Сериальные закономерности в спектре атома водорода. Спектры. Закономерности в атомных спектрах

21.09.2019

Спектр – это набор частот (или длин волн) излучения, которое испускается данным телом. Нагретые твёрдые тела испускают сплошной спектр. Молекулы испускают полосатый спектр – определённые полосы или группы густо расположенных линий. Свободные, невзаимодействующие между собой, атомы имеют линейчатый спектр, состоящий из определённого набора частот (длин волн).

Спектр вещества является одной из его важнейших характеристик. В природе не существует двух одинаковых спектров. Этот факт лежит в основе спектрального анализа, который заключается в том, что вещества распознаются по их спектрам.

Изучение линейчатых спектров явилось ключом к пониманию строения атома. При исследовании спектров было установлено, что линии спектров испускания расположены не хаотично, а образуют определенную закономерность. Все линии имеют тенденцию группироваться, образуя серии.

Наиболее простым закономерностям подчиняется спектр атома водорода. Швейцарский физик И.Бальмер (1885 г.) показал, что длины волн в видимой области спектра атома водорода могут быть выражены формулой:

Если от длин волн перейти к частотам, то получится следующая формула:

.

Обычно эту формулу представляют в виде:

, (14)

где , - постоянная Ридберга (найдена экспериментально).

В таком виде формула (14) называется формулой Бальмера . Из выражения (14) вытекает, что спектральные линии, отличающиеся различными значениями , образуют группу или серии линий, называемую серией Бальмера.

Дальнейшие исследования показали, что в спектре водорода имеются еще серии, которые названы по фамилиям их исследовавших ученых и эти серии описываются аналогичными формулами:

Серия Лаймана:

(ультрафиолетовая область). (15)

Серия Бальмера:

(видимая область).

Серия Пашена:

(инфракрасная область).

Серия Брекета:

(инфракрасная область).

Серия Пфунда:

(инфракрасная область).

Все эти серии можно объединить общей формулой:

, (16)

Выражение (16) называется обобщённой формулой Бальмера .

При возрастании частота каждой серии стремится к предельному значению , которая называется границей серии. По аналогии, начало серии будет определяться как

.

При проведении экспериментальных исследований спектров излучения водорода Бальмер установил, что атомы водорода (как и атомы других элементов) излучают электромагнитные волны строго определённых частот. Причем оказалось, что величину, обратную длине волны спектральной линии, можно рассчитать, как разность, некоторых двух величин, которые называются спектральными термами, т.е. справедливо соотношение:

Количественная обработка экспериментально полученных спектров водорода показала, что термы можно записать следующим образом:

где R – постоянная Ридберга, а n – целое число, которое может принимать ряд целых значений 1,2,3... Значение постоянной Ридберга, полученное экспериментально составило:

С учетом вышесказанного длину волны любой спектральной линии водорода можно рассчитать по обобщенной формуле Бальмера :

где числа n 1 иn 2 могут принимать значения:n 1 = 1,2,3...;n 2 =n 1 ,n 1 +1,n 1 +2 …

Длины волн, рассчитанные по формуле (15), очень точно совпали с экспериментально измеренными значениями длин волн в спектре излучения водорода.

Сопоставив формулы (11) и (15) можно заключить, что формула (11) это та же обобщенная формула Бальмера, но полученная теоретически. Следовательно, значение постоянной Ридберга можно рассчитать по формуле:

Числа n 1 ,n 2 –это квантовые числа, являющиеся это номерами стационарных орбит между которыми происходит квантовый скачок электрона. Если измерить значение постоянной Ридберга экспериментально, то, воспользовавшись соотношением (16) можно рассчитать постоянную Планкаh .

3. Методика выполнения работы

3.1. Рабочие формулы

Спектр излучения представляет собой важную характеристику вещества, которая позволяет установить его состав, некоторые характеристики его строения, свойства атомов и молекул.

Газы в атомарном состоянии испускают линейчатые спектры, которые можно разделить на спектральные серии .Спектральная серия представляет собой набор спектральных линий, для которых квантовое число n 1 (номер уровня на который осуществляются переходы со всех вышележащих уровней) имеет одинаковое значение. Наиболее простой спектр имеет атом водорода. Длины волн его спектральных линий определяются по формулеБальмера (15) или (11).

Каждой серии спектра атома водорода соответствует своё определённое значение n 1 . Значения n 2 представляют собой последовательный ряд целых чисел от n 1 +1 до ∞. Число n 1 представляет собой номер энергетического уровня атома, на который совершается переход электрона после излучения; n 2 - номер уровня, с которого переходит электрон при излучении атомом электромагнитной энергии.

Согласно формуле (15), спектр испускания водорода можно представить в виде следующих серий (см. рис.2):

Серия Лаймана (n 1 =1) – ультрафиолетовая часть спектра:

Серия Бальмера (n 1 = 2) - видимая часть спектра:


Рис.2.Серии спектра атома водорода

а) энергетическая диаграмма, б) схема переходов, в) шкала длин волн.

Серия Пашена (n 1 = 3) - инфракрасная часть спектра:

Серия Брекета (n 1 = 4) - инфракрасная часть спектра:

Серия Пфунда (n 1 = 5) - инфракрасная часть спектра:

В данной работе изучаются четыре первые линии серии Бальмера, соответствующие переходам на уровеньn 1 = 2. Величинаn 2 для первых четырёх линий этой серии, лежащих в видимой области, принимает значения 3, 4, 5, 6. Эти линии имеют следующие обозначения:

H α - красная линия (n 2 = 3),

H β - зелено-голубая (n 2 = 4),

H ν - синяя(n 2 = 5),

H δ - фиолетовая (n 2 = 6).

Экспериментальное определение постоянной Ридберга с использованием линий серии Бальмера можно провести используя формулу, полученную на основе (15):

Выражение для расчёта постоянной Планка можно получить, преобразовав формулу (16):

где m = 9.1 · 10 -31 кг, e - 1.6 · 10 -19 Кл, C - 3 · 10 8 м /с, ε 0 =8.8 · 10 -12 ф / м.

Атомные спектры, спектры оптические, получающиеся при испускании или поглощении света (электромагнитных волн) свободными или слабо связанными атомами; такими спектрами обладают, в частности, одноатомные газы и пары. Атомные спектры возникают при переходах между уровнями энергии внешних электронов атома и наблюдаются в видимой, ультрафиолетовой и близкой инфракрасной областях. Атомные спектры наблюдаются в виде ярких цветных линий при свечении газов или паров в электрической дуге или разряде (спектры испускания) и в виде тёмных линий (спектров поглощения).

Постоянная Ридберга - величина, введённая Ридбергом, входящая в уравнение для уровней энергии и спектральных линий. Постоянная Ридберга обозначается как R. R = 13,606 эВ. В системе СИ , то есть R = 2,067×1016 с−1.

Конец работы -

Эта тема принадлежит разделу:

Основы атомной, квантовой и ядерной физики

Гипотеза де бройля и ее связь с постулатами бора уравнение шредингера физический смысл.. термоядерные реакции.. термоядерные реакции ядерные реакции между л гкими атомными ядрами протекающие при очень высоких температурах..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Модели строения атома. Модель Резерфорда
Атом - наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и окружающего его электронного облака. Ядро атома состоит из положи

Постулаты Бора. Элементарная теория строения атома водорода и водородоподобных ионов (по Бору)
Постулаты Бора - основные допущения, сформулированные Нильсом Бором в 1913 году для объяснения закономерности линейчатого спектра атома водорода и водородоподобных ионов и квантового характера испу

Уравнение Шредингера. Физический смысл уравнения Шредингера
Уравнение Шрёдингера - уравнение, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах. В квантовой физике

Соотношение неопределенностей Гейзенберга. Описание движения в квантовой механике
Принцип неопределённости Гейзенберга - фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему

Свойства волновой функции. Квантование
Волновая функция (функция состояния, пси-функция) - комплекснозначная функция, используемая в квантовой механике для описания чистого состояния квантовомеханической системы. Является коэффициентом

Квантовые числа. Спин
Квантовое число - численное значение какой-либо квантованной переменной микроскопического объекта (элементарной частицы, ядра, атома и т. д.), характеризующее состояние частицы. Задание квантовых ч

Характеристики атомного ядра
Атомное ядро - центральная часть атома, в которой сосредоточена основная его масса, и структура которого определяет химический элемент, к которому относится атом. Ядерно-физические характе

Радиоактивность
Радиоактивность - свойство атомных ядер самопроизвольно (спонтанно) изменять свой состав (заряд Z, массовое число A) путём испускания элементарных частиц или ядерных фрагментов. Соответствующее явл

Цепные ядерные реакции
Цепная ядерная реакция - последовательность единичных ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной

Элементарные частицы и их свойства. Систематика элементарных частиц
Элементарная частица - собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части. Свойства: 1.Все Э. ч--объекты иск

Фундаментальные взаимодействия и их характеристики
Фундаментальные взаимодействия - качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел. На сегодня достоверно известно существование четырех фундамент

Линейчатый спектр атома представляет собой совокупность большого числа линий, разбросанных по всему спектру без всякого видимого порядка. Однако внимательное изучение спектров показало, что расположение линий следует определенным закономерностям. Яснее всего, конечно, эти закономерности выступают на сравнительно простых спектрах, характерных для простых атомов. Впервые такая закономерность была установлена для спектра водорода, изображенного на рис. 326.

Рис. 326. Линейчатый спектр водорода (серия Бальмера, длины волн в нанометрах). и - обозначения первых четырех линий серии, лежащих в видимой области спектра

В 1885 г. швейцарский физик и математик Иоганн Якоб Бальмер (1825-1898) установил, что частоты отдельных линий водорода выражаются простой формулой:

,

где означает частоту света, т. е. число волн, испускаемых в единицу времени, - называемая постоянной Ридберга величина, равная и - целое число. Если задавать для значения 3, 4, 5 и т. д., то получаются значения, очень хорошо совпадающие с частотами последовательных линий спектра водорода. Совокупность этих линий составляет серию Бальмера.

В дальнейшем было обнаружено, что в спектре водорода еще имеются многочисленные спектральные линии, которые также составляют серии, подобные серии Бальмера.

Частоты этих линий могут быть представлены формулами

, где (серия Лаймана),

, где (серия Пашена),

причем имеет то же самое числовое значение, что и в формуле Бальмера. Таким образом, все водородные серии можно объединить одной формулой:

где и - целые числа, .

Спектры других атомов значительно сложнее, и распределение их линий в серии не так просто. Оказалось, однако, что спектральные линии всех атомов могут быть распределены в серии. Крайне важно, что сериальные закономерности для всех атомов могут быть представлены в форме, подобной формуле Бальмера, причем постоянная имеет почти одно и то же значение для всех атомов.

Существование спектральных закономерностей, общих для всех атомов, указывало несомненно на глубокую связь этих закономерностей с основными чертами атомной структуры. Действительно, датский физик, создатель квантовой теории атома Нильс Бор (1885-1962) в 1913 г. нашел ключ к пониманию этих закономерностей, установив в то же время основы современной теории атома (см. гл. XXII).

Излучение невзаимодействующих друг с другом атомов состоит из отдельных спектральных линий. В соответствии с этим спектр испускания атомов называется линейчатым.

На рис. 12.1 показан спектр испускания паров ртути. Такой же характер имеют и спектры других атомов.

Изучение атомных спектров послужило ключом к позианию строения атомов. Прежде всего было замечено, что линии в спектрах атомов расположены не беспорядочно, а объединяются в группы или, как их называют, серии линий. Отчетливее всего это обнаруживается в спектре простейшего атома - водорода. На рис. 12.2 представлена часть спектра атомарного водорода в видимой и близкой ультрафиолетовой области. Символами обозначены видимые линии, указывает границу серии (см. ниже). Очевидно, что линии располагаются в определенном порядке. Расстояние между линиями закономерно убывает по мере перехода от более длинных волн к более коротким.

Швейцарский физик Бальмер (1885) обнаружил, что длины волн этой серии линий водорода могут быть точно представлены формулой

где - константа, - целое число, принимающее значения 3, 4, 5 и т. д.

Если перейти в (12,1) от длины волны к частоте, получится формула

где - константа, называемая в честь шведского спектроскописта постоянной Ридберга. Она равна

Формула (12.2) называется формулой Бальмера, а соответствующая серия спектральных линий водородного атома - серией Бальмера. Дальнейшие исследования показали, что в спектре водорода имеется еще несколько серий. В ультрафиолетовой части спектра находится серия Лаймана. Остальные серии лежат в инфракрасной области. Линии этих серий могут быть представлены в виде формул, аналогичных (12.2):

Частоты всех линий спектра водородного атома можно представить одной формулой:

где имеет значение 1 для серии Лаймана, 2- для серии Бальмера и т. д. При заданном число принимает все целочисленные значения, начиная с Выражение (12.4) называют обобщенной формулой Бальмера.

При возрастании частота линии в каждой серии стремится к предельному значению которое называется границей серии (на рис. 12.2 символом отмечена граница серии Бальмера).



© dagexpo.ru, 2024
Стоматологический сайт