В чем состоит функции гепатоцитов. Гистология печень. Способ применения "Гепабене"

17.07.2019

Самая большая железа в нашем организме – печень. Вес ее составляет 1,5 кг. Она располагается в верхней части брюшной полости, преимущественно в правом подреберье. Когда в этом месте мы чувствуем дискомфорт, мы говорим: «Болит печень». При этом считается, что если в правом подреберье нет боли, то с печенью все в порядке. Однако, это далеко не так. На самом деле, печень не болит, потому что в ней отсутствуют нервные окончания. По этой причине мы не знаем, что происходит с органом. Печень «молчит» даже тогда, когда в ней начинаются необратимые разрушительные процессы. Если же появляется боль в правом боку – это нарушения в работе желчного пузыря, желчных протоков.

Печень – удивительно трудолюбивый и уникальный орган, который неутомимо работает в течение всей жизни и помогает организму выполнять его основные функции. Конечно, у человека нет лишних или ненужных органов. Но без конечностей или одной почки, без части желудка или кишечника, даже без селезенки — человек может жить. Организм приспосабливается к жизни без какого-либо органа, компенсируя за счет своих резервов его отсутствие. И только без печени, как и без сердца, человеческий организм жить не сможет.

Основное назначение печени – главный фильтр в организме.

Это означает, что основная задача печени – детоксикация, т.е. утилизация и выведение токсинов из организма человека. Но наряду с этой функцией, она выполняет еще и ряд других:

  • выработка и выведение желчи – клетки печени участвуют в процессе образования желчи, которая через желчные протоки попадет непосредственно в желчный пузырь. В желчном пузыре происходит концентрация желчи. Каждый день печень вырабатывает от 800 до 1000 мл желчи, которая участвует в переваривании жиров в тонком кишечнике;
  • метаболическая функция – печень участвует в углеводном, жировом и белковом обмене веществ;
  • детоксикация – в организме человека много токсинов, продуктов распада и других вредных веществ. Печень обезвреживает их, чтобы они не могли нанести вред другим органам;
  • кроветворная функция – печень является одним из главных кроветворных органов;
  • свертываемость крови – все вещества, которые участвуют в процессе свертываемости крови, вырабатываются печенью;
  • иммунная функция – печень неразрывно связана с иммунитетом, поскольку она уничтожает вредные вещества, которые есть в организме;
  • функция регуляции объема крови – печень принимает активное участие в регуляции объема циркулирующей крови;
  • регуляция гидроэлектролитного процесса – здоровая печень помогает организму сохранять электролитный баланс.

Гепатоциты: что это?

Печень, как любая другая органическая ткань, состоит из клеток, которые называются гепатоцитами. Гепатоциты составляют от 60% до 85% всей массы печени. Это около 300 млрд клеток. Клетки в организме человека бывают стабильными, т.е. имеющими ограниченное количество делений, и лабильными, т.е. постоянно делящимися, как, например, клетки эпидермиса. Гепатоциты – это стабильные клетки, которые занимают главное место в промежуточном обмене веществ.

Клетки печени имеют шестигранную форму, содержат ядро и большое количество ферментов. Гепатоциты располагаются попарно и образуют столбики – печеночные балки, которые объединяются в печеночные дольки. Главная функция печеночной дольки – выработка желчи и вывод ее в желчные протоки.

У печеночных клеток есть контактные поверхности, которые обеспечивают плотное соединение и не дают перемешиваться крови и желчи. Клетки печени расположены вокруг центральной вены, образуя щели, которые заполняются кровью. Кровеносная система печени имеет достаточно сложное строение, т.к. через печень за 1 минуту проходит 1,5 литра крови.

Клетки печени бывают нескольких видов:

  • Эндотелиальные клетки – обеспечивают барьер между капиллярами и непосредственно гепатоцитами.
  • Звездчатые клетки – отвечают за отток тканевой жидкости в лимфатические сосуды.
  • Клетки Купфера – защищают печень при попадании в него инфекционных агентов или при травме печени.
  • Ямочные клетки – ликвидируют те гепатоциты, которые поражены вирусом, а также токсичны для онкологических клеток.

У печени есть уникальная способность к самовосстановлению. Только печень может регенерировать свои клетки. Иногда бывает, что для ее восстановления просто нужно убрать травмирующие факторы. Такой способности нет больше ни у одного органа. В мифах Древней Греции есть легенда о Прометее, прикованном к скале. Каждый день прилетал орел, который клевал печень Прометея. Но за ночь печень восстанавливалась, а днем вновь прилетал орел, чтобы клевать печень. Таким образом, мучения Прометея не прекращались. В этой сказке есть доля правды – клетки печени на самом деле могут восстанавливаться.

Самовосстановление печени еще не изучено до конца. Однако, новейшие исследования ученых помогли выяснить, что гепатоциты просто делятся обычным путем. Когда орган полностью восстанавливаются, процесс деления заканчивается, и клетки печени вновь становятся стабильными. Процесс восстановления печени – это длительный процесс. Конечно, у молодых он происходит быстрее, а с возрастом – замедляется. Но для того, чтобы начался процесс регенерации клеток необходимо одно условие – отсутствие травмирующих факторов. Часто этого бывает достаточно, чтобы начавшаяся болезнь отступила. Но это возможно в начальных стадиях заболеваний. Чем запущеннее состояние печени, тем медленнее идет процесс восстановления клеток, а при необратимых изменениях он уже невозможен.

Причины поражения гепатоцитов

Печень ежедневно подвергается негативным воздействиям. Как бы мы не пытались ее уберечь, плохая экологическая обстановка, нездоровое питание, многочисленные стрессы, малоподвижный образ жизни, недосыпание и другие факторы систематически нарушают работу этого уникального органа, а значит, и функции клеток печени.

Помимо выше перечисленных факторов, на нарушение функций гепатоцитов влияют следующие причины:

  • различные болезни печени воспалительного или инфекционного характера;
  • вредные привычки, особенно употребление алкоголя, никотина, наркотических веществ;
  • избыточный вес;
  • злоупотребление жирной, острой, жареной пищей;
  • прием медикаментов при лечении других заболеваний – антибиотики, НПВС, противоопухолевые препараты и многие другие;
  • самолечение;
  • поздний прием пищи;
  • физиологическое старение организма;
  • генетическая предрасположенность.

Когда гепатоциты подвергаются негативным воздействиям, то в них происходят патологические изменения, такие как дистрофия или некроз клеток. Некроз может вызвать гибель гепатоцитов. Патологические процессы в жизнедеятельности клеток приводят к нарушению функций печени и развитию ее заболеваний, например, воспалительные процессы, фиброз, жировая дистрофия и другим. Если поражено порядка 80% клеток печени, то развивается печеночная недостаточность, которая может привести к гибели человека.

Как помочь гепатоцитам

Несмотря на то, что печень никогда и ни у кого не болит, все-таки есть некоторые признаки, по которым можно понять, что с печенью не все в порядке. Это могут быть ощущение тяжести или дискомфорт в правом подреберье, различные высыпания на коже типа крапивницы, зуд, частые боли в спине, быстрое разрушение зубов, плохой сон, повышенная раздражительность, стенокардия, гипертоническая болезнь, боль или ограничение подвижности в, аллергические реакции и др. Общая слабость, повышенная утомляемость, плохой сон, частая раздражительность, плохой аппетит, снижение веса, периодические повышения температуры тела без видимых причин, незначительные изменения цвета кожи на сгибательных поверхностях – это тоже симптомы, на которые обязательно надо обращать внимание и обращаться к врачу, чтобы пройти обследование.

При первых проявлениях признаков нарушения работы печени, необходимо предпринять меры по ее восстановлению. Пока процесс не зашел сильно далеко, вполне может помочь правильное питание. В рационе должны присутствовать продукты, которые влияют на восстановление гепатоцитов.

Это рыба, морепродукты, цельнозерновой хлеб, кисломолочные продукты, куриные яйца, растительное масло, отварные овощи, свежие ягоды и фрукты, в которых нет мелких косточек и др. Питание должно быть дробным, т.е. 5-6 раз в день небольшими порциями.

Восстановить работу печени помогут и лекарственные средства, которые должен назначать только врач. Препараты должны способствовать защите и восстановлению гепатоцитов, стимулировать образование новых клеток печени, активизировать образование желчи и ее отток, а также очищать печень от токсинов и оказывать противовоспалительное действие.

Чаще всего, эти препараты изготавливаются из растительного сырья, но могут иметь и комбинированный состав. Когда разрушаются клетки печени, происходит замещение их ткани на фиброзную ткань. Задача гепатопротекторов – остановить процесс образования фиброзной ткани и ускорить ее разрушение. Большинство препаратов выполняет эту функцию косвенно, а тех, которые действуют на это процесс напрямую немного. Поэтому специалисты стараются выбрать именно те гепатопротекторы, у которых есть прямой противофибротический эффект.

Печень – уникальный орган, здоровье которого во многом зависит от нас. Наша задача – бережно относится к нему, вовремя обращая внимание на возможные неполадки, и помогая клеткам печени функционировать в полную силу, не допуская их разрушения.

Функции печени:

    депонирование, в печени депонируется гликоген, жирорастворимые витамины (А, D, Е, К). Сосудистая система печени способна в довольно больших количествах депонировать кровь;

    участие во всех видах обмена веществ: белковом, липидном (в том числе в обмене холестерина), углеводном, пигментном, минеральном и др.

    дезинтоксикационная функция;

    барьерно-защитная функция;

    синтез белков крови: фибриногена, протромбина, альбуминов;

    участие в регуляции свертывания крови путем образования белков — фибриногена и протромбина;

    секреторная функция — образование желчи;

    гомеостатическая функция, печень участвует в регуляции метаболического, антигенного и температурного гомеостаза организма;

    кроветворная функция;

    эндокринная функция.

Строение печени

Печень — паренхиматозный дольчатый орган. Ее строма представлена:

    капсулой из плотной волокнистой соединительной ткани (капсула Глиссона), которая срастается с висцеральным листком брюшины;

    прослойками рыхлой волокнистой соединительной ткани, которые делят орган на дольки.

Внутри дольки строма представлена ретикулярными волокнами, лежащими между гемокапиллярами и печеночными балками. В норме у человека междольковая рыхлая волокнистая неоформленная соединительная ткань выражена слабо, в результате чего дольки определяются неотчетливо. При циррозе происходит утолщение соединительнотканных трабекул.

Непосредственно под капсулой лежит один ряд гепатоцитов, образующий так называемую наружную терминальную пластинку. Этот ряд гепатоцитов в области ворот печени внедряется внутрь органа и сопровождает ветвления сосудов (воротной вены и печеночной артерии).

Внутри органа эти гепатоциты лежат на периферии дольки, непосредственно контактируя с рыхлой волокнистой соединительной тканью в области триад и отделяя гепатоциты, расположенные внутри, от окружающей междольковой соединительной ткани. Эта состоящая из одного ряда гепатоцитов зона называется внутренней терминальной пластинкой. Через эту пластинку, перфорируя ее, проходят кровеносные сосуды. Гепатоциты внутренней терминальной пластинки отличаются от остальных гепатоцитов дольки более выраженной базофилией цитоплазмы и меньшими размерами. Считается, что терминальная пластинка содержит камбиальные клетки для гепатоцитов и эпителиоцитов внутрипеченочных желчных протоков. При хроническом гепатите и циррозе терминальная пластинка может разрушаться, что свидетельствует об активности этих процессов.

Паренхима печени представлена совокупностью гепатоцитов, формирующих классическую дольку. Классическая долька — структурно-функциональная единица печени. Она имеет форму шестигранной призмы. Ширина печеночной дольки равна 1-1,5 мм, высота — 3-4 мм. По периферии дольки находятся триады или портальные тракты, в состав которых входят междольковые артерия, вена и желчный проток, а также лимфососуды и нервные стволы (в силу этого некоторые исследователи предлагают называть эти структуры не триадами, а пентодами). В центре дольки лежит центральная вена безмышечного типа. Основу дольки составляют печеночные балки или трабекулы. Они образованы двумя рядами гепатоцитов, соединенных десмосомами. Между гепатоцитами трабекулы проходит внутридольковый желчный капилляр, который не имеет собственной стенки. Его стенку образуют цитолеммы двух гепатоцитов, которые в этом месте инвагинируют. Печеночные балки радиально сходятся к центру дольки. Между соседними балками находятся синусоидные капилляры. Подобное представление об организации печеночной дольки является несколько упрощенным, поскольку печеночные балки далеко не всегда имеют радиальное направление: их ход может существенно изменяться, балки часто анастомозируют друг с другом. Поэтому на срезах не всегда удается проследить их ход с периферии до центральной вены.

Строение гепатоцита

Гепатоциты — основной вид клеток печени, выполняющий ее основные функции. Это крупные клетки полигональной или шестиугольной формы. Имеют одно или несколько ядер, при этом ядра могут быть полиплоидными. Многоядерные и полиплоидные гепатоциты отражают приспособительные изменения печени, поскольку эти клетки способны выполнять гораздо более интенсивно свои функции, чем обычные гепатоциты.

Каждый гепатоцит имеет две стороны:

    васкулярную;

    билиарную.

Васкулярная сторона обращена в сторону синусоидного капилляра. Она покрыта микроворсинками, которые проникают через поры в эндотелиоците в просвет капилляра и прямо контактируют с кровью. От стенки синусоидного капилляра васкулярная сторона гепатоцита отделяется перисинусоидальным пространством Диссе. В этом щелевидном пространстве находятся микроворсинки гепатоцитов, отростки печеночных макрофагов (клеток Купфера), клетки Ито и иногда — Pit-клетки. В пространстве встречаются также единичные аргирофильные волокна, количество которых увеличивается на периферии дольки. Таким образом, в печени отсутствует типичный паренхиматозный барьер (имеется так называемый «прозрачный» барьер), что позволяет веществам, синтезируемым в печени, попадать прямо в кровь. С другой стороны, из крови в печень легко поступают питательные вещества и подлежащие обезвреживанию яды. Васкулярной стороной гепатоцит захватывает также из крови секреторные антитела, которые затем поступают в желчь и оказывают свой защитный эффект.

Билиарная сторона гепатоцита обращена в сторону желчного капилляра. Цитолемма контактирующих гепатоцитов здесь образует инвагинации и микроворсинки. Вблизи образовавшегося таким образом желчного капилляра цитолеммы контактирующих гепатоцитов соединяются при помощи опоясывающих десмосом, плотных и щелевидных контактов. Билиарной стороной гепатоцитов вырабатывается желчь, которая поступает в желчный капилляр и далеев отводящие протоки. Васкулярная сторона выделяет в кровь белки, глюкозу, витамины, липидные комплексы. В норме желчь никогда не поступает в кровь, потому что желчный капилляр отделен от синусоидного капилляра телом гепатоцита.

Содержание статьи

ПЕЧЕНЬ, самая большая железа в теле позвоночных. У человека она составляет около 2,5% от массы тела, в среднем 1,5 кг у взрослых мужчин и 1,2 кг у женщин. Печень расположена в правой верхней части брюшной полости; она прикрепляется связками к диафрагме, брюшной стенке, желудку и кишечнику и покрыта тонкой фиброзной оболочкой – глиссоновой капсулой. Печень – мягкий, но плотный орган красно-коричневого цвета и состоит обычно из четырех долей: большой правой доли, меньшей левой и гораздо меньших хвостатой и квадратной долей, образующих заднюю нижнюю поверхность печени.

Функции.

Печень – необходимый для жизни орган со множеством различных функций. Одна из главных – образование и выделение желчи, прозрачной жидкости оранжевого или желтого цвета. Желчь содержит кислоты, соли, фосфолипиды (жиры, содержащие фосфатную группу), холестерин и пигменты. Соли желчных кислот и свободные желчные кислоты эмульгируют жиры (т.е. разбивают на мелкие капельки), чем облегчают их переваривание; превращают жирные кислоты в водорастворимые формы (что необходимо для всасывания как самих жирных кислот, так и жирорастворимых витаминов A, D, E и K); обладают антибактериальным действием.

Все питательные вещества, всасываемые в кровь из пищеварительного тракта, – продукты переваривания углеводов, белков и жиров, минералы и витамины – проходят через печень и в ней перерабатываются. При этом часть аминокислот (фрагментов белков) и часть жиров превращаются в углеводы, поэтому печень – крупнейшее «депо» гликогена в организме. В ней синтезируются белки плазмы крови – глобулины и альбумин, а также протекают реакции превращения аминокислот (дезаминирование и переаминирование). Дезаминирование – удаление азотсодержащих аминогрупп из аминокислот – позволяет использовать последние, например, для синтеза углеводов и жиров. Переаминирование – это перенос аминогруппы от аминокислоты на кетокислоту с образованием другой аминокислоты (см. МЕТАБОЛИЗМ) . В печени синтезируются также кетоновые тела (продукты метаболизма жирных кислот) и холестерин.

Печень участвует в регуляции уровня глюкозы (сахара) в крови. Если этот уровень возрастает, клетки печени превращают глюкозу в гликоген (вещество, сходное с крахмалом) и депонируют его. Если же содержание глюкозы в крови падает ниже нормы, гликоген расщепляется и глюкоза поступает в кровоток. Кроме того, печень способна синтезировать глюкозу из других веществ, например аминокислот; этот процесс называется глюконеогенезом.

Еще одна функция печени – детоксикация. Лекарства и другие потенциально токсичные соединения могут превращаться в клетках печени в водорастворимую форму, что позволяет их выводить в составе желчи; они могут также подвергаться разрушению либо конъюгировать (соединяться) с другими веществами с образованием безвредных, легко выводящихся из организма продуктов. Некоторые вещества временно откладываются в клетках Купфера (специальных клетках, поглощающих чужеродные частицы) или в иных клетках печени. Клетки Купфера особенно эффективно удаляют и разрушают бактерии и другие инородные частицы. Благодаря им печень играет важную роль в иммунной защите организма. Обладая густой сетью кровеносных сосудов, печень служит также резервуаром крови (в ней постоянно находится около 0,5 л крови) и участвует в регуляции объема крови и кровотока в организме.

В целом печень выполняет более 500 различных функций, и ее деятельность пока не удается воспроизвести искусственным путем. Удаление этого органа неизбежно приводит к смерти в течение 1–5 дней. Однако у печени есть громадный внутренний резерв, она обладает удивительной способностью восстанавливаться после повреждений, поэтому человек и другие млекопитающие могут выжить даже после удаления 70% ткани печени.

Строение.

Сложная структура печени прекрасно приспособлена для выполнения ее уникальных функций. Доли состоят из мелких структурных единиц – долек. В печени человека их насчитывается около ста тысяч, каждая 1,5–2 мм длиной и 1–1,2 мм шириной. Долька состоит из печеночных клеток – гепатоцитов, расположенных вокруг центральной вены. Гепатоциты объединяются в слои толщиной в одну клетку – т.н. печеночные пластинки. Они радиально расходятся от центральной вены, ветвятся и соединяются друг с другом, формируя сложную систему стенок; узкие щели межу ними, наполненные кровью, известны под названием синусоидов. Синусоиды эквивалентны капиллярам; переходя один в другой, они образуют непрерывный лабиринт. Печеночные дольки снабжаются кровью от ветвей воротной вены и печеночной артерии, а образующаяся в дольках желчь поступает в систему канальцев, из них – в желчные протоки и выводится из печени.

Воротная вена печени и печеночная артерия обеспечивают печень необычным, двойным кровоснабжением. Обогащенная питательными веществами кровь из капилляров желудка, кишечника и нескольких других органов собирается в воротную вену, которая вместо того, чтобы нести кровь к сердцу, как большинство других вен, несет ее в печень. В дольках печени воротная вена распадается на сеть капилляров (синусоидов). Термин «воротная вена» указывает на необычное направление транспорта крови из капилляров одного органа в капилляры другого (сходную систему кровообращения имеют почки и гипофиз).

Второй источник кровоснабжения печени, печеночная артерия, несет обогащенную кислородом кровь от сердца к наружным поверхностям долек. Воротная вена обеспечивает 75–80%, а печеночная артерия 20–25% общего кровоснабжения печени. В целом за минуту через печень проходит около 1500 мл крови, т.е. четверть сердечного выброса. Кровь из обоих источников попадает в конечном итоге в синусоиды, где смешивается и идет к центральной вене. От центральной вены начинается отток крови к сердцу через долевые вены в печеночную (не путать с воротной веной печени).

Желчь секретируется клетками печени в мельчайшие канальцы между клетками – желчные капилляры. По внутренней системе канальцев и протоков она собирается в желчный проток. Часть желчи направляется прямо в общий желчный проток и изливается в тонкий кишечник, но бóльшая часть по пузырному протоку возвращается на хранение в желчный пузырь – небольшой мешочек с мышечными стенками, прикрепленный к печени. Когда пища поступает в кишечник, желчный пузырь сокращается и выбрасывает содержимое в общий желчный проток, открывающийся в двенадцатиперстную кишку. Печень человека производит около 600 мл желчи в сутки.

Портальная триада и ацинус.

Ветви воротной вены, печеночной артерии и желчного протока расположены рядом, у наружной границы дольки и составляют портальную триаду. На периферии каждой дольки находится несколько таких портальных триад.

Функциональной единицей печени считается ацинус. Это – часть ткани, которая окружает портальную триаду и включает лимфатические сосуды, нервные волокна и прилегающие секторы двух или более долек. Один ацинус содержит около 20 печеночных клеток, расположенных между портальной триадой и центральной веной каждой дольки. В двумерном изображении простой ацинус выглядит как группа сосудов, окруженная прилегающими участками долек, а в трехмерном – похож на ягоду (acinus – лат. ягода), висящую на стебельке из кровеносных и желчных сосудов. Ацинус, микрососудистый каркас которого состоит из перечисленных выше кровеносных и лимфатических сосудов, синусоидов и нервов, является микроциркуляторной единицей печени.

Клетки печени

(гепатоциты) имеют форму многогранников, но основных функциональных поверхностей у них три: синусоидальная, обращенная в синусоидальный канал; канальцевая – участвующая в образовании стенки желчного капилляра (собственной стенки он не имеет); и межклеточная – непосредственно граничащая с соседними печеночными клетками.

Нарушения функции печени.

Поскольку печень обладает множеством функций, ее функциональные расстройства крайне разнообразны. При болезнях печени повышается нагрузка на орган и может повреждаться его структура. Процесс восстановления печеночной ткани, включающий регенерацию печеночных клеток (образование узлов регенерации), хорошо изучен. Обнаружено, в частности, что при циррозе печени происходит извращенная регенерация печеночной ткани с неправильным расположением сосудов, образующихся вокруг узлов клеток; в результате в органе нарушается кровоток, что приводит к прогрессированию заболевания.

Желтуха, проявляющаяся желтизной кожи, склер (белка глаз; здесь изменение цвета обычно наиболее заметно) и других тканей, – частый симптом при болезнях печени, отражающий накопление билирубина (красновато-желтого пигмента желчи) в тканях тела.

Печень животных.

Если у человека печень имеет 2 главные доли, то у других млекопитающих эти доли могут подразделяться на более мелкие, и есть виды, у которых печень состоит из 6 и даже 7 долей. У змей печень представлена одной удлиненной долей. Печень рыб относительно велика; у тех рыб, которые используют печеночный жир для увеличения плавучести, она представляет большую экономическую ценность вследствие значительного содержания жиров и витаминов.

Многие млекопитающие, например киты и лошади, и многие птицы, например голуби, лишены желчного пузыря; однако он имеется у всех пресмыкающихся, земноводных и большинства рыб, за исключением нескольких видов акул.

Благодаря плотной сосудистой сетке гепатоциты обогащают кровоток требуемым количеством гемосидерина и глюкозы. Структуру гепатоцитарных клеток составляют митохондрии, ретикулум, эндоплазмы, гликоген, комплексы Гольджи. При повреждении с сокращением численности создаются опасные для жизни условия. Цитолиз требует активизации процессов регенерации гепатоцитов.

Функции

Синдром цитолиза

  • отрыжкой;
  • изжогой;
  • боли справа в подреберье;

Причины

Лечение и профилактика

  • вести активный образ жизни;
  1. рыбу, морепродукты;
  2. каши из круп;
  3. цельнозерновой хлеб;
  4. кисломолочку;
  5. отвары на костях;
  6. вареные яйца;
  7. растительные масла;
  8. сухофрукты, орехи;
  9. куркуму, чеснок;
  1. сок из майского лопуха.

Строение гепатоцитов, основные органеллы, функции и возможности регенерации

Клетки печени составляют 85% ее общей массы и насчитывают до 300 миллиардов. Их функции направлены на обеспечение жизнедеятельности всего организма, они участвуют в большинстве обменных процессов. Их роль настолько велика, что природой заложена высокая способность к регенерации печеночной ткани, которая может восстановиться до исходной массы при утрате 75% от нее.

Строение гепатоцита

Клетка печени имеет неправильную полигональную форму и два вида поверхностей, которые отличаются по выполняемой функции. Синусоидальная сторона обращена в сторону капилляров и покрыта большим количеством микроворсинок. Желчная поверхность почти гладкая, она образует стенку желчного канала.

Гепатоциты имеют относительно крупный размер, количество ядер в них различное. Клетки с одним ядром составляют 70% от общего числа, двуядерные – 25%, с 4 и 8 ядрами – всего 2%. В каждом ядре находится одно или более ядрышек.

В цитоплазме содержится большое количество митохондрий. Возле ядра располагается комплекс Гольджи. Гранулярная эндоплазматическая сеть продолжается в агранулярную. По цитоплазме распределены лизосомы, пероксисомы, частицы гликогена, капельки жиров.

Электронная микроскопия позволяет подробно рассмотреть ультраструктуру печеночной клетки. Большое количество различных образований обеспечивает выполнение печеночных функций.

Связь работы печени и органелл

Печень выполняет экзокринные и эндокринные функции. Она участвует в выработке желчи и выделении ее в кишечник. Эндокринная функция реализуется путем экскреции с кровью глюкозы, ферментов и некоторых гормонов.

Синтез гликогена

Гепатоциты под действием инсулина удаляют из крови излишки глюкозы, поддерживая ее постоянную концентрацию на уровне 3,5-5,5 ммоль/л. Они запасают ее, придав форму зерен гликогена, диффузно расположенных в цитоплазме. Если отключить эту функцию, после поедания углеводистой пищи сахар крови будет расти бесконтрольно (как у диабетиков).

Гепатоциты работают и в обратном порядке – при падении концентрации глюкозы, они добывают ее из запасов гликогена. Он собран в специальные розетки, тесно соединенные с трубчатой системой эндоплазматического ретикулума. Такое расположение объясняется содержанием в ЭПР фермента глюкозо-6-фосфотазы, который участвует в метаболизме гликогена.

Гормон надпочечника гидрокортизон стимулирует синтез гликогена, но это происходит не из глюкозы, а из белков и аминокислот. Эти реакции вызывают повышение уровня глюкозы крови.

Секреция липопротеидов

Гепатоциты регулируют уровень жиров крови. Часть из них в виде жирных кислот связана с альбумином, а другая образует мелкие липидные капли, связанные с протеинами. Соединение носит название липопротеида. Такие частицы приобретают свойства, позволяющие им быть в растворенном состоянии.

Секреция белков

Клетки печени синтезируют альбумины, фибриноген, глобулины и белки свертывающей системы крови. Они выделяются в синусоиды. Синтез иммуноглобулинов гепатоцитам не принадлежит. Эти белки производятся плазматическими клетками.

Цистернами гранулярного эндоплазматического ретикулума синтезируются протеины крови. Посредством аппарата Гольджи они поступают в ту часть клетки, которая контактирует с кровью и выделяются с помощью экзоцитоза.

Микросомальное окисление

Детоксикационная функция печени обеспечивается ферментами микросомального окисления. На эндоплазматическом ретикулуме образуются пузырьки – микросомы. Их роль заключается в придании гидрофобным веществам гидрофильности путем окисления. Для реализации этого используется цитохром Р450. Он участвует в трансформации чужеродных веществ и эндогенных (гормоны, жирные кислоты).

Некоторые вещества способны ускорить протекание реакций окисления. Они называются индукторами. В таком случае лекарственные препараты метаболизируются быстрее и не окажут нужного эффекта.

Повреждение клеток печени

Обмен некоторых веществ приводит к образованию еще более токсичных соединений, которые способны повредить клетки. Размножение вирусов и выход их наружу также сопровождается клеточными поломками, или цитолизом. Он сопровождается разрушением или повреждением клеточной стенки, внутриклеточных органелл. Причиной распада может стать неалкогольный жировой гепатоз, аутоиммунные болезни.

Отражение синдрома цитолиза можно найти при изучении биохимического анализа крови. Повышаются специфические внутриклеточные ферменты: АЛТ, АСТ, ЛДГ (особенно изоферменты ЛДГ4 и ЛДГ5), сорбитдегидрогеназы, ферритина, прямого билирубина.

Клинически это будет выражаться появлением желтухи и кожного зуда, потемнении мочи, обесцвечивании кала. Таких больных беспокоит:

  • плохое самочувствие;
  • быстрая утомляемость;
  • горечь вы рту;
  • отрыжка;
  • боль в области печени.

Особенности гепатоцитов

Генетическая информация в виде цепочек ДНК, организованных в форме хромосом, хранится в ядре клетки. Для каждого биологического вида характерно свое количество хромосом. У человека в соматической клетке их 46, а в половых по 23. Поэтому обозначается кариотип 23n, где буква – это количество повторов. Клетки печени имеют различное количество ядер. Поэтому количество хромосом изменяется пропорционально и может быть 23n*2, 23n*4, но при этом кариотип считается нормальный 23n.

Клетки Ито

В печеночных дольках содержится особый тип звездчатых клеток, которые могут находиться в двух состояниях. Если повреждений органа нет, они находятся в спокойном состоянии. Их функция состоит в запасании витамина А в виде жировых капель.

После повреждения печени клетки Ито активируются – теряют запасы ретиноида, сжимаются, пролиферируют и образуют клетки, похожие на миофибробласты. Активация говорит о начале фиброгенеза, - формировании рубцовой ткани. После этого этапа происходит апоптоз клеток, вследствие чего их количество сокращается.

Регенерация печени

Этот орган обладает высокой способностью к восстановлению. При утрате 75% тканей, она способна восстановиться полностью за несколько дней. Но за счет чего происходит восполнение недостающей части, до конца не исследовано.

Долгое время считалось, что в печени отсутствуют стволовые клетки, и регенерация происходит на внутриклеточном уровне. Полиплоидные клетки делятся и становятся диплоидными. Также в деление вступают гепатоциты, находящиеся в фазе G0 митоза. Большей частью в восстановлении органа участвуют перипортальные гепатоциты.

Последние исследования показали, что в зоне вокруг центральной вены имеются стволовые клетки с диплоидным набором хромосом, активно делящиеся. Часть из них остается на своих местах, а другие перемещаются к местам повреждения. Под действием специальных факторов, клетка приобретают свойства гепатоцитов. Предположительно, что эти клетки становятся причиной карциномы печени, когда утрачивают контроль над делением.

Регенерация протекает за счет фетальных гепатобластов, овальных клеток, поджелудочной железы, стволовых.

Не полностью понятен механизм прекращения деления клеток – почему на определенном этапе, когда достигнута первоначальная масса органа, оно прекращается. Некоторая роль принадлежит белковым соединениям – трансфотмирующему фактору роста.

Регенерация происходит постоянно, при незначительных кратковременных воздействиях повреждающих факторов на месте погибших клеток обнаруживается печеночная ткань с правильно организованной структурой. Но при длительном и регулярном воздействии патогенного фактора, клетки размножаются со значительным образованием соединительной ткани. Расположение клеток нарушается, ткань теряет правильную архитектонику. Это проявляется в виде узлов регенерации, которые являются признаком цирроза печени.

Возрастные изменения

Структура печеночных долек окончательно формируется только к 8-10 годам. На протяжении жизни происходит постоянное обновление клеток печени. Но активность митоза резко снижается в старческом возрасте. Клетки компенсаторно гипертрофируются, увеличивается число с несколькими ядрами. Цитоплазма накапливает пигмент липофусцин, жировые капли. Количество гликогена постоянно снижается. Окислительно-восстановительные ферменты уменьшают свою активность.

В печеночных дольках уменьшается количество гемокапилляров. Ткань страдает от гипоксии, клетки гибнут и замещаются соединительной тканью. Наиболее активно процесс протекает в центральной части долек.

ГЕПАТОЦИТЫ

Строение и функции гепатоцитов - Системы организма (гистология)

МИКРОСКОПИЧЕСКОЕ СТРОЕНИЕ ГЕПАТОЦИТОВ

В гепатоцитах выявляются многие общие закономерности, представляющие интерес для тех, кто изучает биологию клетки, и в качестве таких иллюстративных примеров гепатоциты рассматривались в предыдущих главах этого руководства, поэтому нет необходимости повторять все то, о чем уже говорилось. Однако для удобства мы все же приведем здесь основные, наиболее интересные данные.

Гепатоциты, накапливающие гликоген (окрашенные на гликоген и другими методами), были показаны на рис., а гепатоциты, содержащие избыточное количество жира, на рис.. На рис.ипредставлены полиплоидные гепатоциты.

Ультраструктура. Ядро гепатоцита показано на рис. 4 - 3; ядерную оболочку и поры в ней можно более детально рассмотреть на рис. 4 - 4.

Цитоплазма гепатоцитов в буквальном смысле слова изобилует различными видами органелл и включений. Особенно многочисленны митохондрии (рис.и); по подсчетам, каждый гепатоцит содержит 1000 или больше митохондрий. Митохондрии имеют особо важное значение для гепатоцитов, поскольку эти клетки выполняют столь многочисленные и разнообразные по характеру метаболические функции. В гепатоцитах встречается множество свободных и связанных с мембранами полирибосом. Хорошо развит как гранулярный, так и гладкий эндоплазматический ретикулум; значение этого факта станет очевидным, когда мы опишем эндокринные функции гепатоцита. По цитоплазме рассеяны многочисленные стопки аппарата Гольджи, вероятно связанные канальцами (как объяснялось в гл. 5). Как видно на рис., некоторые стопки лежат близко к ядру, другие вблизи желчных капилляров. Мешочки аппарата Гольджи также связаны с эндокринной функцией гепатоцитов (см. ниже). Имеются лизосомы всех видов, особенно около желчных капилляров (рис.). Некоторые лизосомы содержат липофусцин пигмент изнашивания, так как липофусцин в гепатоцитах захватывают именно лизосомы (такие лизосомы называют липофусциновыми тельцами). Гепатоциты содержат также значительное число везикулярных органелл, называемых микротельцами (отмечены на рис.). У большинства видов (но не у человека) в их центре находится плотное образование, очевидно, кристаллической природы. Микротельца окружены мембраной и содержат несколько ферментов.

Клетки в этой области связаны контактами. Ближе всего к просвету - плотный контакт-zonula occludens (1). На некотором расстоянии располагаются десмосомы (2). В гепатоците, лежащем вверху справа, можно видеть отдельные цистерны гранулярного эндоплазматического ретикулума (3). Отметьте также лизосому (4), два микротельца (5) с характерной кристаллической внутренней структурой и митохондрии (б). Имеются и отдельные цистерны гладкого эндоплазматического ретикулума (7).

Вверху слева виден желчный капилляр (1), в просвет которого выступают микроворсинки (2). Многочисленные крупные митохондрии (3) характеризуются большим числом крист. В мешочках аппарата Гольджи (4), которые видны ниже центра, отметьте электроноплотные частицы липопротеида, которые являются предшественниками липопротеидов, выделяемых в плазму. Транулы гликогена (5), располагающиеся розетками (а-частицы), видны внизу слева, а между ними - трубочки гладкого эндоплазматического ретикулума.

Кристаллическая структура, которая находится в центре микротелец у многих видов, это уриказа. Этот фермент участвует в превращении мочевой кислоты в ее производные с целью выведения этого вещества из организма. У человека, однако, этот фермент отсутствует, и мочевая кислота выводится с мочой как таковая. При нарушении выведения всей образующейся в организме мочевой кислоты, а также мочевой кислоты, потребляемой с пищей, возникает заболевание называемое подагрой. Недавно было показано, что микротельца содержат ферменты, которые играют важную роль в метаболизме жирных кислот путем (3 - окисления, причем установлено, что под влиянием лекарственных препаратов, применяемых для снижения уровня липидов в сыворотке, число таких микротелец в гепатоцитах увеличивается.

После этого общего обзора органелл гепатоцитов мы далее попытаемся более конкретно связать наличие некоторых из них с функцией гепатоцитов. Но сначала мы должны упомянуть о различных видах поверхностей гепатоцитов.

Три вида поверхностей гепатоцитов

  1. Поверхность, граничащая с пространством Диссе, характеризуется многочисленными микроворсинками, выступающими в это пространство (рис.), что, естественно, обеспечивает для каждого гепатоцита огромную площадь поверхности для всасывания веществ из кровотока. Между микроворсинками имеется пространство, через которое гепатоциты секретируют вещества в плазму крови.
  2. На боковых поверхностях гепатоцитов у большинства видов находятся латеральные выросты и вдавления, соответствующие вдавлениям и выростам соседних гепатоцитов; у человека они развиты незначительно. Благодаря этим образованиям гепатоциты прикрепляются друг к другу.
  3. В каком-то участке поверхности гепатоцита располагается желчный капилляр, лежащий между данным гепатоцитом и одним или двумя другими (рис.и). Поверхность, ограничивающая желчный капилляр, является секреторной. Желчные капилляры будут описаны позднее в связи с экзокринной функцией печени.

Не вдаваясь подробно в функции печени, мы кратко остановимся на некоторых из них и свяжем их с теми органеллами, которыми они обеспечиваются. Мы начнем с эндокринных функций печени.

НЕКОТОРЫЕ ЭНДОКРИННЫЕ ФУНКЦИИ ГЕПАТОЦИТОВ И СВЯЗАННЫЕ С НИМИ ОРГАНЕЛЛЫ

Как уже отмечалось ранее, печень представляет собой экзокринную железу, так как гепатоциты секретируют желчь в желчные капилляры, откуда она отводится по системе протоков в кишку. Но уже несколько десятилетий назад пришли к выводу о том, что она является эндокринной железой. В те времена железу считали эндокринной, если она выделяла в кровоток какое-то необходимое организму вещество. Поэтому, когда было установлено, что печень выделяет сахар в кровоток, было решено, что она является не только экзокринной, но и эндокринной железой. В настоящее время известно, что печень выделяет в кровоток несколько необходимых организму веществ. Следует отметить, что как экзокринная, так и эндокринная функции обеспечиваются одними и теми же специализированными секреторными клетками - гепатоцитами. Необходимо также упомянуть, что, хотя в данной главе удобно рассматривать печень в качестве эндокринной железы, этот термин в настоящее время обычно используется в более узком смысле применительно к тем железам, которые вырабатывают гормоны.

Синтез гликогена и секреция глюкозы

После приема пищи, содержащей значительное количество углеводов, уровень глюкозы в крови повышался бы бесконтрольно, если бы не деятельность гепатоцитов, которые в присутствии инсулина удаляют избыток глюкозы из крови, запасая его в качестве гликогена. И наоборот, когда уровень сахара в крови начинает снижаться, гепатоциты превращают гликоген вновь в глюкозу, выделяя ее в кровь. На электронных микрофотографиях отложения гликогена, образующиеся из глюкозы, имеют вид частиц высокой электронной плотности, которые несколько плотнее рибосом; частицы эти располагаются в виде розеток (см. рис.). Они тесно связаны с трубочками гладкого эндоплазматического ретикулума (см. рис.и). Эта характерная связь между отложениями гликогена и трубочками гладкого эндоплазматического ретикулума, вероятно, обусловлена ферментом глюкозо-6 - фосфатазой, который играет важную роль в обмене гликогена и локализуется в гладком эндоплазматическом ретикулуме.

Образование гликогена в гепатоцитах стимулируется также гормоном гидрокортизоном, который вырабатывает кора надпочечника; однако в этом случае гликоген образуется из белков или их предшественников, причем такое образование гликогена приводит к выделению глюкозы в кровь, а не к поглощению ее из крови.

Гепатоциты синтезируют альбумины, фибриноген и большую часть глобулинов плазмы крови, а также другие белки, участвующие в свертывании крови, и секретируют эти вещества в синусоиды. Иммуноглобулинов гепатоциты не продуцируют; эти белки вырабатываются плазматическими клетками.

Белки, секретируемые гепатоцитами в кровь, синтезируются в цистернах гранулярного эндоплазматического ретикулума, которые видны в различных участках цитоплазмы (как показано справа от центра на рис.). После завершения синтеза белки крови через аппарат Гольджи поступают к свободной поверхности клетки, омываемой плазмой, и выделяются механизмом экзоцитоза.

Секреция липопротеидов

Гепатоциты участвуют также и в регуляции уровня липидов в крови. Хотя некоторые липиды находятся в крови в форме непрочного комплекса жирных кислот с альбумином, большая часть их имеет вид мелких частиц, в которых липиды каким-то образом связаны с белками. Эти частицы называют липопротеидами крови. Частицы липидов сами по себе были бы гидрофобными и поэтому не могли бы оставаться в плазме в виде суспензии. Но белок, с которым они связаны, обладает таким действием, что частицы становятся достаточно гидрофильными для того, чтобы сохраняться в плазме в виде суспензии.

Секреция белков крови

В крови имеются 4 вида липопротеидных частиц. 1) Хиломикроны, которые были описаны самые крупные из таких частиц; они, как уже отмечалось, образуются во всасывающих клетках кишечника. Гепатоциты вместе с другими клетками организма участвуют в удалении этих частиц из крови после приема жирной пищи. Так как хиломикроны взвешены в плазме крови, они легко попадают в пространство Диссе и, вероятно, частицы пре-Р-липопротеидов несколько меньше по размерам, чем хиломикроны, и сравнительно богаче белком. Предполагается, что их образуют гепатоциты. Частицы Р-липопротеидов еще меньше и плотнее и содержат еще меньше липидов. Они тоже синтезируются гепатоцитами и являются основным посредником в процессе транспорта холестерина в организме. Они, вероятно, секретируются наряду с пре- Р-липопротеидами или как их часть. Самые мелкие из всех липопротеидных частиц, это а-липопротеиды с липидами в основном в форме фосфолипидов, главного компонента клеточных мембран.

Липопротеиды, вырабатываемые гепатоцитами, очевидно, синтезируются последовательно, шаг за шагом. Их белковая часть синтезируется в гранулярном эндоплазматическом ретикулуме, который постепенно переходит в гладкий эндоплазматический ретикулум. Последний участвует в синтезе липидов. Поэтому белки и липиды липопротеидных частиц образуются как бы в одной трубочке, белки в том участке, где она имеет гранулярное строение, а липиды там, где она гладкая. Комплекс Гольджи, конечно же, также участвует в этом процессе, причем пузырьки, содержащие липопротеиды, отшнуровываются от его мешочков (рис.), двигаясь к поверхности синусоидов, где содержащиеся в пузырьках липопротеидные частицы выделяются в кровь. Внутри цитоплазмы частицы, окруженные мембраной, имеют вид темных гранул.

РОЛЬ ГЕПАТОЦИТОВ В МЕТАБОЛИЗМЕ И ДЕТОКСИКАЦИИ В СВЯЗИ С УЧАСТИЕМ В ЭТИХ ПРОЦЕССАХ ОРГАНЕЛЛ

Другие функции гепатоцитов (помимо только что описанной эндокринной

функции и рассматриваемой далее экзокринной) будут здесь лишь коротко упомянуты; к ним относятся различные превращения и связывание одних соединений с другими, что приводит к уменьшению токсичности опасных веществ, всосавшихся из кишки или образовавшихся в организме и оказывающих то или иное повреждающее действие на ткани. Например, аммиак, образующийся в процессе метаболизма аминокислот, по достижении определенных концентраций становится токсичным. Гепатоциты предотвращают увеличение его концентраций, используя аммиак для образования либо полезных для организма веществ, либо мочевины, последняя нетоксична (если только ее концентрация не достигает слишком высоких значений) и удаляется из организма почками.

Многие вещества, начиная с лекарств, выписываемых врачом, и кончая химическими веществами, поглощаемыми из различных источников, подвергаются метаболическим превращениям и детоксикации гепатоцитами. В некоторых условиях продукты распада этих веществ могут быть более вредными, нежели сами эти вещества.

Гепатоциты подвергают также метаболическим превращениям стероидные гормоны и алкоголь. При усилении детоксицирующей функции гепатоцитов в них повышается содержание компонентов гладкого эндоплазматического ретикулума.

Строение гепатоцита

Регенерация печени

Гепатоциты это

Печень - паренхиматозный дольчатый орган. Ее строма представлена:

Внутри дольки строма представлена ретикулярными волокнами, лежащими между гемокапиллярами и печеночными балками. В норме у человека междольковая рыхлая волокнистая неоформленная соединительная ткань выражена слабо, в результате чего дольки определяются неотчетливо. При циррозе происходит утолщение соединительнотканных трабекул.

Непосредственно под капсулой лежит один ряд гепатоцитов, образующий так называемую наружную терминальную пластинку. Этот ряд гепатоцитов в области ворот печени внедряется внутрь органа и сопровождает ветвления сосудов (воротной вены и печеночной артерии).

Внутри органа эти гепатоциты лежат на периферии дольки, непосредственно контактируя с рыхлой волокнистой соединительной тканью в области триад и отделяя гепатоциты, расположенные внутри, от окружающей междольковой соединительной ткани. Эта состоящая из одного ряда гепатоцитов зона называется внутренней терминальной пластинкой. Через эту пластинку, перфорируя ее, проходят кровеносные сосуды. Гепатоциты внутренней терминальной пластинки отличаются от остальных гепатоцитов дольки более выраженной базофилией цитоплазмы и меньшими размерами. Считается, что терминальная пластинка содержит камбиальные клетки для гепатоцитов и эпителиоцитов внутрипеченочных желчных протоков. При хроническом гепатите и циррозе терминальная пластинка может разрушаться, что свидетельствует об активности этих процессов.

Паренхима печени представлена совокупностью гепатоцитов, формирующих классическую дольку. Классическая долька - структурно-функциональная единица печени. Она имеет форму шестигранной призмы. Ширина печеночной дольки равна 1-1,5 мм, высотамм. По периферии дольки находятся триады или портальные тракты, в состав которых входят междольковые артерия, вена и желчный проток, а также лимфососуды и нервные стволы (в силу этого некоторые исследователи предлагают называть эти структуры не триадами, а пентодами). В центре дольки лежит центральная вена безмышечного типа. Основу дольки составляют печеночные балки или трабекулы. Они образованы двумя рядами гепатоцитов, соединенных десмосомами. Между гепатоцитами трабекулы проходит внутридольковый желчный капилляр, который не имеет собственной стенки. Его стенку образуют цитолеммы двух гепатоцитов, которые в этом месте инвагинируют. Печеночные балки радиально сходятся к центру дольки. Между соседними балками находятся синусоидные капилляры. Подобное представление об организации печеночной дольки является несколько упрощенным, поскольку печеночные балки далеко не всегда имеют радиальное направление: их ход может существенно изменяться, балки часто анастомозируют друг с другом. Поэтому на срезах не всегда удается проследить их ход с периферии до центральной вены.

Гепатоциты - основной вид клеток печени, выполняющий ее основные функции. Это крупные клетки полигональной или шестиугольной формы. Имеют одно или несколько ядер, при этом ядра могут быть полиплоидными. Многоядерные и полиплоидные гепатоциты отражают приспособительные изменения печени, поскольку эти клетки способны выполнять гораздо более интенсивно свои функции, чем обычные гепатоциты.

Каждый гепатоцит имеет две стороны:

Васкулярная сторона обращена в сторону синусоидного капилляра. Она покрыта микроворсинками, которые проникают через поры в эндотелиоците в просвет капилляра и прямо контактируют с кровью. От стенки синусоидного капилляра васкулярная сторона гепатоцита отделяется перисинусоидальным пространством Диссе. В этом щелевидном пространстве находятся микроворсинки гепатоцитов, отростки печеночных макрофагов (клеток Купфера), клетки Ито и иногда - Pit-клетки. В пространстве встречаются также единичные аргирофильные волокна, количество которых увеличивается на периферии дольки. Таким образом, в печени отсутствует типичный паренхиматозный барьер (имеется так называемый «прозрачный» барьер), что позволяет веществам, синтезируемым в печени, попадать прямо в кровь. С другой стороны, из крови в печень легко поступают питательные вещества и подлежащие обезвреживанию яды. Васкулярной стороной гепатоцит захватывает также из крови секреторные антитела, которые затем поступают в желчь и оказывают свой защитный эффект.

Билиарная сторона гепатоцита обращена в сторону желчного капилляра. Цитолемма контактирующих гепатоцитов здесь образует инвагинации и микроворсинки. Вблизи образовавшегося таким образом желчного капилляра цитолеммы контактирующих гепатоцитов соединяются при помощи опоясывающих десмосом, плотных и щелевидных контактов. Билиарной стороной гепатоцитов вырабатывается желчь, которая поступает в желчный капилляр и далеев отводящие протоки. Васкулярная сторона выделяет в кровь белки, глюкозу, витамины, липидные комплексы. В норме желчь никогда не поступает в кровь, потому что желчный капилляр отделен от синусоидного капилляра телом гепатоцита.

Строение гепатоцитов. Гистология, функции

Гепатоциты являются клетками многогранной формы с шестью или большим числом поверхностей и диаметром 20-30 мкм. На срезах, окрашенных гематоксилином и эозином, цитоплазма гепатоцита - эозинофильная, главным образом, из-за большого количества митохондрий и некоторого количества элементов аЭПС. Гепатоциты, расположенные на различном расстоянии от портальных пространств, различаются своими структурными, гистохимическими и биохимическими характеристиками.

Поверхность каждого гепатоцита находится в контакте со стенкой синусоидов через пространство Диссе, а также с поверхностью других гепатоцитов. В тех участках, где контактируют два гепатоцита, они ограничивают трубчатое пространство между ними, которое известно как желчный капилляр, или желчный каналец. Желчные капилляры, которые являются начальной частью системы желчных протоков, являются трубочками диаметром 1-2 мкм. Они ограничены только плазматическими мембранами двух гепатоцитов, причем в их просвет обращены немногочисленные микроворсинки.

Клеточные мембраны около этих капилляров прочно связаны плотными соединениями. Щелевые соединения часто встречаются между гепатоцитами и являются участками межклеточных соединений, обеспечивая важный процесс координации физиологической активности этих клеток. Желчные капилляры образуют сложные анастомозирующие сети, которые протягиваются вдоль пластинок печеночной дольки и заканчиваются в области портальных пространств. Таким образом, ток желчи происходит в направлении, противоположном направлению тока крови, т.е. от центра дольки к ее периферии. На периферии дольки желчь попадает в желчные проточки, или каналы Геринга, образованные кубическими клетками.

Проходя на небольшое расстояние, проточки пересекают ряд гепатоцитов, ограничивающих дольку, и переходят в желчные протоки в портальных пространствах. Желчные протоки выстланы кубическим или столбчатым эпителием и имеют отчетливую соединительнотканную оболочку. Они постепенно увеличиваются и сливаются, образуя правый и левый печеночные протоки, которые в дальнейшем выходят из печени.

Поверхность гепатоцита, обращенная в пространство Диссе, покрыта многочисленными микроворсинками, которые выступают в это пространство, но всегда между ними и клетками стенки синусоидов остается зазор. Гепатоцит содержит одно или два круглых ядра с одним или двумя ядрышками. Некоторые ядра являются полиплоидными, т.е. они содержат четное количество гаплоидных наборов хромосом. Полиплоидные ядра характеризуются большими размерами, которые пропорциональны их плоидности. В гепатоците сильно развита ЭПС, как аЭПС, так и гранулярной эндоплазматической сети (грЭПС). ГрЭПС в гепатоците образует агрегаты, рассеянные по цитоплазме - базофильные тельца.

В этих структурах на полирибосомах синтезируется ряд белков (например, альбумин и фибриноген крови). Различные важные процессы происходят в аЭПС, которая диффузно распределена по всей цитоплазме. Эта органелла ответственна за процессы окисления, метилирования и конъюгации, необходимые для инактивации или детоксикации различных веществ до их выведения из организма. аЭПС является лабильной системой, быстро реагирующей на молекулы, попавшие в гепатоцит.

Одним из наиболее важных процессов, происходящих в аЭПС, является конъюгация гидрофобного (водонерастворимого) токсического билирубина глюкуронилтрансферазой с образованием водорастворимого нетоксического глюкуронида билирубина. Этот конъюгат выделяется гепатоцитами в желчь. Если не происходит экскреции билирубина или глюкуронида билирубина, могут развиться различные заболевания, которые характеризуются желтухой - наличием желчных пигментов в крови. Одной из серьезных причин желтухи у новорожденных является нередко встречающееся недоразвитие аЭПС в их гепатоцитах (неонатальная гипербилирубинемия). Современное лечение в таких случаях состоит в воздействии синим светом от обычных флюоресцентных ламп, которое вызывает трансформацию неконъюгированного билирубина в водорастворимый фотоизомер, который может удаляться почками.

Гепатоцит часто содержит гликоген. Этот полисахарид выглядит под электронным микроскопом как крупные электронно-плотные гранулы, которые часто накапливаются в цитозоле вблизи аЭПС. Количество гликогена, имеющееся в печени, изменяется в соответствии с суточным ритмом; оно зависит также от состояния питания индивидуума. Гликоген печени является хранилищем глюкозы и мобилизуется, если уровень глюкозы в крови падает ниже нормального. Таким путем гепатоциты поддерживают постоянный уровень глюкозы в крови, которая является одним из главных источников энергии, используемой организмом.

Каждый гепатоцит содержит приблизительно 2000 митохондрий. Другими распространенными клеточными компонентами являются липидные капельки, количество которых варьирует в широких пределах. Лизосомы гепатоцита важны для обновления и разрушения внутриклеточных органелл. Подобно лизосомам, пероксисомы являются содержащими ферменты органеллами, обильно представленными в гепатоцитах. Некоторыми из их функций являются окисление избытка жирных кислот, разрушение перекиси водорода, образованной окислением (посредством активности каталазы), расщепление избытка пуринов (АМФ, ГМФ) до мочевой кислоты и участие в синтезе холестерола, желчных кислот и некоторых липидов, используемых для образования миелина.

Комплекс Гольджи в гепатоцитах также является множественным - до 50 в одной клетке. Функции этой органеллы включают образование лизосом и секрецию белков плазмы (например, альбумина, белков системы комплемента), гликопротеинов (например, трансферрина) и липопротеинов (например, липопротеинов очень низкой плотности).

У человека встречаются ряд редких наследственных нарушений функций пероксисом, большей частью связанных с мутациями ферментов, которые обнаруживаются в пероксисомах. Например, связанная с Х-хромосомой адренолейкодистрофия (X-ALD) развивается вследствие неспособности нормально метаболизировать жирные кислоты, что приводит к изменениям миелиновых оболочек отростков нейронов. Попытка найти эффективное лечение этого заболевания стала сюжетом вышедшего в 1992 г. фильма «Масло Лоренцо».

Обычно гепатоциты не накапливают белки в своей цитоплазме в виде секреторных гранул, а непрерывно выделяют их в кровоток. Около 5% белка, секретируемого печенью, вырабатывается клетками макрофагальной системы (клетками Купфера); остальные синтезируются гепатоцитами.

Синтез белка и накопление углеводов в печени. Углеводы накапливаются в виде гликогена, обычно в связи с агранулярной эндоплазматической сетью (аЭПС). При потребности в глюкозе гликоген расщепляется. При некоторых заболеваниях расщепление гликогена снижено, что приводит к его аномальному внутриклеточному накоплению. Белки, вырабатываемые гепатоцитами, синтезируются в гранулярной эндоплазматической сети (грЭПС); это объясняет, почему повреждения гепатоцитов или голодание приводят к снижению содержания альбумина, фибриногена и протромбина в крови пациента. Нарушение белкового синтеза вызывает ряд осложнений, так как большая часть этих белков являются переносчиками, важными для поддержания осмотического давления крови и ее свертывания.

Секреция желчи является экзокринной функцией в том смысле, что гепатоциты обеспечивают захват, переработку и выведение компонентов крови в желчные капилляры. Желчь содержит несколько других важных компонентов вдополнение к воде и электролитам: желчные кислоты, фосфолипиды, холестерол, лецитин и билирубин. Около 90% этих веществ получаются благодаря всасыванию эпителием дистальной кишки и транспортируются гепатоцитами из крови в желчные капилляры (энтеропеченочная рециркуляция). Примерно 10% желчных кислот синтезируются в аЭПС гепатоцита посредством конъюгации холевых кислот (синтезируемых печенью из холестерола) с аминокислотами глицином или таурином, в результате чего образуются гликохолевая или таурохолевая кислоты. Желчные кислоты обладают важной функцией в эмульгировании липидов в пищеварительном тракте, обеспечивая их более легкое переваривание липазами и последующее всасывание.

От 70 до 90% билирубина образуется вследствие разрушения гемоглобина стареющих циркулирующих эритроцитов, которое осуществляется, главным образом, в селезенке, но происходит также и во всей остальной периферической системе мононуклеарных фагоцитов, включая клетки Купфера в печени. В крови билирубин тесно связан с альбумином. После переноса в гепатоцит, вероятно, посредством механизма облегченного транспорта, гидрофобный билирубин конъюгируется в аЭПС с глюкуроновой кислотой, с образованием водорастворимого глюкуронида билирубина. На следующем этапе глюкуронид билирубина секретируется в желчные капилляры.

Часто используемыми функциональными тестами печени являются измерения уровня билирубина в сыворотке крови (показатель печеночной конъюгации и экскреции), альбумина и протромбино-вого времени (показатели белкового синтеза). Аномальные результаты этих тестов типичны для дисфункции печени.

Липиды и углеводы накапливаются в печени в форме триглицеридов и гликогена. Эта способность запасать метаболиты играет важную роль, потому что она обеспечивает организм энергией в промежутках между приемами пищи. Печень также служит главным местом накопления витаминов, особенно витамина А. Витамин А попадает в организм с пищей, достигает печени с другими пищевыми липидами в форме хиломикронов. В печени витамин А запасается в клетках Ито. Гепатоцит обеспечивает также синтез глюкозы из других метаболитов - таких, как липиды и аминокислоты, посредством сложного ферментного процесса, известного как глюконеогенез (греч. glykys - сладкий + neos - новый + genesis - выработка).

Он представляет собой также и главное место дезаминирования аминокислот, в результате чего вырабатывается мочевина. Мочевина транспортируется кровью к почкам и выделяется этими органами. Различные лекарственные препараты и вещества могут инактивироваться путем окисления, метилирования или конъюгации.

Секреция билирубина. Водонерастворимая форма билирубина образуется в результате обмена гемоглобина в макрофагах. Активность глюкуронилтрансферазы в гепатоцитах обусловливает конъюгацию билирубина с глюкуронидом в агранулярной эндоплазматической сети (аЭПС), в результате чего образуется водорастворимое соединение. При блокировании секреции желчи окрашенные вжелтый цветбилирубин или глюкуронид билирубина не выводятся, накапливаясь в крови и вызывая желтуху. Ряд нарушений процессов в гепатоцитах могут вызвать заболевания, которые приводят к желтухе: нарушение способности клетки к захвату и всасыванию билирубина (1), неспособность клетки конъюгировать билирубин вследствие дефицита глюкуронилтрансферазы (2), затруднения переносаи выведения глюкуронидабилирубинавжелчные капилляры (3). Одной из наиболее частых причин желтухи, хотя и не связанной с активностью гепатоцитов, является нарушение оттока желчи вследствие желчнокаменной болезни или опухоли поджелудочной железы.

Ферменты, участвующие в этих процессах, локализованы, главным образом, в аЭПС. Глюкуронилтрансфераза, фермент, который обеспечивает конъюгацию глюкуроновой кислоты с билирубином, также вызывает конъюгацию ряда других соединений, таких, как стероиды, барбитураты, антигистаминные и противосудорожные препараты. В некоторых условиях лекарственные препараты, которые инактивируются печенью, могут индуцировать увеличение объема аЭПС гепатоцитов, тем самым усиливая способность органа к детоксикации.

Введение барбитуратов лабораторным животным вызывает быстрое развитие аЭПС в гепатоцитах. Барбитураты могут также усилить синтез глюкуронилтрансферазы. Эти данные привели к использованию барбитуратов влечении недостаточности глюкуронилтрансферазы.

Регенерация печени

Несмотря на низкую скорость обновления клеток, печень обладает необычайной способностью к регенерации. Утрата ткани печени вследствие хирургического удаления или действия токсических веществ запускает механизм, благодаря которому гепатоциты начинают делиться, что продолжается до тех пор, пока не восстановится первоначальная масса ткани. У человека эта способность существенно ограничена, но все же остается достаточно выраженной, поэтому фрагменты печени могут быть использованы при хирургической трансплантации печени.

Ткань регенерировавшей печени обычно хорошо организована, в ней выявляется типичное дольковое строение, и функционально она замещает разрушенную ткань. Однако когда происходит непрерывное или повторное повреждение гепатоцитов в течение длительного периода времени, размножение клеток печени сопровождается существенным увеличением содержания соединительной ткани. Вместо образования нормальной ткани печени происходит формирование узелков различных размеров, большая часть которых видна невооруженным глазом. Эти узелки состоят из центральной массы дезорганизованных гепатоцитов, окруженных значительным количеством соединительной ткани, очень богатой коллагеновыми волокнами.

Кровоснабжение печени

Печень получает кровь из двух сосудистых систем: печеночной артерии и воротной вены. По печеночной артерии в печень поступает около 20 % всей крови. Она доставляет органу кислород. Из системы воротной вены печень получает до 80 % крови. Это кровь от непарных органов брюшной полости (кишечника, селезенки, поджелудочной железы), богатая питательными веществами, гормонами, биологически активными веществами, антителами и веществами, подлежащими детоксикации. Сосуды обеих сосудистых систем распадаются на долевые, сегментарные, субсегментарные и, наконец, междольковые артерии и вены. Последние входят в состав триад. От междольковых артерий и вен отходят вокругдольковые сосуды. Они окружают дольку по периметру. От вокругдольковых артерий и вен начинаются короткие артериолы и венулы, которые входят в дольку, сливаются вместе и дают синусоидные капилляры. В капиллярах течет смешанная кровь, причем ее состав может регулироваться сфинктером в стенке вокругдольковой артерии. Синусоидные капилляры идут радиально к центру дольки, сливаются и образуют центральную вену. Из центральной вены кровь собирается в собирательные или поддольковые вены, далее в печеночные вены и в нижнюю полую вену.

Желчевыводящие пути служат для отведения желчи в двенадцатиперстную кишку. Желчь образуется гепатоцитами и поступает в желчные капилляры. Желчные капилляры имеют диаметр 0,5 1,5 мкм. На периферии классической дольки желчные капилляры впадают в короткие канальцы Геринга, выстланные плоским или кубическим эпителием. Канальцы Геринга впадают в холангиолы, которые окружают дольку по периметру. Из холангиол образуются междольковые выводные протоки, входящие в состав триад и выстланные однослойным кубическим, а более крупные - призматическим эпителием. Кроме эпителия в состав стенки междольковых выводных протоков входит собственная пластинка из рыхлой волокнистой соединительной ткани. Все перечисленные сосуды являются внутрипеченочными желчными путями. Междольковые выводные протоки продолжаются во внепеченочные желчные пути: правый и левый печеночные (долевые), общий печеночный проток, сливающийся с пузырным протоком с образованием общего желчного протока. Все эти протоки построены по типу слоистых органов: имеют слизистую оболочку (однослойный цилиндрический эпителий и собственная пластинка из рыхлой волокнистой соединительной ткани), мышечную и адвентициальную оболочки.

Гепатоциты (Г) в печеночной пластинке (ПП) несколько отделены друг от друга. На рисунке один из них срезан, чтобы продемонстрировать его внутреннюю структуру.

Гепатоцит - полигональная клетка печени с двумя видами поверхности. Синусоидальные поверхности ориентированы в направлении печеночных синусоидных капилляров (СК) и покрыты микроворсинками (Мв). Почти гладкие желчные поверхности, каждая из которых расположена между двумя синусоидальными поверхностями, формируют половину стенки желчных канальцев (ЖК).

Гепатоциты - большие клетки размероммкм. Около 25% из них - двуядерные; 70 % - одноядерных гепатоцитов тетраплоидны и около 2 % - октаплоидны, т. е. с 4- или 8-кратным диплоидным набором хромосом.

Каждое ядро (Я) округлое и имеет одно или более ядрышек. Цитоплазма включает около 800 эллиптических или удлиненных митохондрий (М).

Хорошо развитый мультипластинчатый комплекс Гольджи (КГ) (до 50 комплексов) группируется обычно рядом с ядром и желчными канальцами. Удлиненные цистерны гранулярной эндоплазматической сети (ГЭС) часто продолжаются в трубочки агранулярной эндоплазматической сети (аГЭС). Лизосомы (Л), пероксисомы (П), частички гликогена (ЧГ), липидные капельки (ЛК) и свободные рибосомы находятся в большом количестве в цитоплазме гепатоцита.

По средней линии между двумя синусоидальными поверхностями гепатоцитов находится бороздка, которая идет вокруг тела клетки. Эта бороздка и соответствующая бороздка противоположного гепатоцита формируют канал шириной 0,5-1,5 мкм - желчный каналец (ЖК), или желчный капилляр. Желчные канальцы здесь не имеют собственных стенок. Канальцы могут иметь короткие ответвления, их внутренняя поверхность усеяна микроворсинками. Главной функцией гепатоцитов является секреция желчи в желчные канальцы с помощью механизма, который до сих пор не изучен. Чтобы предотвратить проникновение желчи в кровь, желчные канальцы закрыты замыкающими поясками (ЗП) - непроницаемыми плотными соединениями, которые идут вдоль них. В дополнение к ним пояски слияния (ПС) укрепляют кромки канальцев. Они располагаются в форме узкого пояса снаружи от замыкающего пояска.

Сверх того, гепатоциты соединены множеством нексусов (Н) и маленькими шишковидными интердигитациями (указаны стрелками).

Желчные канальцы продолжаются в терминальные желчные канальцы на периферии долек. Между желчными канальцами соседних долек нет анастомозов.

Печеночные пластинки ограничены с обеих сторон печеночными синусоидными капиллярами с эндотелиальными клетками (ЭК), которые имеют решетчатые пластинки (РП) и большие отверстия (О). Печеночные синусоидные капилляры не имеют базальной мембраны, поэтому микроворсинки видимы через эти отверстия. Диаметр этих отверстий обычно меньше, чем диаметр тромбоцитов и эритроцитов (Э), так что только плазма крови проходит через них и вступает в контакт с гепатоцитами.

Между гепатоцитами и стенкой печеночных синусоидных капилляров находится пространство Диссе (ПД), которое почти полностью заполнено микроворсинками гепатоцитов. Несколько ретикулярных и коллагеновых волокон (KB) проходят через пространство Диссе.

Описание и строение клеток гепатоцитов

Печень на 60-85% состоит из гепатоцитов в количествемлрд. Каждый гепатоцит выполняет важную роль в промежуточных реакциях печеночного метаболизма. Клетки способны:

  • участвовать в продукции и хранении протеинов;
  • корректировать процессы преобразования углеводов;
  • регулировать образование холестерина и кислот желчи;
  • помогать в процессах выведения токсичных эндогенных субстанций;
  • активизировать процессы образования желчи в печени.

Гепатоцит, как и любая другая клетка в организме, имеет ограниченное количество делений за весь период жизни. Если происходит постоянное разрушение гепатоцитов, в определенный промежуток времени они перестают восстанавливаться, а патологии, вызвавшие деструктивный процесс, становятся хроническими и необратимыми.

Клетки являются крупными и многокомпонентными. Львиный процент структуры составляют митохондрии, ретикулум, эндоплазма, гликоген, комплексы Гольджи, отвечающие за определенный набор свойств.

Поверхность гепатоцитов – ровная с небольшими участками, к которым с одной стороны крепятся желчные канальцы, а с другой – кровеносные синусоиды. Крепление осуществляется через особые микроворсинки, различающиеся по диметру сечения и длине. Большое количество этих соединительных волокон свидетельствует о высокой активности процессов поглощения и секреции. Из прямостоящих гепатоцитов формируются две дольки печени: правя и левая.

Функции

Из-за сложности строения функции гепатоцитов разнообразны:

  • Регулировка количества глюкозы в жидкой части крови. В присутствии инсулина гепатоциты выхватывают из кровотока лишнюю глюкозу, преобразуют ее в гликоген, который скапливается в цитоплазме. Гидрокортизон (гормон коры надпочечников) корректирует процесс. При нехватке глюкозы в крови происходит расщепление гликогена, а продуктами реакции восполняется дефицит сахара.
  • Осуществление метаболизма жирных кислот. Процессы регулируются в цитоплазме гепатоцитов, которая содержит митохондрии, лизосомы, гладкие и гранулярные микротельца и ретикулум, продуцирующие ферменты для расщепления и преобразования жиров и липопротеидов.
  • Синтез специфичных белков кровяной плазмы, таких как альбумин, фибриноген, глобулин (кроме иммуноглобулинов).
  • Дезактивация лекарственных препаратов, химвеществ, алкоголя, стероидных гормонов, всасывающихся в кишечнике.
  • Выработка больших объемов лимфы, обогащенной белками.
  • Продукция желчи. В гепатоцитах имеются микроворсинки, которые передают микрокомпоненты желчи в малые желчные канальцы у границ каждой печеночной дольки. Эти канальцы объединяются в крупные внутрипеченочные протоки из кубического эпителия с базальной мембраной. Желчь продуцируется непрерывно (по 1,2 л за 24 часа), но она не вся поступает в кишечник. Когда приток пищи отсутствует, желчь направляется в желчный пузырь через отдельный пузырный проток, ответвленный от внутрипеченочного канала.

Синдром цитолиза

Болезнь включает в себя группу патологических состояний, при которых происходит деструкция гепатоцитов печени в результате некротических или дистрофических изменений в паренхиме. Характер патологии определяется причинами его возникновения. В зависимости от вида и тяжести болезни процесс разрушения печеночных клеток обратимый (посредством естественной или медикаментозной регенерации) или необратимый.

При цитолизном поражении разрушается защитная оболочка гепатоцита, после чего активные ферменты начинают работать против самой печени, провоцируя некроз и дистрофию тканей. Цитолиз может возникнуть в любом возрасте, например, в младенчестве - аутоимунная деструкция, у людей старше 50-ти лет - жировое перерождение. Клиническая картина синдрома зависит от стадии недуга, степени повреждений. Долгое время болезнь не дает о себе знать. При быстром прогрессе или тотальном разрушении гепатоцитов наблюдается выраженная желтуха кожи, глазных склер и слизистых. Объясняется пожелтение активным выбросом билирубина в кровь, сигнализирующим о нарушении метаболизма.

Поражение клеток печени может быть восстанавливаемым или нет.

Другим характерным признаком того, что началось глобальное повреждение гепатоцитов, является пищеварительная дисфункция, выражающаяся:

  • повышением кислотности желудочного сока;
  • отрыжкой;
  • изжогой;
  • горьковатым послевкусием во рту после еды и натощак.

На последних стадиях разрушения проявляется печеночная симптоматика, связанная с изменениями органа в размерах:

  • боли справа в подреберье;
  • пальпирование уплотнения в области проекции больной печени.

Причины

Существует широкая группа факторов, которые могут привести к повреждению гепатоцитов. Самые значимые причины деструкции органа следующие:

В группе риска скорого повреждения гепатоцитов являются люди:

Здоровье печени находится под угрозой у людей часто принимающих таблетки, живущих в экологически загрязнённых районах, с вредными привычками и с нездоровым питанием.

  • имеющие болезни печени с гепатоцитарной недостаточностью, нарушением кровотока в органе;
  • женского пола (при беременности, в пожилом и старческом возрасте);
  • находящиеся на несбалансированной диете или на длительном парентеральном питании из-за резкого снижения массы тела, вегетарианцы;
  • живущие в неблагоприятной окружающей среде, например, в зонах, загрязненных тяжелыми металлами, инсектицидами, диоксином и прочими токсинами;
  • чрезмерно употребляющие в обиходе чистящие средства бытовой химии;
  • принимающие одновременно три и более видов лекарств.

Лечение и профилактика

Чтобы восстановление гепатоцитов прошло успешно, в первую очередь, важно избавиться от воздействия отрицательного фактора, вызвавшего заболевание, например:

  • исключить бесконтрольное лечение медпрепаратами;
  • полностью отказаться от алкоголя;
  • вести активный образ жизни;
  • качественно отдыхать и высыпаться;
  • пересмотреть питание в пользу правильного питания.

Может потребоваться смена места жительства и профессии.

  • Диетотерапия. Особенно эффективна при применении на ранних стадиях, когда гепатоциты не утратили способность самовосстанавливаться. Питание - дробное, малыми порциями. Лечебный рацион должен включать:
  1. рыбу, морепродукты;
  2. каши из круп;
  3. цельнозерновой хлеб;
  4. кисломолочку;
  5. отвары на костях;
  6. вареные яйца;
  7. растительные масла;
  8. отварные овощи, свежие фрукты с ягодами без костей;
  9. сухофрукты, орехи;
  10. куркуму, чеснок;
  • Периодическая чистка печени. Перед переходом на лечебную диету (далее, 1-2 раза в год) следует проводить очищение организма. Для этого применяется метод слепого зондирования с магнезией или другие народные способы чистки подручными средствами, которые можно применить в домашних условиях.
  • Медикаментозная терапия. Лекарства для восстановления гепатоцитов наделены следующими задачами:
  1. защищают здоровые и восстанавливают поврежденные клетки;
  2. запускают синтез новых гепатоцитов;
  3. активизируют способности клеток разрастаться и забирать функции поврежденных гепатоцитов на себя, что позволяет делать работу печени в полной мере до устранения повреждений;
  4. нормализуют синтез и отток желчи.

Такие препараты содержат аминокислоты, фосфолипиды, ферменты, важные для обеспечения защиты межклеточных мембран. К ним относятся представители натурального происхождения, синтезированные из вытяжек печени животных. Некоторые из них - комбинированные. Примеры: «Гептрал», «Гепабене», «Карсил», «Эсенциале», «Галстена», «Хофитол», «Аллохол», «Урсофальк».

  • Народные средства. Рецепты применяются в качестве дополнения к основной терапии. Популярные:
  1. чай из рылец и столбиков кукурузы;
  2. напиток из разведенного водой меда с корицей;
  3. смешанный настой из сока лимона, яблочного уксуса, меда, оливкового масла;
  4. варенье из цветков одуванчика на воде, сдобренный соком лимона, сахаром;
  5. сок из майского лопуха.

Гепатоциты имеют неправильную многоугольную форму. Средний диаметр клеток - 20-25 мкм. Различают апикальную (билиарную) поверхность гепатоцита, обращенную в просвет желчного капилляра, и базальную (васкулярную) поверхность - в сторону синусоидного капилляра. Своими латеральными поверхностями гепатоцитоты формируют печеночные балки. В центральной части клетки лежит одно-два округлых ядра. Часть из них представляет собой крупные, полиплоидные ядра. Причем число таких ядер увеличивается с возрастом и может достигать в старости 80%.

В цитоплазме хорошо развита гранулярная эндоплазматическая сеть, участвующая в синтезе белков крови. Метаболизм углеводов связан с гладкой эндоплазматической сетью, которая рассеяна в цитоплазме в виде трубочек и пузырьков. Вблизи этих элементов гладкой эндоплазматической сети выявляются гранулы гликогена. Цитоплазма гепатоцитов изобилует митохондриями, число которых в одной клетке превышает 1000. Комплекс Гольджи хорошо развит. Встречаются пероксисомы, лизосомы, а также различные включения (жировые, пигментные и др.).

Количество включений в гепатоцитах находится в связи с фазами пищеварения. После приема пищи резко возрастает количество гликогена, увеличивается число липидных включений. Для печени характерен выраженный суточный ритм: синтез и выделение желчи интенсивнее происходят днем, а гликоген в большом количестве накапливается ночью. Больше гликогена образуется в клетках, расположенных около центральной вены, а желчи - в гепатоцитах на периферии дольки.

Гепатоциты располагаются обычно в виде двух тесно прилегающих друг к другу рядов, образуя при этом печеночные балки. Между апикальными (билиарными) поверхностями двух гепатоцитов образуется щелевидное пространство с диаметром 0,5-1 мкм. Эти межклеточные узкие щели называют желчными капиллярами. Последние начинаются слепо и в своей начальной части собственной стенки не имеют. Однако ближе к периферии дольки формируются канальцы Геринга - желчные проточки, стенка которых представлена как гепатоцитами, так и эпителиоцитами проточков (холангиоцитами).

По мере увеличения калибра стенка проточка становится сплошной, выстланной однослойным эпителием, в составе которого располагаются малодифференцированные камбиальные холангиоциты. По проточкам желчь попадает в междольковые желчные протоки, выстланные однослойным кубическим эпителием. При обычных методах окраски желчные капилляры не выявляются, но обнаруживаются при импрегнации солями серебра, гистохимической реакцией на щелочную фосфатазу и другими методами.

Таким образом, вырабатывая желчь , печень функционирует как экзокринная железа. Вместе с тем она выделяет в кровь такие вещества, как глюкоза, мочевина, белковые фракции и др., что характеризует печень как эндокринный орган. Из гепатоцитов эти вещества поступают через базальную (синусоидную) поверхность клетки. Между гепатоцитом и гемокапилляром здесь располагается перисинусоидное пространство Диссе, в которое гепатоцит выделяет белки, глюкозу, мочевину и другие вещества в процессе осуществления метаболических функций.

В печеночной дольке существуют две системы, не связанные между собой и действующие по принципу противотока: желчеотводящая, по которой желчь идет от центра на периферию дольки, и кровеносная, по которой кровь движется от периферии к центру дольки. Между желчными и кровеносными капиллярами нет непосредственного соединения, и в условиях нормы желчь не поступает в кровоток. Просвет желчного капилляра является замкнутым благодаря наличию между образующими его соседними гепатоцитами межклеточных контактов нескольких типов - плотных, щелевых и десмосом. В просвет желчного капилляра выступают микроворсинки, образованные на билиарной поверхности гепатоцитов.

Базальная поверхность гепатоцитов обращена в сторону перисинусоидного пространства Диссе. В это пространство выступают также многочисленные микроворсинки, что увеличивает активную поверхность гепатоцитов. Само перисинусоидное пространство, представляет собой узкую щель (шириной 0,2-1 мкм). Если одну стенку его образует базальная поверхность гепатоцитов, то другую - стенка синусоидного гемокапилляра. В пространстве Диссе находятся жидкость, богатая белками, а также аргирофильные фибриллы, единичные фибробласты, отростки звездчатых клеток и др. В нем обнаружены особые мелкие клетки - перисинусоидальные липоциты, или клетки Ито. Они обладают способностью накапливать в цитоплазме липиды и депонировать жирорастворимые витамины. Эти клетки называют также жиронакапливающими, или жирозапасающими, клетками. Их рассматривают как особый тип соединительнотканных интерстициальных клеток.

С функциями клеток связывается синтез и секреция белков коллагена и участие в развитии цирроза печени. В перисинусоидальном пространстве располагаются pit-клетки, относящиеся к большим гранулярным лимфоцитам (натуральные киллеры), которые выделяют вещества, стимулирующие пролиферацию гепатоцитов, участвуют в защитной функции.

Стенка внутридольковых синусоидов выстлана эндотелием, в котором, кроме плоских и тонких эндотелиоцитов, имеются многочисленные вкрапления более крупных звездчатых клеток. Последние известны под названием звездчатые макрофагоциты, или клетки Купфера. Это производные моноцитов крови и представляют собой печеночные макрофаги. В цитоплазме этих клеток много пиноцитоз-ных и фагоцитозных пузырьков, плотных телец (вторичных лизосом). Печеночные макрофаги способны поглощать из крови циркулирующие вещества, накапливать их в цитоплазме, захватывать и переваривать бактерии, обломки эритроцитов. Они способны к амебоидному движению и могут выходить в просвет синусоидов. Набухая, эти клетки выполняют роль сфинктеров синусоидных капилляров.

Эндотелиоциты соединяются в пласт при помощи плотных межклеточных контактов. В выстилке синусоидных капилляров обнаружено наличие мелких отверстий, посредством которых сообщаются между собой просвет синусоидов и пространство Диссе. Поры имеют диаметр около 100 нм. Участки истонченной цитоплазмы эндотелиоцитов, где концентрируются эти отверстия, называют ситовидными пластинками. Они играют роль фильтра. В стенке внутридольковых синусоидных кровеносных капилляров на большом протяжении отсутствует базальная мембрана, что облегчает проникновение веществ из крови в перисинусоидное пространство и в обратном направлении.

Эндотелий синусоидных гемокапилляров, печеночные макрофаги, структуры в перисинусоидном пространстве составляют вместе гепатогематический барьер, или гистион, через который происходит обмен веществ между эпителием печени и кровью.

Наряду с классическими представлениями о строении печеночной дольки , имеются и другие трактовки ее гистоархитектуры. Так, согласно одной из гипотез, элементами дольки являются не печеночные балки, а пластины, состоящие из одного слоя гепатоцитов. Печеночные пластины отгораживают, как стенками, цилиндрические синусоидные пространства (лакуны), по которым протекает кровь.

Кроме классических печеночных долек , описаны так называемые портальные дольки и печеночные ацинусы. Центром портальной дольки признается триада, а периферическими ориентирами являются центральные вены трех смежных долек. В целом портальная долька имеет форму треугольника. В ее пределах кровь течет по направлению от центра на периферию. Печеночный ацинус образуют сегменты двух соседних классических долек, расположенных между близлежащими центральными венами. Ацинус имеет ромбовидную форму. У острых углов ромба находятся центральные вены, а у тупого - триада.

Эти представления о структурно-функциональных единицах печени помогают понять особенности поражений разных отделов печеночной дольки в условиях патологии.

Возрастные изменения печени характеризуются понижением метаболической и пролиферативной активности гепатоцитов, накоплением в их цитоплазме липофусцина и дистрофическими явлениями. Между печеночными дольками разрастается соединительная ткань. Иногда это сопровождается явлениями цирроза печени.

Реактивность и регенерация печени . Ткани печени отличаются высокой чувствительностью к действию повреждающих факторов. Действие ОВ, ионизирующей радиации, комбинированных повреждений приводит к резкому нарушению кровообращения в печени, связанного с его особенностями в этом органе. Нарушается интеграция гепатоцитов в составе печеночных балок, в клетках снижается количество гликогена, изменяется активность окислительно-восстановительных ферментов, подавляется фагоцитарная активность печеночных макрофагов. На месте гибнущих гепатоцитов разрастается рыхлая волокнистая соединительная ткань.



© dagexpo.ru, 2024
Стоматологический сайт