукция D и напряжённость магнитного поля Н .

Максвелла уравнения позволяют определить основные характеристики поля (Е, В, D и Н ) в каждой точке пространства в любой момент времени, если известны источники поля j и r как функции координат и времени. Максвелла уравнения могут быть записаны в интегральной или в дифференциальной форме (ниже они даны в абсолютной системе единиц Гаусса; см. СГС система единиц ).

Максвелла уравнения в интегральной форме определяют по заданным зарядам и токам не сами векторы поля Е, В, D, Н в отдельных точках пространства, а некоторые интегральные величины, зависящие от распределения этих характеристик поля: циркуляцию векторов Е и Н вдоль произвольных замкнутых контуров и потоки векторов D и через произвольные замкнутые поверхности.

Первое Максвелла уравнения является обобщением на переменные поля эмпирического Ампера закона о возбуждении магнитного поля электрическими токами. Максвелл высказал гипотезу, что магнитное поле порождается не только токами, текущими в проводниках, но и переменными электрическими полями в диэлектриках или вакууме. Величина, пропорциональная скорости изменения электрического поля во времени, была названа Максвеллом током смещения. Ток смещения возбуждает магнитное поле по тому же закону, что и ток проводимости (позднее это было подтверждено экспериментально). Полный ток, равный сумме тока проводимости и тока смещения, всегда является замкнутым.

Первое Максвелла уравнения имеет вид:

то есть циркуляция вектора напряжённости магнитного поля вдоль замкнутого контура L (сумма скалярных произведений вектора Н в данной точке контура на бесконечно малый отрезок dl контура) определяется полным током через произвольную поверхность j n - проекция плотности тока проводимости j на нормаль к бесконечно малой площадке ds , являющейся частью поверхности S, - проекция плотности тока смещения на ту же нормаль, а с = 3×10 10 см/сек - постоянная, равная скорости распространения электромагнитных взаимодействий в вакууме.

Второе Максвелла уравнения является математической формулировкой закона электромагнитной индукции Фарадея (см. Индукция электромагнитная ) записывается в виде:

, (1, б)

то есть циркуляция вектора напряжённости электрического поля вдоль замкнутого контура L (эдс индукции) определяется скоростью изменения потока вектора магнитной индукции через поверхность S , ограниченную данным контуром. Здесь n - проекция на нормаль к площадке ds вектора магнитной индукции В ; знак минус соответствует Ленца правилу для направления индукционного тока.

Третье Максвелла уравнения выражает опытные данные об отсутствии магнитных зарядов, аналогичных электрическим (магнитное поле порождается только токами):

то есть поток вектора магнитной индукции через произвольную замкнутую поверхность S равен нулю.

Четвёртое Максвелла уравнения (обычно называемое Гаусса теоремой ) представляет собой обобщение закона взаимодействия неподвижных электрических зарядов - Кулона закона :

, (1, г)

то есть поток вектора электрической индукции через произвольную замкнутую поверхность S определяется электрическим зарядом, находящимся внутри этой поверхности (в объёме , ограниченном данной поверхностью).

Если считать, что векторы электромагнитного поля (Е, В, D, Н ) являются непрерывными функциями координат, то, рассматривая циркуляцию векторов Н и Е по бесконечно малым контурам и потоки векторов и D через поверхности, ограничивающие бесконечно малые объёмы, можно от интегральных соотношений (1, а - г) перейти к системе дифференциальных уравнений, справедливых в каждой точке пространства, то есть получить дифференциальную форму Максвелла уравнения (обычно более удобную для решения различных задач):

rot,

Здесь rot и div - дифференциальные операторы ротор (см. Вихрь ) и дивергенция , действующие на векторы Н , Е , и D . Физический смысл уравнений (2) тот же, что и уравнений (1).

Максвелла уравнения в форме (1) или (2) не образуют полной замкнутой системы, позволяющей рассчитывать электромагнитные процессы при наличии материальной среды. Необходимо их дополнить соотношениями, связывающими векторы Е, Н, D, В и j , которые не являются независимыми. Связь между этими векторами определяется свойствами среды и её состоянием, причём D и j выражаются через Е , а - через Н :

D = D (E ), = (Н ), j = j (E ). (3)

Эти три уравнения называются уравнениями состояния, или материальными уравнениями; они описывают электромагнитные свойства среды и для каждой конкретной среды имеют определённую форму. В вакууме D ºЕ и º Н . Совокупность уравнений поля (2) и уравнений состояния (3) образуют полную систему уравнений.

Макроскопические Максвелла уравнения описывают среду феноменологически, не рассматривая сложного механизма взаимодействия электромагнитного поля с заряженными частицами среды. Максвелла уравнения могут быть получены из Лоренца - Максвелла уравнений для микроскопических полей и определённых представлений о строении вещества путём усреднения микрополей по малым пространственно-временным интервалам. Таким способом получаются как основные уравнения поля (2), так и конкретная форма уравнений состояния (3), причём вид уравнений поля не зависит от свойств среды.

Уравнения состояния в общем случае очень сложны, так как векторы D , и j в данной точке пространства в данный момент времени могут зависеть от полей Е и Н во всех точках среды во все предшествующие моменты времени. В некоторых средах векторы D и могут быть отличными от нуля при Е и равных нулю (сегнетоэлектрики и ферромагнетики ). Однако для большинства изотропных сред, вплоть до весьма значительных полей, уравнения состояния имеют простую линейную форму:

D = eE , = mH , j = sE + j c тр. (4)

Здесь e (x, у, z ) - диэлектрическая проницаемость , а m (x, у, z ) - магнитная проницаемость среды, характеризующие соответственно её электрические и магнитные свойства (в выбранной системе единиц для вакуума e = m = 1); величина s(x, у, z ) называется удельной электропроводностью; j cтр - плотность так называемых сторонних токов, то есть токов, поддерживаемых любыми силами, кроме сил электрического поля (например, магнитным полем, диффузией и т. д.). В феноменологической теории Максвелла макроскопические характеристики электромагнитных свойств среды e, m и s должны быть найдены экспериментально. В микроскопической теории Лоренца - Максвелла они могут быть рассчитаны.

Проницаемости e и m фактически определяют тот вклад в электромагнитное поле, который вносят так называемые связанные заряды, входящие в состав электрически нейтральных атомов и молекул вещества. Экспериментальное определение e, m, s позволяет рассчитывать электромагнитное поле в среде, не решая трудную вспомогательную задачу о распределении связанных зарядов и соответствующих им токов в веществе. Плотность заряда r и плотность тока j в Максвелла уравнения - это плотности свободных зарядов и токов, причём вспомогательные векторы Н и D вводятся так, чтобы циркуляция вектора Н определялась только движением свободных зарядов, а поток вектора D - плотностью распределения этих зарядов в пространстве.

Если электромагнитное поле рассматривается в двух граничащих средах, то на поверхности их раздела векторы поля могут претерпевать разрывы (скачки); в этом случае уравнения (2) должны быть дополнены граничными условиями:

[nH ] 2 - [nH ] 1 = ,

[nE ] 2 - [nE ] 1 = 0, (5)

(nD ) 2 - (nD ) 1 = 4ps,

(nB ) 2 - (nB ) 1 = 0.

Здесь j пов и s - плотности поверхностных тока и заряда, квадратные и круглые скобки - соответственно векторное и скалярное произведения векторов, n - единичный вектор нормали к поверхности раздела в направлении от первой среды ко второй (1®2), а индексы относятся к разным сторонам границы раздела.

Основные уравнения для поля (2) линейны, уравнения же состояния (3) могут быть и нелинейными. Обычно нелинейные эффекты обнаруживаются в достаточно сильных полях. В линейных средах [удовлетворяющих соотношениям (4)] и, в частности, в вакууме Максвелла уравнения линейны и, таким образом, оказывается справедливым суперпозиции принцип : при наложении полей они не оказывают влияния друг на друга.

Из Максвелла уравнения вытекает ряд законов сохранения. В частности, из уравнений (1, а) и (1, г) можно получить соотношение (так называемое уравнение непрерывности):

, (6)

представляющее собой закон сохранения электрического заряда: полный ток, протекающий за единицу времени через любую замкнутую поверхность S , равен изменению заряда внутри объёма V , ограниченного этой поверхностью. Если ток через поверхность отсутствует, то заряд в объёме остаётся неизменным.

Из Максвелла уравнения следует, что электромагнитное поле обладает энергией и импульсом (количеством движения). Плотность энергии w (энергии единицы объёма поля) равна:

, (7)

Электромагнитная энергия может перемещаться в пространстве. Плотность потока энергии определяется так называемым вектором Пойнтинга

Направление вектора Пойнтинга перпендикулярно как Е , так и Н и совпадает с направлением распространения электромагнитной энергии, а его величина равна энергии, переносимой в единицу времени через единицу поверхности, перпендикулярной к вектору П . Если не происходит превращений электромагнитной энергии в другие формы, то, согласно Максвелла уравнения , изменение энергии в некотором объёме за единицу времени равно потоку электромагнитной энергии через поверхность, ограничивающую этот объём. Если внутри объёма за счёт электромагнитной энергии выделяется тепло, то закон сохранения энергии записывается в форме:

(9)

Где Q - количество теплоты, выделяемой в единицу времени.

Плотность импульса электромагнитного поля g (импульс единицы объёма поля) связана с плотностью потока энергии соотношением:

Существование импульса электромагнитного поля впервые было обнаружено экспериментально в опытах П. Н. Лебедева по измерению давления света (1899).

Как видно из (7), (8) и (10), электромагнитное поле всегда обладает энергией, а поток энергии и электромагнитный импульс отличны от нуля лишь в случае, когда одновременно существуют и электрическое и магнитное поля (причём эти поля не параллельны друг другу).

Максвелла уравнения приводят к фундаментальному выводу о конечности скорости распространения электромагнитных взаимодействий (равной с = 3×10 10 см/сек ). Это означает, что при изменении плотности заряда или тока в некоторой точке пространства порождаемое ими электромагнитное поле в точке наблюдения изменяется не в тот же момент времени, а спустя время t = R/c , где R - расстояние от элемента тока или заряда до точки наблюдения. Вследствие конечной скорости распространения электромагнитных взаимодействий возможно существование электромагнитных волн , частным случаем которых (как впервые показал Максвелл) являются световые волны.

Электромагнитные явления протекают одинаково во всех инерциальных системах отсчёта , то есть удовлетворяют принципу относительности. В соответствии с этим Максвелла уравнения не меняют своей формы при переходе от одной инерциальной системы отсчёта к другой (релятивистски инвариантны). Выполнение принципа относительности для электромагнитных процессов оказалось несовместимым с классическими представлениями о пространстве и времени, потребовало пересмотра этих представлений и привело к созданию специальной теории относительности (А. Эйнштейн , 1905; см. Относительности теория ). Форма Максвелла уравнения остаётся неизменной при переходе к новой инерциальной системе отсчёта, если пространств, координаты и время, векторы поля Е, Н, В, D , плотность тока j и плотность заряда r изменяются в соответствии с Лоренца преобразованиями (выражающими новые, релятивистские представления о пространстве и времени). Релятивистски-инвариантная форма Максвелла уравнения подчёркивает тот факт, что электрическое и магнитное поля образуют единое целое.

Максвелла уравнения описывают огромную область явлений. Они лежат в основе электротехники и радиотехники и играют важнейшую роль в развитии таких актуальных направлений современной физики, как физика плазмы и проблема управляемых термоядерных реакций , магнитная гидродинамика , нелинейная оптика , конструирование ускорителей заряженных частиц , астрофизика и т. д. Максвелла уравнения неприменимы лишь при больших частотах электромагнитных волн, когда становятся существенными квантовые эффекты, то есть когда энергия отдельных квантов электромагнитного поля - фотонов - велика и в процессах участвует сравнительно небольшое число фотонов.

Лит.: Максвелл Дж. К., Избранные сочинения по теории электромагнитного поля, перевод с английского, М., 1952; Тамм И. Е., Основы теории электричества, 7 изд., М., 1957; Калашников С. Г., Электричество, М., 1956 (Общий курс физики, т. 2); Фейнман Р., Лейтон Р., Сэндс М., Фейнмановские лекции по физике, (перевод с английского], в. 5, 6, 7, М., 1966; Ландау Л. Д., Лифшиц Е. М., Теория поля, 5 изд., М., 1967 (Теоретическая физика, т. 2); их же, Электродинамика сплошных сред, М., 1959.

Г. Я. Мякишев.

Статья про слово "Максвелла уравнения " в Большой Советской Энциклопедии была прочитана 36718 раз

В электродинамике – это как законы Ньютона в классической механике или как постулаты Эйнштейна в теории относительности. Фундаментальные уравнения, в сущности которых мы сегодня будем разбираться, чтобы не впадать в ступор от одного их упоминания.

Полезная и интересная информация по другим темам – у нас в телеграм .

Уравнения Максвелла – это система уравнений в дифференциальной или интегральной форме, описывающая любые электромагнитные поля, связь между токами и электрическими зарядами в любых средах.

Неохотно принимались и критически воспринимались учеными-современниками Максвелла. Все потому, что эти уравнения не были похожи ни на что из известного людям ранее.

Тем не менее, и по сей день нет никаких сомнений в правильности уравнений Максвелла, они «работают» не только в привычном нам макромире, но и в области квантовой механики.

Уравнения Максвелла совершили настоящий переворот в восприятии людьми научной картины мира. Так, они предвосхитили открытие радиоволн и показали, что свет имеет электромагнитную природу.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .

По порядку запишем и поясним все 4 уравнения. Сразу уточним, что записывать их будем в системе СИ.

Современный вид первого уравнения Максвелла таков:

Тут нужно пояснить, что такое дивергенция. Дивергенция – это дифференциальный оператор, определяющий поток какого-то поля через определенную поверхность. Уместным будет сравнение с краном или с трубой. Например, чем больше диаметр носика крана и напор в трубе, тем большим будет поток воды через поверхность, которую представляет собой носик.

В первом уравнении Максвелла E – это векторное электрическое поле, а греческая буква «ро » – суммарный заряд, заключенный внутри замкнутой поверхности.

Так вот, поток электрического поля E через любую замкнутую поверхность зависит от суммарного заряда внутри этой поверхности. Данное уравнение представляет собой закон (теорему) Гаусса .

Третье уравнение Максвелла

Сейчас мы пропустим второе уравнение, так как третье уравнение Максвелла – это тоже закон Гаусса , только уже не для электрического поля, но для магнитного.

Оно имеет вид:

Что это значит? Поток магнитного поля через замкнутую поверхность равен нулю. Если электрические заряды (положительные и отрицательные) вполне могут существовать по отдельности, порождая вокруг себя электрическое поле, то магнитных зарядов в природе просто не существует.

Второе уравнение Максвелла представляет собой ни что иное, как закон Фарадея . Его вид:

Ротор электрического поля (интеграл через замкнутую поверхность) равен скорости изменения магнитного потока, пронизывающего эту поверхность. Чтобы лучше понять, возьмем воду в ванной, которая сливается через отверстие. Вокруг отверстия образуется воронка. Ротор – это сумма (интеграл) векторов скоростей частиц воды, которые вращаются вокруг отверстия.

Как Вы помните, на основе закона Фарадея работают электродвигатели: вращающийся магнит порождает ток в катушке.

Четвертое - самое важное из всех уравнений Максвелла. Именно в нем ученый ввел понятие тока смещения .

Это уравнение еще называется теоремой о циркуляции вектора магнитной индукции. Оно говорит нам о том, что электрический ток и изменение электрического поля порождают вихревое магнитное поле.

Приведем теперь всю систему уравнений и кратко обозначим суть каждого из них:

Первое уравнение: электрический заряд порождает электрическое поле

Второе уравнение: изменяющееся магнитное поле порождает вихревое электрическое поле

Третье уравнение: магнитных зарядов не существует

Четвертое уравнение: электрический ток и изменение электрической индукции порождают вихревое магнитное поле

Решая уравнения Максвелла для свободной электромагнитной волны, мы получим следующую картину ее распространения в пространстве:

Надеемся, эта статья поможет систематизировать знания об уравнениях Максвелла. А если понадобиться решить задачу по электродинамике с применением этих уравнений, можете смело обратиться за помощью в студенческий сервис . Подробное объяснение любого задания и отличная оценка гарантированы.



© dagexpo.ru, 2024
Стоматологический сайт