Теория пуанкаре простыми словами. Cледствие доказательства гипотезы Пуанкаре

29.09.2019

Гениальный математик, парижский профессор Анри Пуанкаре занимался самыми разными областями этой науки. Самостоятельно и независимо от работ Эйнштейна в 1905 году он выдвинул основные положения Специальной теории относительности. А свою знаменитую гипотезу он сформулировал еще в 1904 году, так что на ее решение потребовалось около столетия.

Пуанкаре был одним из родоначальников топологии — науке о свойствах геометрических фигур, которые не изменяются при деформациях, происходящих без разрывов. К примеру, воздушный шарик можно с легкостью деформировать в самые разные фигуры — как это делают для детей в парке. Но потребуется разрезать шарик, чтобы скрутить из него бублик (или, говоря геометрическим языком, тор) — другого способа не существует. И наоборот: возьмите резиновый бублик и попробуйте «превратить» его в сферу. Впрочем, все равно не выйдет. По своим топологическим свойствам поверхности сферы и тора несовместимы, или негомеоморфны. Зато любые поверхности без «дырок» (замкнутые поверхности), наоборот, гомеоморфны и способны, деформируясь, переходить в сферу.

Если насчет двумерных поверхностей сферы и тора все было решено еще в XIX веке, для более многомерных случаев потребовалось гораздо больше времени. В этом, собственно, и состоит суть гипотезы Пуанкаре, которая расширяет закономерность на многомерные случаи. Немного упрощая, гипотеза Пуанкаре гласит: «Всякое односвязное замкнутое n-мерное многообразие гомеоморфно n-мерной сфере». Забавно, что вариант с трехмерными поверхностями оказался самым непростым. В 1960 году гипотеза была доказана для размерностей 5 и выше, в 1981 — для n=4. Камнем преткновения стала именно трехмерность.

Развивая идеи Вильяма Тёрстена и Ричарда Гамильтона, предложенные ими в 1980-х годах, Григорий Перельман применил к трехмерным поверхностям особое уравнение «плавной эволюции». И сумел показать, что исходная трехмерная поверхность (если в ней нет разрывов) обязательно будет эволюционировать в трехмерную сферу (это поверхность четырехмерного шара, и существует она в 4-мерном пространстве). По словам ряда специалистов, это была идея «нового поколения», решение которой открывает новые горизонты для математической науки.

Интересно, что сам Перельман отчего-то не потрудился довести свое решение до окончательного блеска. Описав решение «в целом» в препринте The entropy formula for the Ricci flow and its geometric applications в ноябре 2002 года, он в марте 2003 года дополнил доказательство и изложил его в препринте Ricci flow with surgery on three-manifolds , а также сообщил о методе в серии лекций, которые прочел в 2003 году по приглашениям ряда университетов. Ни один из рецензентов не смог обнаружить в предложенном им варианте ошибок, но и публикации в реферируемом научном издании Перельман не выпустил (а именно таковым, в частности было необходимое условие получения премии ). Зато в 2006 году на основе его метода вышел целый набор доказательств, в которых американские и китайские математики подробно и полностью рассматривают проблему, дополняют моменты, опущенные Перельманом, и выдают «окончательное доказательство» гипотезы Пуанкаре.

  • Tutorial

Еще в XIX веке было известно, что если любую замкнутую петлю, лежащую на двумерной поверхности, можно стянуть в одну точку, то такую поверхность легко превратить в сферу. Так, поверхность воздушного шарика удастся трансформировать в сферу, а поверхность бублика – нет (легко вообразить себе петлю, которая в случае с бубликом не стянется в одну точку). Гипотеза, высказанная французским математиком Анри Пуанкаре в 1904 году, гласит, что аналогичное утверждение верно и для трехмерных многообразий.

Доказать гипотезу Пуанкаре удалось только в 2003 году. Доказательство принадлежит нашему соотечественнику Григорию Перельману. Эта лекция проливает свет на объекты, необходимые для формулировки гипотезы, историю поиска доказательства и его основные идеи.

Читают лекцию доценты механико-математического факультета МГУ к. ф-м. н. Александр Жеглов и к. ф.-м. н. Федор Попеленский.

Если не вдаваться в математические подробности, то вопрос, поднимаемый гипотезой Пуанкаре можно следующим образом: как охарактеризовать (трехмерную) сферу? Чтобы правильно понять этот вопрос, нужно познакомиться с одним из важнейших понятий в топологии – гомеоморфизмом. Разобравшись с ним, мы сможем точно сформулировать гипотезу Пуанкаре.

Чтобы совсем уж не залезать в математические подробности формального определения, мы скажем, что две фигуры считаются гомеоморфными, если можно установить такое взаимно-однозначно соответствие между точками этих фигур, при котором близким точкам одной фигуры соответствуют близкие точки другой фигуры и наоборот. Пропущенные нами подробности состоят как раз в адекватной формализации близости точек.

Легко понять, что две фигуры гомеоморфны, если одну из другой можно получить произвольной деформацией, при которой запрещено «портить» поверхности (рвать, сминать области в точку, делать дырки и т.п.).

Например, чтобы получить из диска полусферу, как показано на картинке выше, нам потребуется просто нажать сверху в его центр, придерживая внешний обод. Можно представлять себе, что поверхности сделаны из идеальной резины, так что все фигуры могут сжиматься и растягиваться как угодно. Нельзя делать только две вещи: разрывать и склеивать.

Более точное (но все же не окончательное с точки зрения строгости) представление о гомеоморфных фигурах мы будем иметь, если разрешим еще одну операцию: можно сделать на фигуре разрез, перекрутить, завязать, развязать и т.п., но потом обязательно заклеить разрез как было.

Приведем еще один пример. Представим себе яблоко, в котором червяк прогрыз ход в виде узла и небольшую пещеру.

С точки зрения топологии поверхность этого яблока все равно останется сферой, т.к. если стянуть все это определенным образом, мы получим поверхность яблока в том же виде, как было до того, как червяк начал его есть.

Для закрепления попробуйте классифицировать буквы латинского алфавита с точностью до гомеоморфизма (т.е. выясните, какие буквы гомеоморфны, а какие - нет). Ответ зависит начертания букв (от типа шрифта или от гарнитуры), и для простейшего варианта начертания он приведен на следующем рисунке:

Из 26 букв у нас получается всего 8 классов.

На следующей картинке изображены гиря, кофейная чашка, бублик, сушка и кренделек. С топологической точки зрения поверхности гири, кофейной чашки, бублика и сушки одинаковы, т.е. гомеоморфны. Что касается кренделька, то он приведен здесь для сравнения с поверхностью, которую в топологии часто называют кренделем (он изображен в правом нижнем углу рисунка). Как вы, наверное, уже понимаете, и топологический крендель, и съедобный крендель отличаются от тора.

Формальная постановка вопроса

Пусть M – замкнутое связное многообразие размерности 3. Пусть на нем любая петля может быть стянута в точку. Тогда M гомеоморфно трехмерной сфере.

Наибольшую трудность для неподготовленного человека здесь вызывает понятие «многообразия размерности 3» и свойства, выраженные словами «замкнутое» и «связное». Поэтому мы попробуем разобраться со всеми этими понятиями и свойствами на примере размерности 2, в этом случаем многое кардинально упрощается.

Гипотеза Пуанкаре для поверхностей

Пусть M – замкнутая связная поверхность (многообразие размерности 2). Пусть на ней любая петля может быть стянута в точку. Тогда поверхность M гомеоморфна двумерной сфере.

Сначала определим, что такое поверхность. Возьмем конечный набор многоугольников, разбиваем все их стороны (ребра) на пары (т.е. всего сторон у всех многоугольников должно быть четное число), в каждой паре выбираем, каким из двух возможных способов будем их склеивать. Склеиваем. В результате поучается замкнутая поверхность.

Если полученная поверхность состоит из одного куска, а не из нескольких отдельных, то говорят, что поверхность связна. С формальной точки зрения это значит, что после склейки из любой вершины любого многоугольника можно по ребрам пройти в любую другую вершину.

Формально нужно требовать, чтобы из любой вершины любого многоугольника после склейки можно было пройти в любую вершину любого многоугольника (по ребрам).

Нетрудно сообразить, что связную поверхность можно склеить и из одного многоугольника. На рисунке видна идея, как это обосновывается:

Рассмотрим примеры простейших склеек:

В первом случае у нас получится сфера:

Во втором случае у нас получится тор (поверхность бублика, мы встречались с ним раньше):

В третьем случае получится так называемая бутылка Клейна:

Если склеивать не все стороны многоугольника, то получится поверхность с краем:

Важно отметить, что после склейки «шрамы» от нее носят чисто «косметический характер. Все точки поверхности равноправны: у любой точки имеется окрестность гомеоморфная диску.

Две поверхности считаются гомеоморфными, если схемы склейки каждой из них можно так разрезать на схемы склейки из более мелких многоугольников, что схемы склейки станут одинаковыми.

Разберем это утверждение на примере разбиения поверхности куба на части, из которых можно сложить развертку тетраэдра:

Верен и более общий факт: поверхности всех выпуклых многогранников – это сферы.

Теперь подробнее остановимся на понятии петли. Петял - это замкнутая кривая на рассматриваемой поверхности. Две петли называются гомотопными, если одну из них можно продеформировать в другую без разрывов и склеек, оставаясь на поверхности. Ниже приведен простейший случай стягивания петли на плоскости или сфере:

Даже если петля на плоскости или сфере имеет самопересечения, ее все равно можно стянуть:

На плоскости можно стянуть любую петлю:

А вот какие петли бывают на торе:

Стянуть такие петли невозможно. (К сожалению, доказательство выходит довольно далеко за рамки нашего рассказа.) Более того, показанные петли на торе не гомотопны. Предлагаем слушателям или читателям найти еще одну петлю на торе, не гомотопную этим двум - это очень простой вопрос. После этого попробуйте найти на торе четвертую петлю, не гомотопную этим трем - это будет несколько сложнее.

Эйлерова характеристика

Теперь, когда мы познакомились со всеми основными понятиями из формулировки гипотезы Пуанкаре, попробуем приступить к доказательству двумерного случая (лишний раз отметим, что это многократно проще трехмерного случая). А поможет нам в этом эйлерова характеристика.

Эйлеровой характеристикой поверхности M назовем число B−P+Г. Здесь Г - число многоугольников, Р - это число ребер после склейки (в случае рассматриваемых поверхностей это половина числа сторон всех многоугольников), B - это число вершин, которое получается после склейки после склейки.

Если две схемы склейки задают гомеоморфные поверхности, то у этих схем числа B−P+Г одинаковы, т. е. B−P+Г является инвариантом поверхности.

Если поверхность уже как-то задана, то надо нарисовать на ней какой-нибудь граф, чтобы после разрезания по нему поверхность распалась на куски гомеоморфные дискам (например, кольца запрещены). Затем подсчитываем величину B−P+Г - это и есть эйлерова характеристика поверхности.

Будут ли гомеоморфны поверхности с одинаковыми эйлеровыми характеристиками, мы узнаем позже. Но совершенно точно можно утверждать, что если эйлеровы характеристики у поверхностей разные, то поверхности не гомеоморфны.

Знаменитое соотношение B−P+Г=2 для выпуклых многоугольников (теорема Эйлера) является частным случаем этой теоремы. В данном случае речь идет о конкретной поверхности - о сфере. Замечание Обозначение: Эйлерову характеристику поверхности M будем обозначать через χ(M): χ(M) = B − P + Γ

Если поверхность M связна, то χ(M) ≤ 2, причем χ(M) = 2 тогда и только тогда, когда M гомеоморфна сфере.

Посмотрев лекцию до конца, вы узнаете, как же все-таки доказывается гипотеза Пуанкаре в размерности 2, и как Григорию Перельману удалось доказать ее в размерности 3.

В чём суть теоремы Пуанкаре

  1. Е доказала РАЖАЯ Софья вот а тоже РЫЖАЯ....
  2. Суть в том, что Вселенная имеет не форму сферы, а бублика
  3. Cмысл гипотезы Пуанкаре в ее изначальной формулировке состоит в том, что для любого трехмерного тела без отверстий найдется такое преобразование, которое позволит его без разрезания и склеивания превратить в шар. Если это кажется очевидным, то что, если пространство не трехмерное, а содержит десять или одиннадцать измерений (то есть речь идет об обобщенной формулировке гипотезы Пуанкаре, которую и доказал Перельман)
  4. в 2-х словах не расскажешь
  5. В 1900 году Пуанкаре сделал предположение, что трхмерное многообразие со всеми группами гомологий как у сферы гомеоморфно сфере. В 1904 году он же нашл контр-пример, называемый теперь сферой Пуанкаре, и сформулировал окончательный вариант своей гипотезы. Попытки доказать гипотезу Пуанкаре привели к многочисленным продвижениям в топологии многообразий.

    Доказательства обобщнной гипотезы Пуанкаре для n #10878; 5 получены в начале 19601970-х почти одновременно Смейлом, независимо и другими методами Столлингсом (англ.) (для n #10878; 7, его доказательство было распространено на случаи n = 5 и 6 Зееманом (англ.)) . Доказательство значительно более трудного случая n = 4 было получено только в 1982 году Фридманом. Из теоремы Новикова о топологической инвариантности характеристических классов Понтрягина следует, что существуют гомотопически эквивалентные, но не гомеоморфные многообразия в высоких размерностях.

    Доказательство исходной гипотезы Пуанкаре (и более общей гипотезы Трстона) было найдено только в 2002 году Григорием Перельманом. Впоследствии доказательство Перельмана было проверено и представлено в разврнутом виде как минимум тремя группами учных. 1 Доказательство использует поток Риччи с хирургией и во многом следует плану, намеченному Гамильтоном, который также первым применил поток Риччи.

  6. хто это такой
  7. Теорема Пуанкаре:
    Теорема Пуанкаре о векторном поле
    Теорема Пуанкаре Бендиксона
    Теорема Пуанкаре о классификации гомеоморфизмов окружности
    Гипотеза Пуанкаре о гомотопической сфере
    Теорема Пуанкаре о возвращении

    Вы о какой спрашиваете?

  8. В теории динамических систем, теорема Пуанкаре о классификации гомеоморфизмов окружности описывает возможные типы обратимой динамики на окружности, в зависимости от числа вращения p(f) итерируемого отображения f. Грубо говоря, оказывается, что динамика итераций отображения в определнной степени похожа на динамику поворота на соответствующий угол.
    А именно, пусть задан гомеоморфизм окружности f. Тогда:
    1) Число вращения рационально тогда и только тогда, когда у f есть периодические точки. При этом знаменатель числа вращения это период любой периодической точки, а циклический порядок на окружности точек любой периодической орбиты такой же, как и у точек орбиты поворота на p(f). Далее, любая траектория стремится к некоторой периодической как в прямом, так и в обратном времени (a- и -w предельные траектории при этом могут быть разными) .
    2) Если число вращения f иррационально, то возможны два варианта:
    i) либо у f есть плотная орбита, и тогда гомеоморфизм f сопряжн повороту на p(f). В этом случае все орбиты f плотны (поскольку это верно для иррационального поворота) ;
    ii) либо у f есть канторово инвариантное множество C, являющееся единственным минимальным множеством системы. В этом случае все траектории стремятся к C как в прямом, так и в обратном времени. Кроме того, отображение f полусопряжено повороту на p(f): для некоторого отображения h степени 1, p o f =R p (f) o h

    При этом множество C в точности является множеством точек роста h иными словами, с топологической точки зрения, h схлопывает интервалы дополнения до C.

  9. суть вопроса - 1 млн долларов
  10. В том что ее не кто не понимает кроме 1 человека
  11. Во внешней политике Франции..
  12. Вот здесь Лка лучше всех ответила http://otvet.mail.ru/question/24963208/
  13. Гениальный математик, парижский профессор Анри Пуанкаре занимался самыми разными областями этой науки. Самостоятельно и независимо от работ Эйнштейна в 1905 году он выдвинул основные положения Специальной теории относительности. А свою знаменитую гипотезу он сформулировал еще в 1904 году, так что на ее решение потребовалось около столетия.

    Пуанкаре был одним из родоначальников топологии науке о свойствах геометрических фигур, которые не изменяются при деформациях, происходящих без разрывов. К примеру, воздушный шарик можно с легкостью деформировать в самые разные фигуры как это делают для детей в парке. Но потребуется разрезать шарик, чтобы скрутить из него бублик (или, говоря геометрическим языком, тор) другого способа не существует. И наоборот: возьмите резиновый бублик и попробуйте превратить его в сферу. Впрочем, все равно не выйдет. По своим топологическим свойствам поверхности сферы и тора несовместимы, или негомеоморфны. Зато любые поверхности без дырок (замкнутые поверхности) , наоборот, гомеоморфны и способны, деформируясь, переходить в сферу.

    Если насчет двумерных поверхностей сферы и тора все было решено еще в XIX веке, для более многомерных случаев потребовалось гораздо больше времени. В этом, собственно, и состоит суть гипотезы Пуанкаре, которая расширяет закономерность на многомерные случаи. Немного упрощая, гипотеза Пуанкаре гласит: Всякое односвязное замкнутое n-мерное многообразие гомеоморфно n-мерной сфере. Забавно, что вариант с трехмерными поверхностями оказался самым непростым. В 1960 году гипотеза была доказана для размерностей 5 и выше, в 1981 для n=4. Камнем преткновения стала именно трехмерность.

    Развивая идеи Вильяма Трстена и Ричарда Гамильтона, предложенные ими в 1980-х годах, Григорий Перельман применил к трехмерным поверхностям особое уравнение плавной эволюции. И сумел показать, что исходная трехмерная поверхность (если в ней нет разрывов) обязательно будет эволюционировать в трехмерную сферу (это поверхность четырехмерного шара, и существует она в 4-мерном пространстве) . По словам ряда специалистов, это была идея нового поколения, решение которой открывает новые горизонты для математической науки.

    Интересно, что сам Перельман отчего-то не потрудился довести свое решение до окончательного блеска. Описав решение в целом в препринте The entropy formula for the Ricci flow and its geometric applications в ноябре 2002 года, он в марте 2003 года дополнил доказательство и изложил его в препринте Ricci flow with surgery on three-manifolds, а также сообщил о методе в серии лекций, которые прочел в 2003 году по приглашениям ряда университетов. Ни один из рецензентов не смог обнаружить в предложенном им варианте ошибок, но и публикации в реферируемом научном издании Перельман не выпустил (а именно таковым, в частности было необходимое условие получения премии Математического института Клэя) . Зато в 2006 году на основе его метода вышел целый набор доказательств, в которых американские и китайские математики подробно и полностью рассматривают проблему, дополняют моменты, опущенные Перельманом, и выдают окончательное доказательство гипотезы Пуанкаре.

  14. Обобщнная гипотеза Пуанкаре утверждает, что:
    Для любого n всякое многообразие размерности n гомотопически эквивалентно сфере размерности n тогда и только тогда, когда оно гомеоморфно ей.
    Исходная гипотеза Пуанкаре является частным случаем обобщнной гипотезы при n = 3.
    За расъяснениями - в лес по грибы, там ходит Григорий Перельман)
  15. Теорема Пуанкаре о возвращении одна из базовых теорем эргодической теории. Ее суть в том, что при сохраняющем меру отображении пространства на себя почти каждая точка вернется в свою начальную окрестность. Полная формулировка теоремы следующая 1:
    Пусть сохраняющее меру преобразование пространства с конечной мерой и пусть измеримое множество. Тогда для любого натурального
    .
    У данной теоремы есть неожиданное следствие: оказывается, если в сосуде, разделенном перегородкой на два отсека, один из которых заполнен газом, а другой пуст, удалить перегородку, то через некоторое время все молекулы газа вновь соберутся в исходной части сосуда. Разгадка этого парадокса в том, что некоторое время имеет порядок миллиардов лет.
  16. у него теорем как собак в корее резанных.. .

    вселенная имеет сферическую форму.. . http://ru.wikipedia.org/wiki/Пуанкаре, _Анри

    вот вчера учные объявили - что вселенная замороженная субстанция... и попросили много денег для доказательства этого... опять мерикосы станок включат печатный... для утехи яйцеголовых...

  17. Попробуй доказать, где верх и низ в невесомости.
  18. Вчера был прекрасный фильм по КУЛЬТУРе, в котором на пальцах объяснялась эта проблема. Может, он у них еще есть?

    http://video.yandex.ru/#search?text=РРР СР Р РРСРР СРРРРwhere=allfilmId=36766495-03-12
    Входите в Яндекс и пишете Фильм о Перельмане и выходите на фильм

Немногие математические теории так взволновали далекую от абстрактных геометрических рассуждений общественность, как эта. Гипотеза Пуанкаре, выдвинутая в 1887 году французским математиком Анри Пуанкаре, уже более сотни лет не давала покоя ученым разных стран. Ею заинтересовались не только геометры, но и физики, и даже… спецслужбы. Поэтому такую сенсацию вызвало сообщение о том, что секрет гипотезы, над которой ломало голову столько светлых умов, наконец, раскрыт, и доказана. Масла в огонь народного интереса подлил и тот факт, что доказавший теорему ученый - российский математик Григорий Перельман - в 2006 году отказался от присужденной ему Филдсовской математической премии (и сопутствующего ей миллиона долларов). Никак не отреагировал ученый и на награждение его Премией Тысячелетия математическим институтом Клэя.

Однако, - спросит читатель, далекий от математики, - отчего такой интерес вызывает именно гипотеза Пуанкаре? И почему за ее доказательство платят такие огромные деньги? Для этого, пусть и в самых общих чертах, необходимо охарактеризовать, что представляет собой эта гипотеза в рамках такой области математики, как топология. Представьте себе слабо надутый воздушный шарик. Если его мять, то можно придавать ему разные формы: куб, овальная сфера и даже формы людей и животных. Но все это разнообразие геометрических форм может превращаться в одну универсальную форму - шар. Единственное, во что не может превратиться шарик без разрывов - это в форму с дыркой, например, в бублик.

Гипотеза Пуанкаре утверждала, что все предметы, не имеющие сквозного отверстия, имеют одну основу - шар. А вот тела, имеющие отверстие (математики называют их тор, но для нас пусть будет «бублик») совместимы друг с другом, но не со сплошными телами. К примеру, если мы слепим из пластилина кошку, мы можем умять ее в шар и из него слепить, не употребляя разрывы, ежа или рельсу. Если мы слепим бублик, мы можем деформировать его в «восьмерку» или кружку, а вот в шар уже не удастся. Тор и сфера несовместимы - на математическом языке негомеоморфны.

Примечательно, что доказательством этой теории заинтересовались не столько математики, сколько астрофизики. Если теория Пуанкаре применима ко всем материальным телам во Вселенной, то почему бы не представить на минутку, что она также верна относительно самой Вселенной? А что, если вся материя возникла из маленькой, одномерной точки и сейчас разворачивается в многомерную сферу? И где ее границы? И что за границами? И что, если найти механизм свертывания Вселенной назад, к отправной точке? Поскольку в доказательстве своей гипотезы сам автор допустил ошибку, много математиков и физиков, подпав под чары гипотезы Пуанкаре, принялись самоотверженно работать над ее доказательством. Несколько из них - Д. Г. Уайтхед, Бинг, К. Папакириакопоулос, С. Смейл, М. Фридман - положили свою жизнь на доказательство теории Пуанкаре.

Но в результате лавры достались малоизвестному питерскому ученому Перельману, хотя формально - на страницах рецензируемых журналов - его доказательство так и не увидело свет. Работа Григория Яковича была размещена на сайте arXiv.org в 2002 году, но, тем не менее, произвела в научном мире эффект взорвавшейся бомбы. Поскольку чудаковатый математик даже не потрудился «отшлифовать» свое доказательство, некоторые ученые решили перехватить лавры первооткрывателя. Так, китайские математики Хуайдун Цао и Сипин Чжу назвали доказательства Перельмана промежуточными, и дополнили его. Однако присуждение Премии Тысячелетия российскому математику (хоть он и отказался ее получить) поставило все точки над «і»: гипотеза Пуанкаре доказана именно Перельманом. Когда же журналистам все-таки удалось взять интервью у гениального математика, на вопрос, почему он отказался от премии в один миллион долларов, прозвучал странный ответ: «Если я владею Вселенной, то зачем мне в таком случае миллион?»

Теорема Пуанкаре – математическая формула «Вселенной». Григорий Перельман. Часть 1 (из серии «Настоящий Человек в науке»)

Анри Пуанкаре (1854-1912), один из величайших математиков, в 1904 г. сформулировал знаменитую идею о деформированной трёхмерной сфере и в виде маленькой заметки на полях, помещённой в конце 65 страничной статьи, посвящённой совершенно другому вопросу, нацарапал несколько строчек довольно странной гипотезы со словами: «Ну этот вопрос может слишком далеко нас завести»…

Маркус Дю Сотой из Оксфордского университета считает, что теорема Пуанкаре - «это центральная проблема математики и физики , попытка понять какой формы может быть Вселенная , к ней очень трудно подобраться».

Раз в неделю Григорий Перельман ездил в Принстон, чтобы принять участие в семинаре «Института углублённых исследований». На семинаре один из математиков Гарвардского университета отвечает на вопрос Перельмана: «Теория Уильяма Тёрстона (1946-2012 гг., математик, труды в области «Трехмерной геометрии и топологии»), получившая название гипотезы геометризации описывает все возможные трёхмерные поверхности и является шагом вперёд по сравнению с гипотезой Пуанкаре. Если Вы докажете предположение Уильяма Тёрстона, то и гипотеза Пуанкаре распахнёт перед Вами все свои двери и более того её решение изменит весь топологический ландшафт современной науки ».

Шесть ведущих американских университетов в марте 2003 г. приглашают Перельмана прочесть цикл лекций, разъясняющих его работу. В апреле 2003 г. Перельман совершает научное турне. Его лекции становятся выдающимся научным событием. В Принстоне послушать его приезжают Джон Болл (председатель международного математического союза), Эндрю Уайлз (математик, работы в области арифметики эллиптических кривых, доказал теорему Ферма в 1994 г.), Джон Нэш (математик, работающий в области теории игр и дифференциальной геометрии).

Григорию Перельману удалось решить одну из семи задач тысячелетия и математически описать так называемою формулу Вселенной , доказать гипотезу Пуанкаре. Над этой гипотезой наиболее светлые умы бились более 100 лет, и за доказательство которой мировым математическим сообществом (математическим институтом имени Клэя) был обещан $1 млн. Её вручение прошло 8 июня 2010 г. Григорий Перельман не появился на ней, и у мирового математического сообщества «поотпадали челюсти».

В 2006 году за решение гипотезы Пуанкаре математику была присуждена высшая математическая награда - Филдсовская премия (медаль Филдса). Джон Болл лично посетил Санкт-Петербург с тем, чтобы уговорить принять премию. Её он принять отказался со словами: «Общество вряд ли способно всерьёз оценить мою работу».

«Филдсовская премия (и медаль) вручается один раз в 4 года на каждом международном математическом конгрессе молодым учёным (моложе 40 лет), внёсшим заметный вклад в развитие математики. Помимо медали награждённым вручается 15 тыс. канадских долларов ($13 000)»

В исходной формулировке гипотеза Пуанкаре звучит следующим образом: «Всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере». В переводе на общедоступный язык, это означает, что любой трёхмерный объект, например, стакан можно преобразовать в шар путём одной только деформации, то есть его не нужно будет ни разрезать, ни склеивать. Иными словами, Пуанкаре предположил, что пространство не трёхмерно, а содержит значительно большее число измерений , а Перельман спустя 100 лет математически это доказал .


Выражение Григория Перельмана теоремы Пуанкаре о преобразовании материи в другое состояние, форму имеет сходство со знаниями, изложенными в книге Анастасии Новых «Сэнсэй IV»: «По факту, вся эта бесконечная для нас Вселенная занимает место в миллиарды раз меньше, чем кончик самой тонкой медицинской иглы» . А также возможностью управления материальной Вселенной путём преобразований, вносимых Наблюдателем из контролирующих измерений выше шестого (с 7 по 72 включительно) (доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА » тема «Эзоосмическая решётка»).

Григория Перельмана отличали аскетичность жизни, суровость предъявляемых как себе, так и к другим этических требований. Глядя на него складывается ощущение, что он только телесно проживает в общем со всеми остальными современниками пространстве , а Духовно в каком-то ином , где даже за $1 млн. не идут на самые «невинные» компромиссы с Совестью . И что это за пространство такое, и можно ли хоть краешком глаза посмотреть на него?..

Исключительная важность гипотезы, выдвинутой около века назад математиком Пуанкаре, касается трёхмерных структур и является ключевым элементом современных исследований основ мироздания . Загадка эта, по мнению специалистов института Клэя, одна из семи принципиально важных для развития математики будущего.

Перельман, отвергая медали и премии спрашивает: «А зачем они мне? Они мне совершенно ни к чему. Каждому понятно, если доказательство правильное, то никакого другого признания уже не требуется. Пока во мне не развилась подозрительность, у меня был выбор, либо сказать вслух о дезинтеграции математического сообщества в целом, в связи с его низким моральным уровнем, либо ничего не сказать и позволить обращаться с собой, как с быдлом. Теперь же, когда я стал более чем подозрительным, я не могу оставаться быдлом и продолжать молчать, поэтому мне остаётся только уйти».

Для того чтобы заниматься современной математикой нужно иметь тотально чистый ум, без малейшей примеси, которая дезинтегрирует его, дезориентирует, подменяет ценности, и принять эту премию означает продемонстрировать слабость. Идеальный учёный занимается только наукой, не заботится больше ни о чём (власть и капитал), у него должен быть чистый ум, а для Перельмана нет большей важности, чем жить в соответствии с этим идеалом. Полезно ли для математики вся эта затея с миллионами, и нужен ли настоящему учёному такой стимул? И это желание капитала купить и подчинить себе всё в этом мире разве не оскорбительно? Или можно продать свою чистоту за миллион? Деньги, сколько бы там их ни было, эквивалентны истине Души ? Ведь мы имеем дело с априорной оценкой проблем, к которым деньги просто не должны иметь отношения, разве не так?! Делать же из всего этого что-то вроде лото-миллион, или тотализатор, значит потакать дезинтеграции научного, да и человеческого сообщества в целом (см. доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА » и в книге «АллатРа » последние 50 страниц о пути построения созидательного общества). И денежные средства (энергия), которые бизнесмены готовы отдавать на науку, если и надо использовать, то корректно, что ли, не унижая Дух подлинного служения , как ни верти, неоценимого денежным эквивалентом: «Что такое миллион, по сравнению , с чистотой, или Величием тех сфер (об измерениях глобальной Вселенной и о Духовном мире см. книгу «АллатРа » и доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА » ), в которые не способно проникнуть даже человеческое воображение (ум) ?! Что такое миллион звёздного неба для времени?!».

Приведем толкование остальных терминов, фигурирующих в формулировке гипотезы :

Топология - (от греч. topos - место и logos - учение) - раздел математики, изучающий топологические свойства фигур, т.е. свойства, не изменяющиеся при любых деформациях, производимых без разрывов и склеиваний (точнее, при взаимно однозначных и непрерывных отображениях). Примерами топологических свойств фигур являются размерность, число кривых, ограничивающих данную область, и т.д. Так, окружность, эллипс, контур квадрата имеют одни и те же топологические свойства, т.к. эти линии могут быть деформированы одна в другую описанным выше образом; в то же время кольцо и круг обладают различными топологическими свойствами: круг ограничен одним контуром, а кольцо - двумя.

Гомеоморфизм (греч. ομοιο - похожий, μορφη - форма) – взаимно однозначное соответствие между двумя топологическим пространствами, при котором оба взаимно обратных отображения, определяемые этим соответствием, непрерывны. Эти отображения называют гомеоморфными, или топологическими отображениями, а также гомеоморфизмами, а о пространствах говорят, что они принадлежат одному топологическому типу называются гомеоморфными, или топологически эквивалентными.

Трёхмерное многообразие без края. Это такой геометрический объект, у которого каждая точка имеет окрестность в виде трёхмерного шара. Примерами 3-многообразий может служить, во-первых, всё трехмерное пространство, обозначаемое R3 , а также любые открытые множества точек в R3 , к примеру, внутренность полнотория (бублика). Если рассмотреть замкнутое полноторие, т.е. добавить и его граничные точки (поверхность тора), то мы получим уже многообразие с краем – у краевых точек нет окрестностей в виде шарика, но лишь в виде половинки шарика.

Полното́рие (полното́рий) - геометрическое тело, гомеоморфное произведению двумерного диска и окружности D2 * S1. Неформально, полноторие - бублик, тогда как тор - только его поверхность (пустотелая камера колеса).

Односвязное. Оно означает, что любую непрерывную замкнутую кривую, расположенную целиком в пределах данного многообразия, можно плавно стянуть в точку, не покидая этого многообразия. Например, обычная двумерная сфера в R3 односвязна (кольцевую резинку, как угодно приложенную к поверхности яблока, можно плавной деформацией стянуть в одну точку, не отрывая резинки от яблока). С другой стороны, окружность и тор неодносвязны.

Компактное. Многообразие компактно, если любой его гомеоморфный образ имеет ограниченные размеры. Например, открытый интервал на прямой (все точки отрезка, кроме его концов) некомпактен, так как его можно непрерывно растянуть до бесконечной прямой. А вот замкнутый отрезок (с концами) является компактным многообразием с краем: при любой непрерывной деформации концы переходят в какие-то определённые точки, и весь отрезок обязан переходить в ограниченную кривую, соединяющую эти точки.

Продолжение следует...

Ильназ Башаров

Литература:

– Доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» интернациональной группы учёных Международного общественного движения «АЛЛАТРА» под ред. Анастасии Новых, 2015 г. http://allatra-science.org/pub... ;

– Новых. А. «АллатРа», К.: АллатРа, 2013 г. http://schambala.com.ua/book/a... .

– Новых. А., «Сэнсэй-IV», К.: ЛОТОС, 2013 г., 632 c. http://schambala.com.ua/book/s...

– Сергей Дужин, докт.физ.-мат. наук,старший научный сотрудник Санкт- Петербургского отделения Математического института РАН



© dagexpo.ru, 2024
Стоматологический сайт