Теорема косинусов и синусов формулы. Теорема синусов. Решение треугольников

21.09.2019

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Синус, косинус, тангенс, котангенс

Понятия синуса (), косинуса (), тангенса (), котангенса () неразрывно связаны с понятием угла. Чтобы хорошо разобраться в этих, на первый взгляд, сложных понятиях (которые вызывают у многих школьников состояние ужаса), и убедиться, что «не так страшен черт, как его малюют», начнём с самого начала и разберёмся в понятии угла.

Понятие угла: радиан, градус

Давай посмотрим на рисунке. Вектор «повернулся» относительно точки на некую величину. Так вот мерой этого поворота относительно начального положения и будет выступать угол .

Что же ещё необходимо знать о понятии угла? Ну, конечно же, единицы измерения угла!

Угол, как в геометрии, так и в тригонометрии, может измеряться в градусах и радианах.

Углом в (один градус) называют центральный угол в окружности, опирающийся на круговую дугу, равную части окружности. Таким образом, вся окружность состоит из «кусочков» круговых дуг, или угол, описываемый окружностью, равен.

То есть на рисунке выше изображён угол, равный, то есть этот угол опирается на круговую дугу размером длины окружности.

Углом в радиан называют центральный угол в окружности, опирающийся на круговую дугу, длина которой равна радиусу окружности. Ну что, разобрался? Если нет, то давай разбираться по рисунку.

Итак, на рисунке изображён угол, равный радиану, то есть этот угол опирается на круговую дугу, длина которой равна радиусу окружности (длина равна длине или радиус равен длине дуги). Таким образом, длина дуги вычисляется по формуле:

Где - центральный угол в радианах.

Ну что, можешь, зная это, ответить, сколько радиан содержит угол, описываемый окружностью? Да, для этого надо вспомнить формулу длины окружности. Вот она:

Ну вот, теперь соотнесём эти две формулы и получим, что угол, описываемый окружностью равен. То есть, соотнеся величину в градусах и радианах, получаем, что. Соответственно, . Как можно заметить, в отличие от «градусов», слово «радиан» опускается, так как единица измерения обычно ясна из контекста.

А сколько радиан составляют? Всё верно!

Уловил? Тогда вперёд закреплять:

Возникли трудности? Тогда смотри ответы :

Прямоугольный треугольник: синус, косинус, тангенс, котангенс угла

Итак, с понятием угла разобрались. А что же всё-таки такое синус, косинус, тангенс, котангенс угла? Давай разбираться. Для этого нам поможет прямоугольный треугольник.

Как называются стороны прямоугольного треугольника? Всё верно, гипотенуза и катеты: гипотенуза - это сторона, которая лежит напротив прямого угла (в нашем примере это сторона); катеты - это две оставшиеся стороны и (те, что прилегают к прямому углу), причём, если рассматривать катеты относительно угла, то катет - это прилежащий катет, а катет - противолежащий. Итак, теперь ответим на вопрос: что такое синус, косинус, тангенс и котангенс угла?

Синус угла - это отношение противолежащего (дальнего) катета к гипотенузе.

В нашем треугольнике.

Косинус угла - это отношение прилежащего (близкого) катета к гипотенузе.

В нашем треугольнике.

Тангенс угла - это отношение противолежащего (дальнего) катета к прилежащему (близкому).

В нашем треугольнике.

Котангенс угла - это отношение прилежащего (близкого) катета к противолежащему (дальнему).

В нашем треугольнике.

Эти определения необходимо запомнить ! Чтобы было проще запомнить какой катет на что делить, необходимо чётко осознать, что в тангенсе и котангенсе сидят только катеты, а гипотенуза появляется только в синусе и косинусе . А дальше можно придумать цепочку ассоциаций. К примеру, вот такую:

Косинус→касаться→прикоснуться→прилежащий;

Котангенс→касаться→прикоснуться→прилежащий.

В первую очередь, необходимо запомнить, что синус, косинус, тангенс и котангенс как отношения сторон треугольника не зависят от длин этих сторон (при одном угле). Не веришь? Тогда убедись, посмотрев на рисунок:

Рассмотрим, к примеру, косинус угла. По определению, из треугольника: , но ведь мы можем вычислить косинус угла и из треугольника: . Видишь, длины у сторон разные, а значение косинуса одного угла одно и то же. Таким образом, значения синуса, косинуса, тангенса и котангенса зависят исключительно от величины угла.

Если разобрался в определениях, то вперёд закреплять их!

Для треугольника, изображённого ниже на рисунке, найдём.

Ну что, уловил? Тогда пробуй сам: посчитай то же самое для угла.

Единичная (тригонометрическая) окружность

Разбираясь в понятиях градуса и радиана, мы рассматривали окружность с радиусом, равным. Такая окружность называется единичной . Она очень пригодится при изучении тригонометрии. Поэтому остановимся на ней немного подробней.

Как можно заметить, данная окружность построена в декартовой системе координат. Радиус окружности равен единице, при этом центр окружности лежит в начале координат, начальное положение радиус-вектора зафиксировано вдоль положительного направления оси (в нашем примере, это радиус).

Каждой точке окружности соответствуют два числа: координата по оси и координата по оси. А что это за числа-координаты? И вообще, какое отношение они имеют к рассматриваемой теме? Для этого надо вспомнить про рассмотренный прямоугольный треугольник. На рисунке, приведённом выше, можно заметить целых два прямоугольных треугольника. Рассмотрим треугольник. Он прямоугольный, так как является перпендикуляром к оси.

Чему равен из треугольника? Всё верно. Кроме того, нам ведь известно, что - это радиус единичной окружности, а значит, . Подставим это значение в нашу формулу для косинуса. Вот что получается:

А чему равен из треугольника? Ну конечно, ! Подставим значение радиуса в эту формулу и получим:

Так, а можешь сказать, какие координаты имеет точка, принадлежащая окружности? Ну что, никак? А если сообразить, что и - это просто числа? Какой координате соответствует? Ну, конечно, координате! А какой координате соответствует? Всё верно, координате! Таким образом, точка.

А чему тогда равны и? Всё верно, воспользуемся соответствующими определениями тангенса и котангенса и получим, что, а.

А что, если угол будет больше? Вот, к примеру, как на этом рисунке:

Что же изменилось в данном примере? Давай разбираться. Для этого опять обратимся к прямоугольному треугольнику. Рассмотрим прямоугольный треугольник: угол (как прилежащий к углу). Чему равно значение синуса, косинуса, тангенса и котангенса для угла? Всё верно, придерживаемся соответствующих определений тригонометрических функций:

Ну вот, как видишь, значение синуса угла всё так же соответствует координате; значение косинуса угла - координате; а значения тангенса и котангенса соответствующим соотношениям. Таким образом, эти соотношения применимы к любым поворотам радиус-вектора.

Уже упоминалось, что начальное положение радиус-вектора - вдоль положительного направления оси. До сих пор мы вращали этот вектор против часовой стрелки, а что будет, если повернуть его по часовой стрелке? Ничего экстраординарного, получится так же угол определённой величины, но только он будет отрицательным. Таким образом, при вращении радиус-вектора против часовой стрелки получаются положительные углы , а при вращении по часовой стрелке - отрицательные.

Итак, мы знаем, что целый оборот радиус-вектора по окружности составляет или. А можно повернуть радиус-вектор на или на? Ну конечно, можно! В первом случае, таким образом, радиус-вектор совершит один полный оборот и остановится в положении или.

Во втором случае, то есть радиус-вектор совершит три полных оборота и остановится в положении или.

Таким образом, из приведённых примеров можем сделать вывод, что углы, отличающиеся на или (где - любое целое число), соответствуют одному и тому же положению радиус-вектора.

Ниже на рисунке изображён угол. Это же изображение соответствует углу и т.д. Этот список можно продолжить до бесконечности. Все эти углы можно записать общей формулой или (где - любое целое число)

Теперь, зная определения основных тригонометрических функций и используя единичную окружность, попробуй ответить, чему равны значения:

Вот тебе в помощь единичная окружность:

Возникли трудности? Тогда давай разбираться. Итак, мы знаем, что:

Отсюда, мы определяем координаты точек, соответствующих определённым мерам угла. Ну что же, начнём по порядку: углу в соответствует точка с координатами, следовательно:

Не существует;

Дальше, придерживаясь той же логики, выясняем, что углам в соответствуют точки с координатами, соответственно. Зная это, легко определить значения тригонометрических функций в соответствующих точках. Сначала попробуй сам, а потом сверяйся с ответами.

Ответы:

Таким образом, мы можем составить следующую табличку:

Нет необходимости помнить все эти значения. Достаточно помнить соответствие координат точек на единичной окружности и значений тригонометрических функций:

А вот значения тригонометрических функций углов в и, приведённых ниже в таблице, необходимо запомнить :

Не надо пугаться, сейчас покажем один из примеров довольно простого запоминания соответствующих значений :

Для пользования этим методом жизненно необходимо запомнить значения синуса для всех трёх мер угла (), а также значение тангенса угла в. Зная эти значения, довольно просто восстановить всю таблицу целиком -значения косинуса переносятся в соответствии со стрелочками, то есть:

Зная это можно восстановить значения для. Числитель « » будет соответствовать, а знаменатель « » соответствует. Значения котангенса переносятся в соответствии со стрелочками, указанными на рисунке. Если это уяснить и запомнить схему со стрелочками, то будет достаточно помнить всего значения из таблицы.

Координаты точки на окружности

А можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота ?

Ну, конечно, можно! Давай выведем общую формулу для нахождения координат точки .

Вот, к примеру, перед нами такая окружность:

Нам дано, что точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом точки на градусов.

Как видно из рисунка, координате точки соответствует длина отрезка. Длина отрезка соответствует координате центра окружности, то есть равна. Длину отрезка можно выразить, используя определение косинуса:

Тогда имеем, что для точки координата.

По той же логике находим значение координаты y для точки. Таким образом,

Итак, в общем виде координаты точек определяются по формулам:

Координаты центра окружности,

Радиус окружности,

Угол поворота радиуса вектора.

Как можно заметить, для рассматриваемой нами единичной окружности эти формулы значительно сокращаются, так как координаты центра равны нулю, а радиус равен единице:

Ну что, попробуем эти формулы на вкус, поупражняясь в нахождении точек на окружности?

1. Найти координаты точки на единичной окружности, полученной поворотом точки на.

2. Найти координаты точки на единичной окружности, полученной поворотом точки на.

3. Найти координаты точки на единичной окружности, полученной поворотом точки на.

4. Точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

5. Точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

Возникли проблемы в нахождении координот точки на окружности?

Реши эти пять примеров (или разберись хорошо в решении) и ты научишься их находить!

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Синус угла - это отношение противолежащего (дальнего) катета к гипотенузе.

Косинус угла - это отношение прилежащего (близкого) катета к гипотенузе.

Тангенс угла - это отношение противолежащего (дальнего) катета к прилежащему (близкому).

Котангенс угла - это отношение прилежащего (близкого) катета к противолежащему (дальнему).

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!


В этой статье собраны таблицы синусов, косинусов, тангенсов и котангенсов . Сначала мы приведем таблицу основных значений тригонометрических функций, то есть, таблицу синусов, косинусов, тангенсов и котангенсов углов 0, 30, 45, 60, 90, …, 360 градусов (0, π/6, π/4, π/3, π/2, …, 2π радиан). После этого мы дадим таблицу синусов и косинусов, а также таблицу тангенсов и котангенсов В. М. Брадиса, и покажем, как использовать эти таблицы при нахождении значений тригонометрических функций.

Навигация по странице.

Таблица синусов, косинусов, тангенсов и котангенсов для углов 0, 30, 45, 60, 90, … градусов

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Брадис В. М. Четырехзначные математические таблицы: Для общеобразоват. учеб. заведений. - 2-е изд. - М.: Дрофа, 1999.- 96 с.: ил. ISBN 5-7107-2667-2

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол - это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол - меньший 90 градусов.

Тупой угол - больший 90 градусов. Применительно к такому углу «тупой» - не оскорбление, а математический термин:-)

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается . Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .

Угол обозначается соответствующей греческой буквой .

Гипотенуза прямоугольного треугольника - это сторона, лежащая напротив прямого угла.

Катеты - стороны, лежащие напротив острых углов.

Катет , лежащий напротив угла , называется противолежащим (по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим .

Синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе:

Косинус острого угла в прямоугольном треугольнике - отношение прилежащего катета к гипотенузе:

Тангенс острого угла в прямоугольном треугольнике - отношение противолежащего катета к прилежащему:

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

Котангенс острого угла в прямоугольном треугольнике - отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

Давайте докажем некоторые из них.

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна .

Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: .

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов - свое соотношение, для сторон - свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс - их еще называют тригонометрическими функциями угла - дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от до .

Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

1. В треугольнике угол равен , . Найдите .

Задача решается за четыре секунды.

Поскольку , .

2 . В треугольнике угол равен , , . Найдите .

Найдем по теореме Пифагора.

Задача решена.

Часто в задачах встречаются треугольники с углами и или с углами и . Основные соотношения для них запоминайте наизусть!

Для треугольника с углами и катет, лежащий напротив угла в , равен половине гипотенузы .

Треугольник с углами и - равнобедренный. В нем гипотенуза в раз больше катета.

Мы рассмотрели задачи на решение прямоугольных треугольников - то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника . Об этом - в следующей статье.

Первая часть теоремы : стороны произвольного треугольника пропорциональный синусам противоположных углов, то есть:

Вторая часть теоремы : каждая дробь равна диаметру окружности, описанной около данного треугольника, то есть: .

Комментарий репетитора по математике : использование второй части теоремы синусов закладывается чуть ли не в каждой второй конкурсной задаче на окружность. Почему? Дело в том, что равенство позволяет находить радиус окружности имея в наличие только два элемента треугольника. Это очень часто используют составители сильных задач, которые специально так подбирают условие, чтобы никакие другие элементы треугольника (и всего рисунка) не находились бы вообше! «Картинка» при этом будет плавующей. Это обстоятельство сильно усложняет работу на экзамене, ибо не дает возможность действовать в обход заложенному свойству.

Доказательство теоремы синусов:

по учебнику Атанасяна
Докажем, что для любого треугольника со сторонами a, b, c и противолежащими углами A, B и С выполняется равенство: .
Проведем высоту BH из вершины В. Возможны два случая:
1) Точка H лежит на стороне AC (это возможно когда и — острые).
По определению синуса острого угла в прямоугольном треугольнике ABH запишем

Аналогично в треугольнике CBH имеем . Приравнивая выражения для BH друг к другу получим:
2) Пусть H лежит на продолжении стороны AC (например слева от А). Это произойдет, если – тупой. Аналогично по определению синуса острого угла А в треугольнике ABH запишем равенство , но так как синусы смежных углов равны, то заменив в этом равенстве на , получим как и в первом случае. Поэтому независимо от величин углов А и С равенство верное.
После деления обеих его частей на получим . Аналогично доказывается равенство второй пары дробей

Доказательство теоремы синусов по учебнику Погорелова:

Применим формулу площади треугольника для двух углов A и C:


После приравнивания правых частей и сокращения на получим тоже самое равенство , как и в доказательстве первым способом. Из него тем же путем получаем равенство дробей.

Доказательство второй части теоремы синусов:

Опишем около данного треугольника окружность и через В проведем ее диаметр BD. Так как углы D и C опираются на одну дугу, то они равны (следствие из теоремы о вписанных углах). Тогда . Применим в треугольнике ABD определение синуса угла D: Что и требовалось доказать.

Задачи на вторую часть теоремы синусов:
1) В окружность радиуса 15 вписана трапеция. Длины диагонали и высоты трапеции соответственно равны 20 и 6. Найти боковую сторону.
2) Радиус окружность, описанной около трапеции, равен 25, а косинус ее тупого угла равен -0,28 (минус!!!). Диагональ трапеции образует с основанием угол . Найти высоту трапеции.
3) В окружность радиуса 10 вписана трапеция. Длины диагонали и средней линии трапеции соответственно равны 15 и 12. Найти длину боковой стороны трапеции.
4) Олимпиада в Финансовой академии 2009г. Хорды окружности пересекаются в точке Q. Известно, что а радиус окружности равен 4см. Найдите длину хорды PN. Олимпиада в Финансовой академии 2009г.
5) В треугольнике PST . Вокруг точки пересечения его биссектрис и вершин P и T описана окружность с радиусом 8см. Найдите радиус окружности, описанной около треугольника PST (авторская задача).

Детально разобрать теорему синусов и получить необходимую практику ее использования в задачах вам всегда поможет репетитор по математике . Ее плановое школьное изучение происходит в курсе геометрии 9 класса в теме решение треугольников (по всем программам). Если вам нужна подготовка к ЕГЭ по математике для сдачи экзамена не менее чем на 70 баллов — придется тренироваться в решении крепких планиметрических задач с номеров С4. В них теорему синусов часто применяют к вписанным треугольникам учитывая соотношение . Помните об этом!

С уважением, Колпаков Александр Николаевич,
репетитор по математике

Тригонометрия широко применяется не только в разделе алгебра — начала анализа, но также и в геометрии. В связи с этим, разумно предположить о существовании теорем и их доказательств, связанных с тригонометрическими функциями. Действительно, теоремы косинусов и синусов выводят очень интересные, а главное полезные соотношения между сторонами и углами треугольников.

С помощью данной формулы можно вывести любую из сторон треугольника:

Доказательство утверждения выводится на основе теоремы Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

Рассмотрим произвольный треугольник ABC. Из вершины C опустим высоту h к основанию фигуры, в данном случае абсолютно не важна ее длина. Теперь, если рассмотреть произвольный треугольник AСВ, то можно выразить координаты точки C через тригонометрические функции cos и sin.

Вспомним определение косинуса и распишем соотношение сторон треугольника ACD: cos α = AD/AC | умножим обе стороны равенства на AC; AD = AC * cos α.

Длину AC примем за b и получим выражение для первой координаты точки С:
x = b * cos⁡α. Аналогично, находим значение ординаты С: y = b * sin α. Далее применим теорему Пифагора и выразим h поочередно для треугольника ACD и DCB:

Очевидно, что оба выражения (1) и (2) равны между собой. Приравняем правые части и приведем подобные:

На практике данная формула позволяет найти длину неизвестной стороны треугольника по заданным углам. Теорема косинусов имеет три следствия: для прямого, острого и тупого угла треугольника.

Заменим величину cos α привычной переменной x, тогда для острого угла треугольника ABC получим:

Если же угол окажется прямым, то 2bx исчезнет из выражения, так как cos 90° = 0. Графически второе следствие можно представить следующим образом:

В случае тупого угла знак «-»перед двойным аргументом в формуле сменится на «+»:

Как видно из объяснения, ничего сложного в соотношениях нет. Теорема косинусов есть не что иное, как переложение теоремы Пифагора в тригонометрических величинах.

Практическое применение теоремы

Задание 1 . Дан треугольник ABC, у которого сторона BC = a = 4 см, AC = b = 5 см, а cos α = ½. Необходимо найти длину стороны AB.

Чтобы правильно произвести расчет, нужно определить угол α. Для этого стоит обратиться к таблице значений для тригонометрических функций, согласно которой арккосинус равен 1/ 2 для угла в 60°. Исходя из этого, воспользуемся формулой первого следствия теоремы:

Задание 2 . Для треугольника ABC известны все стороны: AB =4√2,BC=5,AC=7. Требуется найти все углы фигуры.

В данном случае не обойтись без чертежа условий задачи.

Так как значения углов остаются неизвестными, для поиска решений следует использовать полную формулу для острого угла.

По аналогии нетрудно составить формулы и рассчитать значения и других углов:

В сумме три угла треугольника должны составить 180 °: 53 + 82 + 45 = 180, следовательно, решение найдено.

Теорема синусов

Теорема гласит, что все стороны произвольного треугольника пропорциональны синусам противолежащих углов. Записываются соотношения в виде тройного равенства:

Классическое доказательство утверждения проводят на примере фигуры вписанной в окружность.

Чтобы убедиться в правдивости высказывания на примере треугольника ABC на рисунке, необходимо подтвердить тот факт, что 2R = BC / sin A. Затем доказать, что и прочие стороны соотносятся с синусами противоположных углов, как 2R или D окружности.

Для этого проводим диаметр круга из вершины B. Из свойства углов вписанных в окружность ∠GCB – прямой, а ∠CGB либо равен ∠CAB, либо (π — ∠CAB). В случае с синусом последнее обстоятельство не значительно, так как sin (π –α) = sin α. На основании приведенных умозаключений можно утверждать, что:

sin ∠CGB = BC/ BG или sin A = BC/2R,

Если рассматривать другие углы фигуры, получим расширенную формулу теоремы синусов:

Типовые задания на отработку знания теоремы синусов сводятся к поиску неизвестной стороны или угла треугольника.

Как видно из примеров, решение подобных задач не вызывает затруднений и заключается в проведении математических расчетов.



© dagexpo.ru, 2024
Стоматологический сайт