Решение линейных неоднородных дифференциальных уравнений высших порядков методом лагранжа. Метод вариации произвольных постоянных. Примеры решений

30.09.2019

Лекция 44. Линейные неоднородные уравнения второго порядка. Метод вариации произвольных постоянных. Линейные неоднородные уравнения второго порядка с постоянными коэффициентами. (специальная правая часть).

Социальные преобразования. Государство и церковь.

Социальная политика большевиков во многом диктовалась их классовым подходом. Декретом от 10 ноября 1917 г. уничтожена сословная система, от­менены дореволюционные чины, титулы и награды. Установлена выборность судей; проведена секуляризация гражданских состояний. Установлено бес­платное образование и медицинское обслуживание (декрет от 31 октября 1918 г.). Женщины уравнивались в правах с мужчинами (декреты от 16 и 18 декабря 1917 г.). Декрет о браке вводил институт гражданского брака.

Декретом СНК от 20 января 1918 года церковь отделена от государства и от системы образования. Большая часть церковного имущества конфискована. Патриарх Московский и всея Руси Тихон (избран 5 ноября 1917 года) 19 января 1918 года предал анафеме Советскую власть и призвал к борьбе против большевиков.

Рассмотрим линейное неоднородное уравнение второго порядка

Структура общего решения такого уравнения определяется следующей теоремой:

Теорема 1. Общее решение неоднородного уравнения (1) представляется как сумма какого-нибудь частного решения этого уравнения и общего решения соответствующего однородного уравнения

(2)

Доказательство . Нужно доказать, что сумма

есть общее решение уравнения (1). Докажем сначала, что функция (3) есть решение уравнения (1).

Подставляя сумму в уравнение (1) вместо у , будем иметь

Так как есть решение уравнение (2), то выражение, стоящее в первых скобках, тождественно равно нулю. Так как есть решение уравнения (1), то выражение, стоящее во вторых скобках, равно f(x) . Следовательно, равенство (4) является тождеством. Таким образом, первая часть теоремы доказана.

Докажем второе утверждение: выражение (3) есть общее решение уравнения (1). Мы должны доказать, что входящие в это выражение произвольные постоянные можно подобрать так, чтобы удовлетворялись начальные условия:

(5)

каковы бы ни были числа х 0 , y 0 и (лишь бы х 0 было взято из той области, где функции а 1 , а 2 и f(x) непрерывны).

Заметив, что можно представить в форме . Тогда на основании условий (5) будем иметь

Решим эту систему и определим С 1 и С 2 . Перепишем систему в виде:

(6)

Заметим, что определитель этой системы есть определитель Вронского для функций у 1 и у 2 в точке х=х 0 . Так как эти функции по условию линейно независимы, то определитель Вронского не равен нулю; следовательно система (6) имеет определенное решение С 1 и С 2 , т.е. существуют такие значения С 1 и С 2 , при которых формула (3) определяет решение уравнения (1), удовлетворяющее данным начальным условиям. Что и требовалось доказать.



Перейдем к общему методу нахождения частных решений неоднородного уравнения.

Напишем общее решение однородного уравнения (2)

. (7)

Будем искать частное решение неоднородного уравнения (1) в форме (7), рассматривая С 1 и С 2 как некоторые пока неизвестные функции от х.

Продифференцируем равенство (7):

Подберем искомые функции С 1 и С 2 так, чтобы выполнялось равенство

. (8)

Если учесть это дополнительное условие, то первая производная примет вид

.

Дифференцируя теперь это выражение, найдем :

Подставляя в уравнение (1), получим

Выражения, стоящие в первых двух скобках, обращаются в нуль, так как y 1 и y 2 – решения однородного уравнения. Следовательно, последнее равенство принимает вид

. (9)

Таким образом, функция (7) будет решением неоднородного уравнения (1) в том случае, если функции С 1 и С 2 удовлетворяют уравнениям (8) и (9). Составим систему уравнений из уравнений (8) и (9).

Так как определителем этой системы является определитель Вронского для линейно независимых решений y 1 и y 2 уравнения (2), то он не равен нулю. Следовательно, решая систему, мы найдем как определенные функции от х .

Теоретический минимум

В теории дифференциальных уравнений существует метод, претендующий на достаточно высокую для этой теории степень универсальности.
Речь идёт о методе вариации произвольной постоянной, применимом к решению различных классов дифференциальных уравнений и их
систем. Это именно тот случай, когда теория - если вывести за скобки доказательства утверждений - минимальна, но позволяет добиваться
значительных результатов, поэтому основной акцент будет сделан на примерах.

Общую идею метода сформулировать довольно просто. Пусть заданное уравнение (систему уравнений) решить сложно или вообще непонятно,
как его решать. Однако видно, что при исключении из уравнения некоторых слагаемых оно решается. Тогда решают именно такое упрощённое
уравнение (систему), получают решение, содержащее некоторое количество произвольных констант - в зависимости от порядка уравнения (количества
уравнений в системе). Затем полагают, что константы в найденном решении в действительности константами не являются, найденное решение
подставляется в исходное уравнение (систему), получается дифференциальное уравнение (или система уравнений) для определения "констант".
Существует определённая специфика в применении метода вариации произвольной постоянной к разным задачам, но это уже частности, которые будут
продемонстрированы на примерах.

Отдельно рассмотрим решение линейных неоднородных уравнений высших порядков, т.е. уравнений вида
.
Общее решение линейного неоднородного уравнения есть сумма общего решения соответствующего однородного уравнения и частного решения
данного уравнения. Предположим, что общее решение однородного уравнения уже найдено, а именно построена фундаментальная система решений (ФСР)
. Тогда общее решение однородного уравнения равно .
Нужно найти любое частное решение неоднородного уравнения. Для этого константы считаются зависящими от переменной .
Далее нужно решить систему уравнений
.
Теория гарантирует, что у этой системы алгебраических уравнений относительно производных от функций есть единственное решение.
При нахождении самих функций константы интегрирования не появляются: ищется ведь любое одно решение.

В случае решения систем линейных неоднородных уравнений первого порядка вида

алгоритм почти не меняется. Сначала нужно найти ФСР соответствующей однородной системы уравнений, составить фундаментальную матрицу
системы , столбцы которой представляют собой элементы ФСР. Далее составляется уравнение
.
Решая систему, определяем функции , находя таким образом, частное решение исходной системы
(фундаментальная матрица умножается на столбец найденных функций ).
Прибавляем его к общему решению соответствующей системы однородных уравнений, которое строится на основе уже найденной ФСР.
Получается общее решение исходной системы.

Примеры.

Пример 1. Линейные неоднородные уравнения первого порядка .

Рассмотрим соответствующее однородное уравнение (искомую функцию обозначим ):
.
Это уравнение легко решается методом разделения переменных:

.
А теперь представим решение исходного уравнения в виде , где функцию ещё предстоит найти.
Подставляем такой вид решения в исходное уравнение:
.
Как видно, второе и третье слагаемое в левой части взаимно уничтожаются - это характерная черта метода вариации произвольной постоянной.

Вот здесь уже - действительно, произвольная постоянная. Таким образом,
.

Пример 2. Уравнение Бернулли .

Действуем аналогично первому примеру - решаем уравнение

методом разделения переменных. Получится , поэтому решение исходного уравнения ищем в виде
.
Подставляем эту функцию в исходное уравнение:
.
И снова происходят сокращения:
.
Здесь нужно не забыть удостовериться, что при делении на не теряется решение. А случаю отвечает решение исходного
уравнения . Запомним его. Итак,
.
Запишем .
Это и есть решение. При записи ответа следует также указать найденное ранее решение , так как ему не соответствует никакое конечное значение
константы .

Пример 3. Линейные неоднородные уравнения высших порядков .

Сразу заметим, что это уравнение можно решить и проще, но на нём удобно показать метод. Хотя некоторые преимущества
у метода вариации произвольной постоянной и в этом примере есть.
Итак, начинать нужно с ФСР соответствующего однородного уравнения. Напомним, что для нахождения ФСР составляется характеристическое
уравнение
.
Таким образом, общее решение однородного уравнения
.
Входящие сюда константы и предстоит варьировать. Составляем сист

Рассмотрим линейное неоднородное дифференциальное уравнение с постоянными коэффициентами произвольного n-го порядка:
(1) .
Метод вариации постоянной, рассмотренный нами для уравнения первого порядка , также применим и для уравнений более высоких порядков.

Решение выполняется в два этапа. На первом этапе мы отбрасываем правую часть и решаем однородное уравнение. В результате получаем решение, содержащее n произвольных постоянных. На втором этапе мы варьируем постоянные. То есть мы считаем, что эти постоянные являются функциями от независимой переменной x и находим вид этих функций.

Хотя мы здесь рассматриваем уравнения с постоянными коэффициентами, но метод Лагранжа также применим и для решения любых линейных неоднородных уравнений . Для этого, однако, должна быть известна фундаментальная система решений однородного уравнения.

Шаг 1. Решение однородного уравнения

Как и в случае уравнений первого порядка, вначале мы ищем общее решение однородного уравнения, приравнивая правую неоднородную часть к нулю:
(2) .
Общее решение такого уравнения имеет вид:
(3) .
Здесь - произвольные постоянные; - n линейно независимых решений однородного уравнения (2), которые образуют фундаментальную систему решений этого уравнения.

Шаг 2. Вариация постоянных - замена постоянных функциями

На втором этапе мы займемся вариацией постоянных. Другими словами, мы заменим постоянные на функции от независимой переменной x :
.
То есть мы ищем решение исходного уравнения (1) в следующем виде:
(4) .

Если мы подставим (4) в (1), то получим одно дифференциальное уравнение для n функций . При этом мы можем связать эти функции дополнительными уравнениями. Тогда получится n уравнений, из которых можно определить n функций . Дополнительные уравнения можно составить различными способами. Но мы это сделаем так, чтобы решение имело наиболее простой вид. Для этого, при дифференцировании, нужно приравнивать к нулю члены, содержащие производные от функций . Продемонстрируем это.

Чтобы подставить предполагаемое решение (4) в исходное уравнение (1), нам нужно найти производные первых n порядков от функции, записанной в виде (4). Дифференцируем (4), применяя правила дифференцирования суммы и произведения :
.
Сгруппируем члены. Сначала выпишем члены с производными от , а затем - члены с производными от :

.
Наложим на функции первое условие:
(5.1) .
Тогда выражение для первой производной по будет иметь более простой вид:
(6.1) .

Тем же способом находим вторую производную:

.
Наложим на функции второе условие:
(5.2) .
Тогда
(6.2) .
И так далее. В дополнительных условиях, мы приравниваем члены, содержащие производные функций , к нулю.

Таким образом, если выбрать следующие дополнительные уравнения для функций :
(5.k) ,
то первые производных по будут иметь наиболее простой вид:
(6.k) .
Здесь .

Находим n -ю производную:
(6.n)
.

Подставляем в исходное уравнение (1):
(1) ;






.
Учтем, что все функции удовлетворяют уравнению (2):
.
Тогда сумма членов, содержащих дают нуль. В итоге получаем:
(7) .

В результате мы получили систему линейных уравнений для производных :
(5.1) ;
(5.2) ;
(5.3) ;
. . . . . . .
(5.n-1) ;
(7′) .

Решая эту систему, находим выражения для производных как функции от x . Интегрируя, получим:
.
Здесь - уже не зависящие от x постоянные. Подставляя в (4), получаем общее решение исходного уравнения.

Заметим, что для определения величин производных мы нигде не использовали тот факт, что коэффициенты a i являются постоянными. Поэтому метод Лагранжа применим для решения любых линейных неоднородных уравнений , если известна фундаментальная система решений однородного уравнения (2).

Примеры

Решить уравнения методом вариации постоянных (Лагранжа).

Обратимся к рассмотрению линейных неоднородных дифференциальных уравнений вида

где - искомая функция аргумента, а функции



заданы и непрерывны на некотором интервале
.

Введем в рассмотрение линейное однородное уравнение, левая часть которого совпадает с левой частью неоднородного уравнения (2.31),

Уравнение вида (2.32) называют однородным уравнением, соответствующим неоднородному уравнению (2.31).

Имеет место следующая теорема о структуре общего решения неоднородного линейного уравнения (2.31).

Теорема 2.6. Общее решение линейного неоднородного уравнения (2.31) в области

есть сумма любого его частного решения и общего решения соответствующего однородного уравнения (2.32) в области (2.33), т.е.

где - частное решение уравнения (2.31),
- фундаментальная система решений однородного уравнения (2.32), а
- произвольные постоянные.

Доказательство этой теоремы Вы найдете в .

На примере дифференциального уравнения второго порядка изложим метод, при помощи которого можно найти частное решение линейного неоднородного уравнения. Этот метод называют методом Лагранжа вариации произвольных постоянных .

Итак, пусть дано неоднородное линейное уравнение

(2.35)

где коэффициенты
и правая часть
непрерывны в некотором интервале
.

Обозначим через
и
фундаментальную систему решений однородного уравнения

(2.36)

Тогда его общее решение имеет вид

(2.37)

где и- произвольные постоянные.

Будем искать решение уравнения (2.35) в таком же виде, как и общее решение соответствующего однородного уравнения, заменяя произвольные постоянные некоторыми дифференцируемыми функциями от (варьируем произвольные постоянные), т.е.

где
и
- некоторые дифференцируемые функции от, которые пока неизвестны и которые попытаемся определить так, чтобы функция (2.38) была бы решением неоднородного уравнения (2.35). Дифференцируя обе части равенства (2.38), получим

Чтобы при вычислении не появились производные второго порядка от
и
, потребуем, чтобы всюду в
выполнялось условие

Тогда для будем иметь

Вычислим вторую производную

Подставляя выражения для,,из (2.38), (2.40), (2.41) в уравнение (2.35), получим

Выражения, стоящие в квадратных скобках, равны нулю всюду в
, так каки- частные решения уравнения (2.36). При этом (2.42) примет видОбъединяя это условие с условием (2.39), получим систему уравнений для определения
и

(2.43)

Последняя система представляет собой систему двух алгебраических линейных неоднородных уравнений относительно
и
. Определителем этой системы является определитель Вронского для фундаментальной системы решений,и, следовательно, отличен от нуля всюду в
. Это означает, что система (2.43) имеет единственное решение. Решив ее любым способом относительно
,
найдем

где
и
- известные функции.

Выполняя интегрирование и учитывая, что в качестве
,
следует брать одну какую-нибудь пару функций, положим постоянные интегрирования равными нулю. Получим

Подставив выражения (2.44) в соотношения (2.38), сможем записать искомое решение неоднородного уравнения (2.35) в виде

Этот метод можно обобщить для нахождения частного решения линейного неоднородного уравнения -го порядка.

Пример 2.6 . Решить уравнение
при
если функции

образуют фундаментальную систему решений соответствующего однородного уравнения.

Найдем частное решение данного уравнения. Для этого в согласии с методом Лагранжа следует сначала решить систему (2.43), которая в нашем случае имеет вид
Сократив обе части каждого из уравнений наполучим

Вычитая почленно из второго уравнения первое, найдем
а тогда из первого уравнения следует
Выполняя интегрирование и полагая постоянные интегрирования равными нулю, будем иметь

Частное решение данного уравнения можно представить в виде

Общее решение данного уравнения имеет при этом вид

где и- произвольные постоянные.

Отметим, наконец, одно замечательное свойство, которое часто называют принципом наложения решений и описывают следующей теоремой.

Теорема 2.7. Если на промежутке
функция
- частное решение уравненияа функция
частное решение уравнениято на этом же промежутке функция
есть частное решение уравнения

Рассмотрим линейное неоднородное дифференциальное уравнение первого порядка:
(1) .
Существует три способа решения этого уравнения:

  • метод вариации постоянной (Лагранжа).

Рассмотрим решение линейного дифференциального уравнения первого порядка методом Лагранжа.

Метод вариации постоянной (Лагранжа)

В методе вариации постоянной мы решаем уравнение в два этапа. На первом этапе мы упрощаем исходное уравнение и решаем однородное уравнение. На втором этапе мы заменим постоянную интегрирования, полученную на первой стадии решения, на функцию. После чего ищем общее решение исходного уравнения.

Рассмотрим уравнение:
(1)

Шаг 1 Решение однородного уравнения

Ищем решение однородного уравнения:

Это уравнение с разделяющимися переменными

Разделяем переменные - умножаем на dx , делим на y :

Интегрируем:

Интеграл по y - табличный :

Тогда

Потенцируем:

Заменим постоянную e C на C и уберем знак модуля, что сводится к умножению на постоянную ±1 , которую включим в C :

Шаг 2 Заменим постоянную C на функцию

Теперь заменим постоянную C на функцию от x :
C → u(x)
То есть, будем искать решение исходного уравнения (1) в виде:
(2)
Находим производную.

По правилу дифференцирования сложной функции:
.
По правилу дифференцирования произведения:

.
Подставляем в исходное уравнение (1) :
(1) ;

.
Два члена сокращаются:
;
.
Интегрируем:
.
Подставляем в (2) :
.
В результате получаем общее решение линейного дифференциального уравнения первого порядка:
.

Пример решения линейного дифференциального уравнения первого порядка методом Лагранжа

Решить уравнение

Решение

Решаем однородное уравнение:

Разделяем переменные:

Умножим на :

Интегрируем:

Интегралы табличные :

Потенцируем:

Заменим постоянную e C на C и убираем знаки модуля:

Отсюда:

Заменим постоянную C на функцию от x :
C → u(x)

Находим производную:
.
Подставляем в исходное уравнение:
;
;
Или:
;
.
Интегрируем:
;
Решение уравнения:
.



© dagexpo.ru, 2024
Стоматологический сайт