Условия равновесия тел. Изучение равновесия тел под действием нескольких сил

21.09.2019

, действующих на одно тело .

на другую состояние тела не изменится

~ 0 .

систему сил называют плоской .

Аксиомы статики.

Первая аксиома.



.

Вторая аксиома.

Третья аксиома.

Аксиома параллелограмма сил.

Четвертая аксиома.

Аксиома действия и противодействия (3-й закон Ньютона).

Пятая аксиома.

Аксиома отвердевания (принцип отвердевания).

Шестая аксиома.

Аксиома связей (принцип освобождаемости от связей)..

Тело называется свободным, если его движение в пространстве ничем не ограничено.

Тело, перемещения которого ограничены, называется несвободным телом.

Согласно шестой аксиоме, ограничить движение тела может только другое тело.

Тела, которые ограничивают движение свободного тела и делают его несвободным телом, называются связями.

Силы, с которыми связи действуют на несвободное тело, являются реакциями связей.

Остальные силы, не являющиеся реакциями связей, называются активными силами. .

Система пар сил.

Системой пар сил является совокупность пар сил, приложенных к одному телу.

Сложение пар сил. Система пар сил эквивалентна одной паре, момент которой равен сумме моментов пар, образующих систему:

(8)

где M 1 = M(F 1 ,F 1 ") , M 2 = M(F 2 ,F 2 ") , ..., M n = M(F n ,F n ") .

На рис. 25, a представлена исходная система пар сил. По второму свойству заменяем пары их моментами и переносим моменты пар, как свободные векторы, в одну произвольную точку (рис. 25, b). По правилу параллелограмма мы складываем векторы моментов пар и получаем второе выражение в (8). Одному моменту пары M соответствует одна пара сил (F,F") и M = M(F,F") (рис. 25, c).

Если все пары лежат в одной плоскости, векторное суммирование моментов пар теряет смысл. Поэтому мы используем алгебраические моменты пар сил и получаем

Необходимость условия сразу следует из (8). Если M = 0 , то (F,F") ~ 0 и, следовательно, ((F 1 ,F" 1), (F 2 ,F" 2), ..., (F n ,F" n)) ~ 0 . Достаточность условия докажем методом от противного. Предположим, что условие (10) не выполняется и M 0 , а твердое тело находится в равновесии. В этом случае система пар сил приводится к одной паре (F,F") и тело в равновесии находиться не может. Таким образом, наше предположение не верно, а условие (10) является верным, и его достаточность доказана.

Необходимым и достаточным условием равновесия системы пар, лежащих в одной плоскости, является равенство нулю алгебраической суммы моментов всех пар системы:

(11)

Таким образом, в этом параграфе мы рассмотрели пару сил, являющуюся, как и сила, самостоятельным элементом статики, изучили свойства пары сил, эквивалентность пар, сложение и условия равновесия для системы пар сил.

Виды трения.

Трение покоя проявляется в том случае, если тело находившееся в состоянии покоя, приводится в движение. Коэффициент трения покоя обозначается μ 0 .

Трение скольжения проявляется при наличии движения тела, и оно значительно меньше трения покоя.

μ ск < μ 0

Трение качения проявляется в том случае, когда тело катится по опоре, и оно значительно меньше трения скольжения.

μ кач << μ ск

Сила трения качения зависит от радиуса катящегося предмета. В типичных случаях (при расчетах трения качения колес поезда или автомобиля), когда радиус колеса известен и постоянен, его учитывают непосредственно в коэффициенте трения качения μ кач .

Определение коэффициента трения

Коэффициент трения можно определить экспериментально. Для этого помещают тело на наклонную плоскость, и определяют угол наклона при котором:

Коэффициент трения покоя

тело начинает двигаться
(коэффициент трения покоя μ 0 )

Предмет статики. Основные понятия статики. Аксиомы статики.

Статика - это раздел теоретической механики, в котором изучают равновесие тел под действием сил и преобразования систем сил.

Для статики и динамики одним из основных понятий является понятие силы. Состояние равновесия или движения тела зависит от его взаимодействия с другими телами. Меру этого взаимодействия в механике называют силой.

Действие силы на реальное физическое тело, которое деформируется силой, определяется: 1) величиной или модулем силы; 2) направлением силы; 3) точкой приложения силы. То есть сила, приложенная к физическому телу, является связанным вектором , который нельзя перемещать внутри физического тела. Прямая LM, на которой лежит вектор силы, называется линией действия силы .

Силу, как связанный вектор, удобнее определить в системе отсчета OXYZ (рис. 3) следующими параметрами. Это координаты точки приложения XA, YA, ZA и проекции силы на оси координат Fx, Fy, Fz . Первые три параметра определяют точку приложения силы A, а остальные три определяют величину и направление силы:

В выражении (2) представлены косинусы углов между осями координат и силой, которые называются направляющими косинусами и определяют направление силы в пространстве.

Системой сил назовем совокупность сил , действующих на одно тело .

Системы сил эквивалентны друг другу, если при замене одной системы сил на другую состояние тела не изменится . Математическая запись этого утверждения .

Система сил является уравновешенной или эквивалентной нулю, если под ее действием тело находится в равновесии и тогда ~ 0 .

В равновесии или покое все точки тела не перемещаются относительно системы отсчета.

В том случае, когда система сил эквивалентна одной силе , последняя называется равнодействующей.

В заключение пункта рассмотрим классификацию систем сил. Если на положение сил системы нет ограничений и силы произвольно расположены в пространстве, то систему сил называют произвольной или пространственной . Если силы системы лежат в одной плоскости, то систему сил называют плоской .

Аксиомы статики.

Первая аксиома.

О равновесии твердого тела под действием двух сил.

Под действием двух сил твердое тело находится в равновесии только тогда, когда силы равны по величине и направлены по одной прямой в разные стороны.

Случай равновесия изображен на рис. 4. Система двух сил будет уравновешенной, или эквивалентной нулю, то есть .

Вторая аксиома.

О добавлении (вычитании) уравновешенной системы сил.

По физике за 9 класс (И.К.Кикоин, А.К.Кикоин, 1999 год),
задача №6
к главе «ЛАБОРАТОРНЫЕ РАБОТЫ ».

Цель работы: установить соотношение между моментами сил, приложенных к плечам рычага при его равновесии. Для этого к одному из плеч рычага подвешивают один или несколько грузов, а к другому прикрепляют динамометр (рис. 179).

С помощью этого динамометра измеряют модуль силы F , которую необходимо приложить для того, чтобы рычаг находился в равновесии. Затем с помощью того же динамометра измеряют модуль веса грузов Р . Длины плеч рычага измеряют с помощью линейки. После этого определяют абсолютные значения моментов М 1 и М 2 сил Р и F :

Вывод о погрешности экспериментальной проверки правила моментов можно сделать, сравнив с единицей

отношение:

Средства измерения:

1) линейка; 2) динамометр.

Материалы: 1) штатив с муфтой; 2) рычаг; 3) набор грузов.

Порядок выполнения работы

1. Установите рычаг на штатив и уравновесьте его в горизонтальном положении с помощью расположенных на его концах передвижных гаек.

2. Подвесьте в некоторой точке одного из плеч рычага груз.

3. Прикрепите к другому плечу рычага динамометр и определите силу, которую необходимо прило

жить к рычагу для того, чтобы он находился в равновесии.

4. Измерьте с помощью линейки длины плеч рычага.

5. С помощью динамометра определите вес груза Р .

6. Найдите абсолютные значения моментов сил Р и F

7. Найденные величины занесите в таблицу:

M 1 = Pl 1 , Н⋅м

8. Сравните отношение

с единицей и сделайте вывод о погрешности экспериментальной проверки правила моментов.

Основной целью работы является установление соотношения между моментами сил, приложенных к телу с закрепленной осью вращения при его равновесии. В нашем случае в качестве такого тела мы используем рычаг. Согласно правилу моментов, чтобы такое тело находилось в равновесии, необходимо чтобы алгебраическая сумма моментов сил относительно оси вращения была равна нулю.


Рассмотрим такое тело (в нашем случае рычаг). На него действуют две силы: вес грузов P и сила F (упругости пружины динамометра), чтобы рычаг находился в равновесии и моменты этих сил должны быть равны по модулю меду собой. Абсолютные значения моментов сил F и P определим соответственно:


Выводы о погрешности экспериментальной проверки правила моментов можно сделать сравнив с единицей отношение:

Средства измерения: линейка (Δl = ±0,0005 м), динамометр (ΔF = ±0,05 H). Массу грузов из набора по механике полагаем равной (0,1±0,002) кг.

Выполнение работы



РАВНОВЕСИЕ ТЕЛ

«Дайте мне точку опоры, и я подниму Землю.»

Архимед


Условия равновесия.

  • I условие равновесия:
  • Тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к телу, равна нулю.

F=0.

  • II условие равновесия:
  • Сумма моментов сил, действующих по часовой стрелке, должна равняться сумме моментов сил, действующих против часовой стрелки.

∑ M по час. =∑ M против час.

  • М = F l, где М – момент силы, F - сила, l – плечо силы – кратчайшее расстояние от точки опоры до линии действия силы.

Центр тяжести тела.

  • Центр тяжести тела- это точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела.
  • Найти центр тяжести данных фигур.
  • Найти центр тяжести данных фигур.
  • Найти центр тяжести данных фигур.
  • Найти центр тяжести данных фигур.

ВИДЫ РАВНОВЕСИЯ

Безразличное

Устойчивое

Неустойчивое


Если на тело, имеющее опору, действуют уравновешивающие силы, то тело находится в положении равновесия.


При отклонении тела от положения равновесия нарушается и равновесие сил. Если тело под действием равнодействующей силы возвращается в исходное положение, то это - устойчивое равновесие .

Если же тело под действием равнодействующей силы, ещё сильнее отклоняется от положения равновесия, то это - неустойчивое равновесие .


Возможен случай, когда при любом положении тела, равновесие сил сохраняется. Это состояние называется безразличным равновесием .


Вывод :

  • Равновесие устойчиво, если при малом отклонении от положения равновесия есть сила, стремящаяся вернуть его в это положение.
  • Устойчиво такое положение, в котором его потенциальная энергия минимальна.



В случае если центр тяжести расположен ниже точки опоры, равновесие тела или системы тел – устойчивое . При отклонении тела, центр тяжести повышается, и тело возвращается в исходное состояние.


Равновесие тела, имеющего точку опоры ниже центра тяжести, неустойчиво . Но равновесие может восстанавливаться путём смещения точки опоры тела в сторону смещения центра тяжести.



По положению центра тяжести можно судить о виде равновесия. Например езда эквилибриста по канату на велосипеде с противовесом является примером устойчивого равновесия .


Вывод :

  • Для устойчивости тела, находящегося на одной точке или линии опоры необходимо, чтобы центр тяжести находился ниже точки (линии) опоры.



Если при отклонении тела, имеющего площадь опоры, происходит повышение центра тяжести, то равновесие будет устойчивым. При устойчивом равновесии вертикальная прямая, проходящая через центр тяжести, всегда будет проходить через площадь опоры.


Два тела, у которых одинаковы вес и площадь опоры, но разная высота, имеют разный предельный угол наклона. Если этот угол превысить, то тела опрокидываются.


При более низком положении центра тяжести необходимо затратить большую работу для опрокидывания тела. Следовательно работа по опрокидыванию может служить мерой его устойчивости.


Неустойчивое равновесие

Устойчивое равновесие




Вывод :

1. Устойчиво то тело, у которого площадь опоры больше.

2. Из двух тел одинаковой площади устойчиво то, у которого центр тяжести расположен ниже, т.к. его можно отклонить без опрокидывания на большой угол.





  • Существует три вида равновесия: устойчивое, неустойчивое, безразличное.
  • Устойчиво положение тела, в котором его потенциальная энергия минимальна.
  • Устойчивость тел на плоской поверхности тем больше, чем больше площадь опоры и ниже центр тяжести.

Определение

Равновесием тела называют такое состояние, когда любое ускорение тела равняется нулю, то есть все действия на тело сил и моментов сил уравновешены. При этом тело может:

  • находиться в состоянии спокойствия;
  • двигаться равномерно и прямолинейно;
  • равномерно вращаться вокруг оси, которая проходит через центр его тяжести.

Условия равновесия тела

Если тело находится в равновесии, то одновременно выполняются два условия.

  1. Векторная сумма всех сил, действующих на тело, равна нулевому вектору : $\sum_n{{\overrightarrow{F}}_n}=\overrightarrow{0}$
  2. Алгебраическая сумма всех моментов сил, действующих на тело, равна нулю: $\sum_n{M_n}=0$

Два условия равновесия являются необходимыми, но не являются достаточными. Приведем пример. Рассмотрим равномерно катящееся без проскальзывания колесо по горизонтальной поверхности. Оба условия равновесия выполняются, однако тело движется.

Рассмотрим случай, когда тело не вращается. Для того, чтобы тело не вращалось и находилось в равновесии, необходимо, чтобы сумма проекций всех сил на произвольную ось равнялась нулю, то есть равнодействующая сил. Тогда тело или находится в спокойствии, или двигается равномерно и прямолинейно.

Тело, которое имеет ось вращения, будет находиться в равновесном состоянии, если выполняется правило моментов сил: сумма моментов сил, которые вращают тело по часовой стрелке, должна равняться сумме моментов сил, которые вращают его против часовой стрелки.

Чтобы получить нужный момент при наименьшем усилии, нужно прикладывать силу как можно дальше от оси вращения, увеличивая тем же плечо силы и соответственно уменьшая значение силы. Примеры тел, которые имеют ось вращения, : рычаг, двери, блоки, коловорот и тому подобное.

Три вида равновесия тел, которые имеют точку опоры

  1. стойкое равновесие, если тело, будучи выведенным из положения равновесия в соседнее ближайшее положение и оставлено в спокойствии, вернется в это положение;
  2. неустойчивое равновесие, если тело, будучи выведенным из положения равновесия в соседнее положение и оставлено в спокойствии, будет еще больше отклоняться от этого положения;
  3. безразличное равновесие - если тело, будучи выведенным в соседнее положение и оставлено в спокойствии, останется в новом своем положении.

Равновесие тела с закрепленной осью вращения

  1. стойким, если в положении равновесия центр тяжести С занимает самое низкое положение из всех возможных ближних положений, а его потенциальная энергия будет иметь наименьшее значение из всех возможных значений в соседних положениях;
  2. неустойчивым, если центр тяжести С занимает наивысший из всех ближних положений, а потенциальная энергия имеет наибольшее значение;
  3. безразличным, если центр тяжести тела С во всех ближних возможных положениях находится на одном уровне, а потенциальная энергия при переходе тела, не изменяется.

Задача 1

Тело A массой m = 8 кг поставлено на шероховатую горизонтальную поверхность стола. К телу привязана нить, перекинутая через блок B (рисунок 1, а). Какой груз F можно подвязать к концу нити, свешивающейся с блока, чтобы не нарушить равновесия тела A? Коэффициент трения f = 0,4; трением на блоке пренебречь.

Определим вес тела ~A: ~G = mg = 8$\cdot $9,81 = 78,5 Н.

Считаем, что все силы приложены к телу A. Когда тело поставлено на горизонтальную поверхность, то на него действуют только две силы: вес G и противоположно направленная реакция опоры RA (рис. 1, б).

Если же приложить некоторую силу F, действующую вдоль горизонтальной поверхности, то реакция RA, уравновешивающая силы G и F, начнет отклоняться от вертикали, но тело A будет находиться в равновесии до тех пор, пока модуль силы F не превысит максимального значения силы трения Rf max, соответствующей предельному значению угла ${\mathbf \varphi }$o(рис. 1, в).

Разложив реакцию RA на две составляющие Rf max и Rn, получаем систему четырех сил, приложенных к одной точке (рис. 1, г). Спроецировав эту систему сил на оси x и y, получим два уравнения равновесия:

${\mathbf \Sigma }Fkx = 0, F - Rf max = 0$;

${\mathbf \Sigma }Fky = 0, Rn - G = 0$.

Решаем полученную систему уравнений: F = Rf max, но Rf max = f$\cdot $ Rn, а Rn = G, поэтому F = f$\cdot $ G = 0,4$\cdot $ 78,5 = 31,4 Н; m = F/g = 31,4/9,81 = 3,2 кг.

Ответ: Масса груза т = 3,2 кг

Задача 2

Система тел, изображённая на рис.2, находится в состоянии равновесия. Масса груза тг=6 кг. Угол между векторами $\widehat{{\overrightarrow{F}}_1{\overrightarrow{F}}_2}=60{}^\circ $. $\left|{\overrightarrow{F}}_1\right|=\left|{\overrightarrow{F}}_2\right|=F$. Найти массу гирь.

Равнодействующая сил ${\overrightarrow{F}}_1и\ {\overrightarrow{F}}_2$ равна по модулю весу груза и противоположна ему по направлению: $\overrightarrow{R}={\overrightarrow{F}}_1+{\overrightarrow{F}}_2=\ -m\overrightarrow{g}$. По теореме косинусов, ${\left|\overrightarrow{R}\right|}^2={\left|{\overrightarrow{F}}_1\right|}^2+{\left|{\overrightarrow{F}}_2\right|}^2+2\left|{\overrightarrow{F}}_1\right|\left|{\overrightarrow{F}}_2\right|{cos \widehat{{\overrightarrow{F}}_1{\overrightarrow{F}}_2}\ }$.

Отсюда ${\left(mg\right)}^2=$; $F=\frac{mg}{\sqrt{2\left(1+{cos 60{}^\circ \ }\right)}}$;

Поскольку блоки подвижные, то $m_г=\frac{2F}{g}=\frac{2m}{\sqrt{2\left(1+\frac{1}{2}\right)}}=\frac{2\cdot 6}{\sqrt{3}}=6,93\ кг\ $

Ответ: масса каждой из гирь равна 6,93 кг

Если тело находится в равновесии, то это значит, что сумма приложенных к нему сил равна нулю и сумма моментов этих сил относительно оси, вокруг которой тело может вращаться, также равна нулю. Но здесь возникает такой вопрос: а устойчиво ли равновесие?

С первого взгляда видно, например, что положение равновесия шарика на вершине выпуклой подставки (рис. 170) неустойчиво: малейшее отклонение шарика от его равновесного положения приведет к тому, что он скатится вниз. А вот тот же шарик помещен на вогнутой подставке (рис. 171). Его не так-то просто заставить покинуть свое место. Положение шарика можно считать устойчивым. В чем тут дело? Ведь в обоих случаях шарик находится в равновесии: сила тяжести равна по абсолютной величине противоположно направленной силе упругости (силе реакции) действующей со стороны опоры (рис. 172 и 173).

Все дело оказывается именно в том малейшем отклонении, о котором мы упоминали. При самом малом отклонении, которое всегда происходит из-за случайных сотрясений, воздушных течений и других причин, равновесие шарика нарушается. На рисунке 172 видно, что, как только шарик на выпуклой подставке покинул

свсе место, сила тяжести перестает уравновешиваться силой со стороны опоры (сила всегда направлена перпендикулярно поверхности соприкосновения шарика и подставки). Геометрическая сумма (равнодействующая) силы тяжести и силы реакции опоры, т. е. сила направлена так, что шарик еще больше удалится от положения равновесия.

Иное дело на вогнутой подставке (рис. 173). При малом отклонении от первоначального положения здесь тоже нарушается равновесие. Сила упругости со стороны опоры и здесь уже не будет уравновешивать силу тяжести. Но теперь равнодействующая направлена так, что тело вернется в прежнее положение. В этом и состоит условие устойчивости равновесия.

Равновесие тела устойчиво, если при малом отклонении от равновесного положения возникает сила, возвращающая тело к положению равновесия.

Равновесие неустойчиво, если при малом отклонении тела от положения равновесия возникает сила, удаляющая тело от этого положения.

Устойчивое и неустойчивое положения равновесия отличаются друг от друга еще и положением центра тяжести тела. Когда шарик находится в положении неустойчивого равновесия, его центр тяжести выше, чем когда он находится в любом соседнем положений. Наоборот, у шарика на вогнутой опоре центр

тяжести в положении устойчивого равновесия ниже, чем в любом из соседних положений. Значит, для устойчивого равновесия центр тяжести тела должен находиться в самом низком из возможных для него положений. Это определение устойчивости и неустойчивости тесно связано с предыдущим.

Возможно и такое положение равновесия, когда малые отклонения от него не приводят к каким-либо изменениям в состоянии тела. Таково, например, положение шарика на плоской опоре (рис. 174). Ясно, что при любом изменении положения шарика оно остается равновесным. Такое равновесие называют безразличным.

Если тело имеет ось вращения, то его устойчивость или неустойчивость зависит от того, возникает ли момент силы, возвращающей тело к положению равновесия или, наоборот, удаляющей тело от этого положения.

В качестве примера рассмотрим обыкновенную линейку, укрепленную на стержне, проходящем через отверстие вблизи ее конца, как показано на рисунке 175, а. В таком положении линейка находится в равновесии, потому что сила тяжести проходящая через ее центр тяжести, уравновешивается силой реакции (силой упругости) со стороны стержня (опоры). Но если отклонить линейку от вертикального положения (рис. 175, б), то сила тяжести уже не уравновешивается реакцией опоры. Момент

силы тяжести относительно оси теперь не равен нулю (рис. 175, б). Вследствие этого сила возвратит линейку (после нескольких колебаний) в исходное положение. Поэтому положение линейки, показанное на рисунке 175, а, устойчиво. Но попытаемся подвесить ту же линейку на стержне так, как это показано на рисунке 176, а. Опыт убедит нас в том, что это сделать невозможно и нетрудно понять почему. Из рисунка 176, а видно, что при вертикальном положении линейки сила тяжести уравновешивается силой упругости (реакцией стержня), действующей на линейку со стороны стержня. Линейка должна находиться в равновесии. Но из рисунка 176, б видно, что при любом отклонении линейки от вертикального положения возникает момент силы тяжести. Вследствие этого линейка повернется так, чтобы занять положение, показанное на рисунке 176, в. Значит, равновесие линейки, соответствующее рисунку 176, а, неустойчиво.

Выходит, что равновесие тела при наличии оси вращения устойчиво, если центр тяжести тела находится ниже оси вращения.

Понятно, что линейка, подвешенная на стержне, проходящем через отверстие в ее центре тяжести, будет находиться в безразличном равновесии (рис. 177). В этом случае при любом положении линейки момент силы тяжести, приложенной к ней, относительно оси вращения равен нулю.



© dagexpo.ru, 2024
Стоматологический сайт