Уравнение парной регрессии. Уравнение регрессии

30.09.2019

Уравнение парной регрессии .

На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.

Линейное уравнение регрессии имеет вид y = bx + a + ε

Система нормальных уравнений.

a n + b∑x = ∑y

a∑x + b∑x 2 = ∑y x

Для наших данных система уравнений имеет вид

12a + 1042 b = 1709

1042 a + 91556 b = 149367

Из первого уравнения выражаем а и подставим во второе уравнение:

Получаем эмпирические коэффициенты регрессии: b = 0.9, a = 64.21

Уравнение регрессии (эмпирическое уравнение регрессии):

y = 0.9 x + 64.21

Эмпирические коэффициенты регрессии a и b являются лишь оценками теоретических коэффициентов β i , а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных.

Для расчета параметров линейной регрессии построим расчетную таблицу (табл. 1)

1. Параметры уравнения регрессии.

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

1.1. Коэффициент корреляции

Ковариация .

Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

1.2. Уравнение регрессии (оценка уравнения регрессии).

Линейное уравнение регрессии имеет вид y = 0.9 x + 64.21

1.3. Коэффициент эластичности .

Коэффициент эластичности находится по формуле:

1.4. Ошибка аппроксимации .

Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения регрессии к исходным данным.

1.5. Эмпирическое корреляционное отношение.

Эмпирическое корреляционное отношение вычисляется для всех форм связи и служит для измерение тесноты зависимости. Изменяется в пределах .

Индекс корреляции .

Для линейной регрессии индекс корреляции равен коэфииценту корреляции r xy = 0.79.

Для любой формы зависимости теснота связи определяется с помощью множественного коэффициента корреляции :

1.6. Коэффициент детерминации.

Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.

R 2 = 0.79 2 = 0.62

Для оценки качества параметров линейной регрессии построим расчетную таблицу (табл. 2)

2. Оценка параметров уравнения регрессии.

2.1. Значимость коэффициента корреляции .

Для того чтобы при уровне значимости α проверить нулевую гипотезу о равенстве нулю генерального коэффициента корреляции нормальной двумерной случайной величины при конкурирующей гипотезе H 1 ≠ 0, надо вычислить наблюдаемое значение критерия

и по таблице критических точек распределения Стьюдента, по заданному уровню значимости α и числу степеней свободы k = n - 2 найти критическую точку t крит двусторонней критической области. Если t набл < t крит оснований отвергнуть нулевую гипотезу. Если |t набл | > t крит - нулевую гипотезу отвергают.

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=10 находим t крит:

где m = 1 - количество объясняющих переменных.

2.2. Интервальная оценка для коэффициента корреляции (доверительный интервал).

2.3. Анализ точности определения оценок коэффициентов регрессии.

Несмещенной оценкой дисперсии возмущений является величина:

S 2 y = 53.63 - необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).

S y = 7.32 - стандартная ошибка оценки (стандартная ошибка регрессии).

S a - стандартное отклонение случайной величины a.

S b - стандартное отклонение случайной величины b.

2.4. Доверительные интервалы для зависимой переменной.

(a + bx p ± ε)

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X p = 107

Индивидуальные доверительные интервалы для Y при данном значении X.

(a + bx i ± ε)

t крит (n-m-1;α/2) = (10;0.025) = 2.228

2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.

1) t-статистика. Критерий Стьюдента.

t крит (n-m-1;α/2) = (10;0.025) = 2.228

Доверительный интервал для коэффициентов уравнения регрессии .

(b - t крит S b ; b + t крит S b)

(a - t крит S a ; a + t крит S a)

2) F-статистика. Критерий Фишера.

Табличное значение критерия со степенями свободы k 1 =1 и k 2 =10, F табл = 4.96

Парная регрессия характеризует связь между двумя признаками: результативным и факторным. Важным и нетривиальным этапом построения регрессионной модели является выбор уравнения регрессии. Этот выбор основывается на теоретических данных об изучаемом явлении и предварительном анализе имеющихся статистических данных.

Уравнение парной линейной регрессии имеет вид:

где - теоретические значения результативного признака, полученные по уравнению регрессии; - коэффициенты (параметры) уравнения регрессии.

Модель регрессии строится на основании статистических данных, причем могут использоваться как индивидуальные значения признака, так и сгруппированные данные. Для выявления связи между признаками по достаточно большому числу наблюдений статистические данные предварительно группируют по обоим признакам и строят корреляционную таблицу. При помощи корреляционной таблицы отображается только парная корреляционная связь, т.е. связь результативного признака с одним фактором. Оценка параметров уравнения регрессии осуществляется методом наименьших квадратов, в основе которого лежит предположение о независимости наблюдений исследуемой совокупности и требование минимальности суммы квадратов отклонений эмпирических данных от выровненных значений результативного фактора :

.

Для линейного уравнения регрессии имеем:

Для нахождения минимума данной функции приравняем к нулю ее частные производные и получим систему двух линейных уравнений, которая называется системой нормальных уравнений:

где - объем исследуемой совокупности (число единиц наблюдения).

Решение системы нормальных уравнений позволяет найти параметры уравнения регрессии .

Коэффициент парной линейной регрессии является средним значением в точке , поэтому его экономическая интерпретация затруднена. Смысл этого коэффициента можно трактовать как усредненное влияние на результативный признак неучтенных (не выделенных для исследования) факторов. Коэффициент показывает, на сколько в среднем изменяется значение результативного признака при изменении факторного признака на единицу.

После получения уравнения регрессии необходимо проверить его адекватность, то есть соответствие фактическим статистическим данным. С этой целью производится проверка значимости коэффициентов регрессии: выясняется, насколько эти показатели характерны для всей генеральной совокупности, не являются ли они результатом случайного стечения обстоятельств.

Для проверки значимости коэффициентов простой линейной регрессии при объеме совокупности меньше 30 единиц используется критерий Стьюдента. Сопоставляя значение параметра с его средней ошибкой, определяют величину критерия:


где - средняя ошибка параметра .

Средняя ошибка параметров и рассчитываются по следующим формулам:

; ,

– объем выборки;

Среднеквадратическое отклонение результативного признака от выровненных значений ;

Среднеквадратическое отклонение факторного признака от общей средней :

или

Тогда расчетные (фактические) значения критерия соответственно равны:

- для параметра ;

- для параметра .

Вычисленные значения критерия сравниваются с критическими значениями , которые определяют по таблице Стьюдента с учетом принятого уровня значимости и числа степеней свободы , где - объем выборки, -1 ( - число факторных признаков). В социально-экономических исследованиях уровень значимости обычно принимают 0.05 или 0.01. Параметр признается значимым, если (отклоняется гипотеза о том, что параметр лишь в силу случайных обстоятельств оказался равным полученной величине, а в действительности равен нулю).

Адекватность регрессионной модели может быть оценена при помощи -критерия Фишера. Расчетное значение критерия определяется по формуле ,

где - число параметров модели;

Объем выборки.

По таблице определяется критическое значение -критерия Фишера для принятого уровня значимости и числа степеней свободы , . Если , то модель регрессии признается адекватной по этому критерию (отвергается гипотеза о несоответствии заложенных в уравнении и реально существующих связей).

Вторая задача корреляционно-регрессионного анализа – измерение тесноты зависимости результативного и факторного признака.

Для всех видов связи задача измерения тесноты зависимости может быть решена с помощью исчисления теоретического корреляционного отношения:

,

где - дисперсия в ряду выровненных значений результативного признака , обусловленная факторным признаком ;

- дисперсия в ряду фактических значений . Это общая дисперсия, которая слагается из дисперсии, обусловленной фактором (т.е. факторной дисперсии), и дисперсии остатка (отклонение эмпирических значений признака от выровненных теоретических).

На основании правила сложения дисперсий теоретическое корреляционное отношение может быть выражено через остаточную дисперсию :

.

Так как дисперсия отражает вариацию в ряду только за счет вариации фактора , а дисперсия отражает вариацию за счет всех факторов, то их отношение, именуемое теоретическим коэффициентом детерминации , показывает, какой удельный вес в общей дисперсии ряда занимает дисперсия, вызываемая вариацией фактора . Квадратный корень из отношения этих дисперсий дает теоретическое корреляционное отношение. При нелинейных связях теоретическое корреляционное отношение называют индексом корреляции и обозначают .

Если , то это означает, что роль других факторов в вариации отсутствует, остаточная дисперсия равна нулю и отношение означает полную зависимость вариации от . Если , то это означает, что вариация никак не влияет на вариацию , и в этом случае . Следовательно, корреляционное отношение принимает значения от 0 до 1. Чем ближе корреляционное отношение к 1, тем теснее связь между признаками.

Кроме того, при линейной форме уравнения связи применяется другой показатель тесноты связи – линейный коэффициент корреляции:

.

Линейный коэффициент корреляции принимает значения от –1 до 1. Отрицательные значения указывают на обратную зависимость, положительные – на прямую. Чем ближе модуль коэффициента корреляции к единице, тем теснее связь между признаками.

Приняты следующие граничные оценки линейного коэффициента корреляции:

Связи нет;

Связь слабая;

Связь посредственная;

Связь сильная;

Связь очень сильная.

Квадрат линейного коэффициента корреляции называют линейным коэффициентом детерминации.

Факт совпадения или несовпадения теоретического корреляционного отношения и линейного коэффициента корреляции используется для оценки формы зависимости. Их значения совпадают только при наличии линейной связи. Несовпадение этих величин свидетельствует о нелинейности связи между признаками. Принято считать, что если , то гипотезу о линейности связи можно считать подтвержденной.

Показатели тесноты связи, особенно исчисленные по данным сравнительно небольшой статистической совокупности, могут искажаться действием случайных причин. Это вызывает необходимость проверки их надежности (значимости), дающей возможность распространять выводы, полученные по выборочным данным, на генеральную совокупность.

Для этого рассчитывается средняя ошибка коэффициента корреляции:

Где - число степеней свободы при линейной зависимости.

Затем находится отношение коэффициента корреляции к его средней ошибке, то есть , которое сравнивается с табличным значением критерия Стьюдента.

Если фактическое (расчетное) значение больше табличного (критического, порогового), то линейный коэффициент корреляции считается значимым, а связь между и - реальной.

После проверки адекватности построенной модели (уравнения регрессии) ее необходимо проанализировать. Для удобства интерпретации параметра используют коэффициент эластичности. Он показывает средние изменения результативного признака при изменении факторного признака на 1% и вычисляется по формуле:

Точность полученной модели может быть оценена на основании значения средней ошибки аппроксимации:

Кроме того, в некоторых информативными являются данные об остатках, характеризующих отклонение -х наблюдений от расчетных значений . Особый экономический интерес представляют значения, остатки которых имеют наибольшие положительные или отрицательные отклонения от ожидаемого уровня анализируемого показателя.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Комсомольский-на-Амуре государственный технический университет»

Факультет экономики и менеджмента

Кафедра «Экономики, финансов и бухгалтерского учета»

РАСЧЁТНО-ГРАФИЧЕСКОЕ ЗАДАНИЕ

по дисциплине «Эконометрика»

Студент группы

А.Ю. Зайченко

Преподаватель

И.И. Антонова

Таблица 1

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

Требуется:

1. Построить линейное уравнение парной регрессии от.

3. Оценить статистическую значимость параметров регрессии и корреляции с помощью -критерия Фишера и -критерия Стьюдента.

4. Выполнить прогноз заработной платы при прогнозном значении среднедушевого прожиточного минимума, составляющем 107% от среднего уровня.

5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.

6. На одном графике построить исходные данные и теоретическую прямую.

1. Для расчета параметров уравнения линейной регрессии строим расчетную таблицу 2. линейный корреляция аппроксимация регрессия

Таблица 2

Среднее значение

Получено уравнение регрессии:

С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,89 руб.

2. Тесноту линейной связи оценит коэффициент корреляции:

Это означает, что 51% вариации заработной платы () объясняется вариацией фактора - среднедушевого прожиточного минимума.

Качество модели определяет средняя ошибка аппроксимации:

Качество построенной модели оценивается как хорошее, так как не превышает 8-10%.

3. Оценку значимости уравнения регрессии в целом проведем с помощью -критерия Фишера. Фактическое значение -критерия:

Табличное значение критерия при пятипроцентном уровне значимости и степенях свободы и составляет. Так как, то уравнение регрессии признается статистически значимым.

Оценку статистической значимости параметров регрессии проведем с помощью -статистики Стьюдента и путем расчета доверительного интервала каждого из показателей.

Табличное значение -критерия для числа степеней свободы и составит.

Определим случайные ошибки, :

Фактические значения -статистики превосходят табличное значение:

поэтому параметры, и не случайно отличаются от нуля, а статистически значимы. Рассчитаем доверительные интервалы для параметров регрессии и. Для этого определим предельную ошибку для каждого показателя:

Доверительные интервалы:

Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью параметры и, находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля.

4. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит:

тогда прогнозное значение заработной платы составит:

Ошибка прогноза составит:

Предельная ошибка прогноза, которая в случаев не будет превышена, составит:

Доверительный интервал прогноза:

Выполненный прогноз среднемесячной заработной платы является надежным () и находится в пределах от 131,66 руб. до 190,62 руб. В заключение решения задачи построим на одном графике исходные данные и теоретическую прямую (рисунок1)

Рисунок 1

Размещено на Allbest.ru

Подобные документы

    Построение линейного уравнения парной регрессии, расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Определение коэффициентов корреляции и эластичности, индекса корреляции, суть применения критерия Фишера в эконометрике.

    контрольная работа , добавлен 05.05.2010

    Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.

    контрольная работа , добавлен 14.05.2008

    Расчет линейного коэффициента парной и частной корреляции. Статистическая значимость параметров регрессии и корреляции. Анализ корреляционного поля данных. Точность прогноза, расчет ошибки и доверительный интервал. Коэффициент множественной детерминации.

    контрольная работа , добавлен 11.12.2010

    Экономическая интерпретация коэффициента регрессии. Нахождение статочной суммы квадратов и оценка дисперсии остатков. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Расчет средней относительной ошибки аппроксимации.

    контрольная работа , добавлен 23.03.2010

    Построение доверительного интервала для коэффициента регрессии. Определение ошибки аппроксимации, индекса корреляции и F-критерия Фишера. Оценка эластичности изменения материалоемкости продукции. Построение линейного уравнения множественной регрессии.

    контрольная работа , добавлен 11.04.2015

    Расчет параметров уравнения линейной регрессии, оценка тесноты связи с помощью показателей корреляции и детерминации. Определение средней ошибки аппроксимации. Статистическая надежность моделирования с помощью F-критерия Фишера и t-критерия Стьюдента.

    контрольная работа , добавлен 17.10.2009

    Определение количественной зависимости массы пушного зверька от его возраста. Построение уравнения парной регрессии, расчет его параметров и проверка адекватности. Оценка статистической значимости параметров регрессии, расчет их доверительного интервала.

    лабораторная работа , добавлен 02.06.2014

    Построение гипотезы о форме связи денежных доходов на душу населения с потребительскими расходами в Уральском и Западно-Сибирском регионах РФ. Расчет параметров уравнений парной регрессии, оценка их качества с помощью средней ошибки аппроксимации.

    контрольная работа , добавлен 05.11.2014

    Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.

    контрольная работа , добавлен 28.03.2018

    Построение поля корреляции. Расчет параметров уравнений парной регрессии. Зависимость средней ожидаемой продолжительности жизни от некоторых факторов. Изучение "критерия Фишера". Оценка тесноты связи с помощью показателей корреляции и детерминации.

И корреляция

1.1. Понятие регрессии

Парной регрессией называется уравнение связи двух переменных у и х

вида y = f (x ),

где у – зависимая переменная (результативный признак); х – независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.

Линейная регрессия описывается уравнением: y = a + b × x +e .

Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.

Примеры регрессий, нелинейных по объясняющим переменным, но ли-

нейных по оцениваемым параметрам:

· полиномы разных степеней

· равносторонняя гипербола:

Примеры регрессий, нелинейных по оцениваемым параметрам:

· степенная

· показательная

· экспоненциальная

Наиболее часто применяются следующие модели регрессий:

– прямой

– гиперболы

– параболы

– показательной функции

– степенная функция

1.2. Построение уравнения регрессии

Постановка задачи. По имеющимся данным n наблюдений за совместным

изменением двух параметров x и y {(xi ,yi ), i=1,2,...,n} необходимо определить

аналитическую зависимость ŷ=f(x) , наилучшим образом описывающую данные наблюдений.

Построение уравнения регрессии осуществляется в два этапа (предполагает решение двух задач):

– спецификация модели (определение вида аналитической зависимости

ŷ=f(x) );

– оценка параметров выбранной модели.

1.2.1. Спецификация модели

Парная регрессия применяется, если имеется доминирующий фактор, который и используется в качестве объясняющей переменной.

Применяется три основных метода выбора вида аналитической зависимости:

– графический (на основе анализа поля корреляций);

– аналитический, т. е. исходя из теории изучаемой взаимосвязи;

– экспериментальный, т. е. путем сравнения величины остаточной дисперсии D ост или средней ошибки аппроксимации , рассчитанных для различных

моделей регрессии (метод перебора).

1.2.2. Оценка параметров модели

Для оценки параметров регрессий, линейных по этим параметрам, используется метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических значений ŷx при тех же значениях фактора x минимальна, т. е.

В случае линейной регрессии параметры а и b находятся из следующей

системы нормальных уравнений метода МНК:

(1.1)

Можно воспользоваться готовыми формулами, которые вытекают из этой

(1.2)

Для нелинейных уравнений регрессии, приводимых к линейным с помощью преобразования (x , y ) → (x’ , y’ ), система нормальных уравнений имеет

вид (1.1) в преобразованных переменных x’ , y’ .

Коэффициент b при факторной переменной x имеет следующую интерпретацию: он показывает, на сколько изменится в среднем величина y при изменении фактора x на 1 единицу измерения .

Гиперболическая регрессия :

x’ = 1/x ; y’ = y .

Уравнения (1.1) и формулы (1.2) принимают вид

Экспоненциальная регрессия:

Линеаризующее преобразование: x’ = x ; y’ = lny .

Модифицированная экспонента : , (0 < a 1 < 1).

Линеаризующее преобразование: x’ = x ; y’ = ln y – К│.

Величина предела роста K выбирается предварительно на основе анализа

поля корреляций либо из качественных соображений. Параметр a 0 берется со

знаком «+», если y х > K и со знаком «–» в противном случае.

Степенная функция:

Линеаризующее преобразование: x’ = ln x ; y’ = ln y .

Показательная функция:

Линеаризующее преобразование: x’ = x ; y’ = lny .

https://pandia.ru/text/78/146/images/image026_7.jpg" width="459" height="64 src=">

Парабола второго порядка :

Парабола второго порядка имеет 3 параметра a 0, a 1, a 2, которые определяются из системы трех уравнений

1.3. Оценка тесноты связи

Тесноту связи изучаемых явлений оценивает линейный коэффициент

парной корреляции rxy для линейной регрессии (–1 ≤ r xy ≤ 1)

и индекс корреляции ρxy для нелинейной регрессии

Имеет место соотношение

Долю дисперсии, объясняемую регрессией , в общей дисперсии результативного признака у характеризует коэффициент детерминации r2xy (для линейной регрессии) или индекс детерминации (для нелинейной регрессии).

Коэффициент детерминации – квадрат коэффициента или индекса корреляции.

Для оценки качества построенной модели регрессии можно использовать

показатель (коэффициент, индекс) детерминации R 2 либо среднюю ошибку аппроксимации.

Чем выше показатель детерминации или чем ниже средняя ошибка аппроксимации, тем лучше модель описывает исходные данные.

Средняя ошибка аппроксимации – среднее относительное отклонение

расчетных значений от фактических

Построенное уравнение регрессии считается удовлетворительным, если

значение не превышает 10–12 %.

1.4. Оценка значимости уравнения регрессии, его коэффициентов,

коэффициента детерминации

Оценка значимости всего уравнения регрессии в целом осуществляется с

помощью F -критерия Фишера.

F- критерий Фишера заключается в проверке гипотезы Но о статистической незначимости уравнения регрессии. Для этого выполняется сравнение

фактического F факт и критического (табличного) F табл значений F- критерия

Фишера.

F факт определяется из соотношения значений факторной и остаточной

дисперсий, рассчитанных на одну степень свободы

где n – число единиц совокупности; m – число параметров при переменных.

Для линейной регрессии m = 1 .

Для нелинейной регрессии вместо r 2 xy используется R 2.

F табл – максимально возможное значение критерия под влиянием случайных факторов при степенях свободы k1 = m , k2 = n – m – 1 (для линейной регрессии m = 1) и уровне значимости α.

Уровень значимости α вероятность отвергнуть правильную гипотезу

при условии, что она верна. Обычно величина α принимается равной 0,05 или

Если F табл < F факт, то Н0 -гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если F табл > F факт, то гипотеза Но не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.

Для оценки статистической значимости коэффициентов линейной регрессии и линейного коэффициента парной корреляции применяется

t- критерий Стьюдента и рассчитываются доверительные интервалы каждого

из показателей.

Согласно t- критерию выдвигается гипотеза Н0 о случайной природе показателей, т. е. о незначимом их отличии от нуля. Далее рассчитываются фактические значения критерия t факт для оцениваемых коэффициентов регрессии и коэффициента корреляции путем сопоставления их значений с величиной стандартной ошибки

Стандартные ошибки параметров линейной регрессии и коэффициента

корреляции определяются по формулам

Сравнивая фактическое и критическое (табличное) значения t- статистики

t табл и t факт принимают или отвергают гипотезу Но.

t табл – максимально возможное значение критерия под влиянием случайных факторов при данной степени свободы k = n– 2 и уровне значимости α.

Связь между F- критерием Фишера (при k 1 = 1; m =1) и t- критерием Стьюдента выражается равенством

Если t табл < t факт, то Но отклоняется, т. е. a, b и не случайно отличаются

от нуля и сформировались под влиянием систематически действующего фактора х. Если t табл > t факт, то гипотеза Но не отклоняется и признается случайная природа формирования а, b или https://pandia.ru/text/78/146/images/image041_2.jpg" width="574" height="59">

F табл определяется из таблицы при степенях свободы k 1 = 1, k 2 = n –2 и при

заданном уровне значимости α. Если F табл < F факт, то признается статистическая значимость коэффициента детерминации. В формуле (1.6) величина m означает число параметров при переменных в соответствующем уравнении регрессии.

1.5. Расчет доверительных интервалов

Рассчитанные значения показателей (коэффициенты a , b , ) являются

приближенными, полученными на основе имеющихся выборочных данных.

Для оценки того, насколько точные значения показателей могут отличаться от рассчитанных, осуществляется построение доверительных интервалов.

Доверительные интервалы определяют пределы, в которых лежат точные значения определяемых показателей с заданной степенью уверенности, соответствующей заданному уровню значимости α.

Для расчета доверительных интервалов для параметров a и b уравнения линейной регрессии определяем предельную ошибку Δ для каждого показателя:

Величина t табл представляет собой табличное значение t- критерия Стьюдента под влиянием случайных факторов при степени свободы k = n –2 и заданном уровне значимости α.

Формулы для расчета доверительных интервалов имеют следующий вид:

https://pandia.ru/text/78/146/images/image045_3.jpg" width="188" height="62">

где t γ – значение случайной величины, подчиняющейся стандартному нормальному распределению, соответствующее вероятности γ = 1 – α/2 (α – уровень значимости);

z’ = Z (rxy) – значение Z- распределения Фишера, соответствующее полученному значению линейного коэффициента корреляции rxy .

Граничные значения доверительного интервала (r– , r+ ) для rxy получаются

из граничных значений доверительного интервала (z– , z+ ) для z с помощью

функции, обратной Z- распределению Фишера

1.6. Точечный и интервальный прогноз по уравнению линейной

регрессии

Точечный прогноз заключается в получении прогнозного значения уp , которое определяется путем подстановки в уравнение регрессии

соответствующего (прогнозного
) значения x p

Интервальный прогноз заключается в построении доверительного интервала прогноза, т. е. нижней и верхней границ уpmin, уpmax интервала, содержащего точную величину для прогнозного значения https://pandia.ru/text/78/146/images/image050_2.jpg" width="37" height="44 src=">

и затем строится доверительный интервал прогноза , т. е. определяются нижняя и верхняя границы интервала прогноза

Контрольные вопросы:

1. Что понимается под парной регрессией?

2. Какие задачи решаются при построении уравнения регрессии?

3. Какие методы применяются для выбора вида модели регрессии?

4. Какие функции чаще всего используются для построения уравнения парной регрессии?

5. Какой вид имеет система нормальных уравнений метода наименьших квадратов в случае линейной регрессии?

6. Какой вид имеет система нормальных уравнений метода наименьших квадратов в случае гиперболической, показательной регрессии?

7. По какой формуле вычисляется линейный коэффициент парной корреляции r xy ?

8. Как строится доверительный интервал для линейного коэффициента парной корреляции?

9. Как вычисляется индекс корреляции?

10. Как вычисляется и что показывает индекс детерминации?

11. Как проверяется значимость уравнения регрессии и отдельных коэффициентов?

12. Как строится доверительный интервал прогноза в случае линейной регрессии?

Лабораторная работа № 1

Задание.1 На основании данных табл. П1 для соответствующего варианта (табл. 1.1):

1. Вычислить линейный коэффициент парной корреляции.

2. Проверить значимость коэффициента парной корреляции.

3. Построить доверительный интервал для линейного коэффициента парной корреляции.

Задание. 2 На основании данных табл. П1 для соответствующего варианта (табл. 1.1):

1. Построить предложенные уравнения регрессии, включая линейную регрессию.

2. Вычислить индексы парной корреляции для каждого уравнения.

3. Проверить значимость уравнений регрессии и отдельных коэффициентов линейного уравнения.

4. Определить лучшее уравнение регрессии на основе средней ошибки аппроксимации.

5. Построить интервальный прогноз для значения x = x max для линейного

уравнения регрессии.

Требования к оформлению результатов

Отчет о лабораторной работе должен содержать разделы:

1. Описание задания;

2. Описание решения лабораторной работы (по этапам);

3. Изложение полученных результатов.

Таблица П1

Исходные данные к лабораторным работам № 1, 2

Наличие предметов длительного пользования в домашних хозяйствах по регионам Российской Федерации (европейская часть территории без республик Северного Кавказа) (по материалам выборочного обследования бюджетов домашних хозяйств; на 100 домохозяйств; штук)

Парная линейная регрессия

ПРАКТИКУМ

Парная линейная регрессия: Практикум. –

Изучение эконометрики предполагает приобретение студентами опыта построения эконометрических моделей, принятия решений о спецификации и идентификации модели, выбора метода оценки параметров модели, оценки ее качества, интерпретации результатов, получения прогнозных оценок и пр. Практикум поможет студентам приобрести практические навыки в этих вопросах.

Утверждено редакционно-издательским советом

Составитель: М.Б. Перова, д.э.н., профессор

Общие положения

Эконометрическое исследование начинается с теории, устанавливающей связь между явлениями. Из всего круга факторов, влияющих на результативный признак, выделяются наиболее существенные факторы. После того, как было выявлено наличие взаимосвязи между изучаемыми признаками, определяется точный вид этой зависимости с помощью регрессионного анализа.

Регрессионный анализ заключается в определении аналитического выражения (в определении функции), в котором изменение одной величины (результативного признака) обусловлено влиянием независимой величины (факторного признака). Количественно оценить данную взаимосвязь можно с помощью построения уравнения регрессии или регрессионной функции.

Базисной регрессионной моделью является модель парной (однофакторной) регрессии. Парная регрессия – уравнение связи двух переменных у и х :

где – зависимая переменная (результативный признак);

–независимая, объясняющая переменная (факторный признак).

В зависимости от характера изменения у с изменением х различают линейные и нелинейные регрессии.

Линейная регрессия

Данная регрессионная функция называется полиномом первой степени и используется для описания равномерно развивающихся во времени процессов.

Наличие случайного члена (ошибки регрессии) связано с воздействием на зависимую переменную других неучтенных в уравнении факторов, с возможной нелинейностью модели, ошибками измерения, следовательно, появлениеслучайной ошибки уравнения регрессии может быть обусловлено следующими объективными причинами :

1) нерепрезентативность выборки. В модель парной регрессии включается фактор, не способный полностью объяснить вариацию результативного признака, который может быть подвержен влиянию многих других факторов (пропущенных переменных) в гораздо большей степени. Наприем, заработная плата может зависеть, кроме квалификации, от уровня образования, стажа работы, пола и пр.;

2) существует вероятность того, что переменные, участвующие в модели, могут быть измерены с ошибкой. Например, данные по расходам семьи на питание составляются на основании записей участников опросов, которые, как предполагается, тщательно фиксируют свои ежедневные расходы. Разумеется, при этом возможны ошибки.

На основе выборочного наблюдения оценивается выборочное уравнение регрессии (линия регрессии ):

,

где
– оценки параметров уравнения регрессии (
).

Аналитическая форма зависимости между изучаемой парой признаков (регрессионная функция) определяется с помощью следующих методов :

    На основе теоретического и логического анализа природы изучаемых явлений, их социально-экономической сущности. Например, если изучается зависимость между доходами населения и размером вкладов населения в банки, то очевидно, что связь прямая.

    Графический метод , когда характер связи оценивается визуально.

Эту зависимость можно наглядно увидеть, если построить график, отложив на оси абсцисс значения признака х , а на оси ординат – значения признака у . Нанеся на график точки, соответствующие значениям х и у , получим корреляционное поле :

а) если точки беспорядочно разбросаны по всему полю – это говорит об отсутствии зависимости между этими признаками;

б) если точки концентрируются вокруг оси, идущей от нижнего левого угла в верхний правый – то имеется прямая зависимость между признаками;

в) если точки концентрируются вокруг оси, идущей от верхнего левого угла в нижний правый – то обратная зависимость между признаками.

Если на корреляционном поле соединим точки отрезками прямой, то получим ломаную линию с некоторой тенденцией к росту. Это будет эмпирическая линия связи или эмпирическая линия регрессии . По ее виду можно судить не только о наличии, но и о форме зависимости между изучаемыми признаками.

Построение уравнения парной регрессии

Построение уравнения регрессии сводится к оценке ее параметров. Эти оценки параметров могут быть найдены различными способами. Одним их них является метод наименьших квадратов (МНК). Суть метода состоит в следующем. Каждому значению соответствует эмпирическое (наблюдаемое) значение. Построив уравнение регрессии, например уравнение прямой линии, каждому значениюбудет соответствовать теоретическое (расчетное) значение. Наблюдаемые значенияне лежат в точности на линии регрессии, т.е. не совпадают с. Разность между фактическим и расчетным значениями зависимой переменной называетсяостатком :

МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических , т.е. сумма квадратов остатков, минимальна:

Для линейных уравнений и нелинейных, приводимых к линейным, решается следующая система относительно а и b :

где n – численность выборки.

Решив систему уравнений, получим значения а и b , что позволяет записать уравнение регрессии (регрессионное уравнение):

где – объясняющая (независимая) переменная;

–объясняемая (зависимая) переменная;

Линия регрессии проходит через точку (,) и выполняются равенства:

Можно воспользоваться готовыми формулами, которые вытекают из этой системы уравнений:

где – среднее значение зависимого признака;

–среднее значение независимого признака;

–среднее арифметическое значение произведения зависимого и независимого признаков;

–дисперсия независимого признака;

–ковариация между зависимым и независимым признаками.

Выборочной ковариацией двух переменных х , у называется средняя величина произведения отклонений этих переменных от своих средних

Параметр b при х имеет большое практическое значение и носит название коэффициента регрессии. Коэффициент регрессии показывает, на сколько единиц в среднем изменяется величина у х на 1 единицу своего измерения.

Знак параметра b в уравнении парной регрессии указывает на направление связи:

если
, то связь между изучаемыми показателями прямая, т.е. с увеличением факторного признаках увеличивается и результативный признак у , и наоборот;

если
, то связь между изучаемыми показателями обратная, т.е. с увеличением факторного признаках результативный признак у уменьшается, и наоборот.

Значение параметра а в уравнении парной регрессии в ряде случаев можно трактовать как начальное значение результативного признака у . Такая трактовка параметра а возможна только в том случае, если значение
имеет смысл.

После построения уравнения регрессии, наблюдаемые значения y можно представить как:

Остатки , как и ошибки, являются случайными величинами, однако они, в отличие от ошибок, наблюдаемы. Остаток есть та часть зависимой переменнойy , которую невозможно объяснить с помощью уравнения регрессии.

На основании уравнения регрессии могут быть вычислены теоретические значения у х для любых значений х .

В экономическом анализе часто используется понятие эластичности функции. Эластичность функции
рассчитывается как относительное изменениеy к относительному изменению x . Эластичность показывает, на сколько процентов изменяется функция
при изменении независимой переменной на 1%.

Поскольку эластичность линейной функции
не является постоянной величиной, а зависит отх , то обычно рассчитывается коэффициент эластичности как средний показатель эластичности.

Коэффициент эластичности показывает, на сколько процентов в среднем по совокупности изменится величина результативного признака у при изменении факторного признака х на 1% от своего среднего значения:

где
– средние значения переменныхх и у в выборке.

Оценка качества построенной модели регрессии

Качество модели регрессии – адекватность построенной модели исходным (наблюдаемым) данным.

Чтобы измерить тесноту связи, т.е. измерить, насколько она близка к функциональной, нужно определить дисперсию, измеряющую отклонения у от у х и характеризующую остаточную вариацию, обусловленную прочими факторами. Они лежат в основе показателей, характеризующих качество модели регрессии.

Качество парной регрессии определяется с помощью коэффициентов, характеризующих

1) тесноту связи – индекса корреляции, парного линейного коэффициента корреляции;

2) ошибку аппроксимации;

3) качество уравнения регрессии и отдельных его параметров – средние квадратические ошибки уравнения регрессии в целом и отдельных его параметров.

Для уравнений регрессии любого вида определяется индекс корреляции , который характеризует только тесноту корреляционной зависимости, т.е. степень ее приближения к функциональной связи:

,

где – факторная (теоретическая) дисперсия;

–общая дисперсия.

Индекс корреляции принимает значения
, при этом,

если

если
– то связь между признакамих и у является функциональной, Чем ближе к 1, тем более тесной считается связь между изучаемыми признаками. Если
, то связь можно считать тесной

Дисперсии, необходимые для вычисления показателей тесноты связи вычисляются:

Общая дисперсия , измеряющая общую вариацию за счет действия всех факторов:

Факторная (теоретическая) дисперсия, измеряющая вариацию результативного признака у за счет действия факторного признака х :

Остаточная дисперсия , характеризующая вариацию признака у за счет всех факторов, кроме х (т.е. при исключенном х ):

Тогда по правилу сложения дисперсий:

Качество парной линейной регрессии может быть определено также с помощью парного линейного коэффициента корреляции :

,

где
– ковариация переменныхх и у ;

–среднеквадратическое отклонение независимого признака;

–среднеквадратическое отклонение зависимого признака.

Линейный коэффициент корреляции характеризует тесноту и направление связи между изучаемыми признаками. Он измеряется в пределах [-1; +1]:

если
– то связь между признаками прямая;

если
– то связь между признаками обратная;

если
– то связь между признаками отсутствует;

если
или
– то связь между признаками является функциональной, т.е. характеризуется полным соответствием междух и у . Чем ближе к 1, тем более тесной считается связь между изучаемыми признаками.

Если индекс корреляции (парный линейный коэффициент корреляции) возвести в квадрат, то получим коэффициент детерминации.

Коэффициент детерминации – представляет собой долю факторной дисперсии в общей и показывает, на сколько процентов вариация результативного признака у объясняется вариацией факторного признака х :

Он характеризует не всю вариацию у от факторного признака х , а лишь ту ее часть, которая соответствует линейному уравнению регрессии, т.е. показывает удельный вес вариации результативного признака, линейно связанной с вариацией факторного признака.

Величина
– доля вариации результативного признака, которую модель регрессии учесть не смогла.

Рассеяние точек корреляционного поля может быть очень велико, и вычисленное уравнение регрессии может давать большую погрешность в оценке анализируемого показателя.

Средняя ошибка аппроксимации показывает среднее отклонение расчетных значений от фактических:

Максимально допустимое значение 12–15%.

Мерой разброса зависимой переменной вокруг линии регрессии служит стандартная ошибка.Для всей совокупности наблюдаемых значений рассчитывается стандартная (среднеквадратическая) ошибка уравнения регрессии , которая представляет собой среднее квадратическое отклонение фактических значений у относительно теоретических значений, рассчитанных по уравнению регрессии у х .

,

где
– число степеней свободы;

m – число параметров уравнения регрессии (для уравнения прямой m =2).

Оценить величину средней квадратической ошибки можно сопоставив ее

а) со средним значение результативного признака у ;

б) со средним квадратическим отклонением признака у :

если
, то использование данного уравнения регрессии является целесообразным.

Отдельно оцениваются стандартные (среднеквадратические) ошибки параметров уравнения и индекса корреляции :

;
;
.

х – среднее квадратическое отклонение х .

Проверка значимости уравнения регрессии и показателей тесноты связи

Чтобы построенную модель можно было использовать для дальнейших экономических расчетов, проверки качества построенной модели недостаточно. Необходимо также проверить значимость (существенность) полученных с помощью метода наименьших квадратов оценок уравнения регрессии и показателя тесноты связи, т.е. необходимо проверить их на соответствие истинным параметрам взаимосвязи.

Это связано с тем, что исчисленные по ограниченной совокупности показатели сохраняют элемент случайности, свойственный индивидуальным значениям признака. Поэтому они являются лишь оценками определенной статистической закономерности. Необходима оценка степени точности и значимости (надежности, существенности) параметров регрессии. Под значимостью понимают вероятность того, что значение проверяемого параметра не равно нулю, не включает в себя величины противоположных знаков.

Проверка значимости – проверка предположения того, что параметры отличаются от нуля.

Оценка значимости парного уравнения регрессии сводится к проверке гипотез о значимости уравнения регрессии в целом и отдельных его параметров (a , b ), парного коэффициента детерминации или индекса корреляции.

В этом случае могут быть выдвинуты следующие основные гипотезы H 0 :

1)
– коэффициенты регрессии являются незначимыми и уравнение регрессии также является незначимым;

2)
– парный коэффициент детерминации незначим и уравнение регрессии также является незначимым.

Альтернативной (или обратной) выступают следующие гипотезы:

1)
– коэффициенты регрессии значимо отличаются от нуля, и построенное уравнение регрессии является значимым;

2)
– парный коэффициент детерминации значимо отличаются от нуля и построенное уравнение регрессии является значимым.

Проверка гипотезы о значимости уравнения парной регрессии

Для проверки гипотезы о статистической незначимости уравнения регрессии в целом и коэффициента детерминации используется F -критерий (критерий Фишера ):

или

где k 1 = m –1 ; k 2 = n m – число степеней свободы;

n – число единиц совокупности;

m – число параметров уравнения регрессии;

–факторная дисперсия;

–остаточная дисперсия.

Гипотеза проверяется следующим образом:

1) если фактическое (наблюдаемое) значение F -критерия больше критического (табличного) значения данного критерия
, то с вероятностью
основная гипотеза о незначимости уравнения регрессии или парного коэффициента детерминации отвергается, и уравнение регрессии признается значимым;

2) если фактическое (наблюдаемое) значение F-критерия меньше критического значения данного критерия
, то с вероятностью (
) основная гипотеза о незначимости уравнения регрессии или парного коэффициента детерминации принимается, и построенное уравнение регрессии признается незначимым.

Критическое значение F -критерия находится по соответствующим таблицам в зависимости от уровня значимости и числа степеней свободы
.

Число степеней свободы – показатель, который определяется как разность между объемом выборки (n ) и числом оцениваемых параметров по данной выборке (m ). Для модели парной регрессии число степеней свободы рассчитывается как
, так как по выборке оцениваются два параметра (
).

Уровень значимости – величина, определяемая
,

где – доверительная вероятность попадания оцениваемого параметра в доверительный интервал. Обычно принимается 0,95. Таким образом– это вероятность того, что оцениваемый параметр не попадет в доверительный интервал, равная 0,05 (5%) .

Тогда в случае оценки значимости уравнения парной регрессии критическое значение F-критерия вычисляется как
:

.

Проверка гипотезы о значимости параметров уравнения парной регрессии и индекса корреляции

При проверке значимости параметров уравнения (предположения того, что параметры отличаются от нуля) выдвигается основная гипотеза о незначимости полученных оценок (
. В качестве альтернативной (обратной) выдвигается гипотеза о значимости параметров уравнения (
).

Для проверки выдвинутых гипотез используется t -критерий (t -статистика) Стьюдента . Наблюдаемое значение t -критерия сравнивается со значением t -критерия, определяемого по таблице распределения Стьюдента (критическим значением). Критическое значение t -критерия
зависит от двух параметров: уровня значимостии числа степеней свободы
.

Выдвинутые гипотезы проверяются следующим образом:

1) если модуль наблюдаемого значения t -критерия больше критического значения t -критерия, т.е.
, то с вероятностью
основную гипотезу о незначимости параметров регрессии отвергают, т.е. параметры регрессии не равны 0;

2) если модуль наблюдаемого значения t -критерия меньше или равен критическому значению t -критерия, т.е.
, то с вероятностью
основная гипотеза о незначимости параметров регрессии принимается, т.е. параметры регрессии почти не отличаются от 0 или равны 0.

Оценка значимости коэффициентов регрессии с помощью критерия Стьюдента проводится путем сопоставления их оценок с величиной стандартной ошибки:

;

Для оценки статистической значимости индекса (линейного коэффициента) корреляции применяется также t -критерий Стьюдента.



© dagexpo.ru, 2024
Стоматологический сайт