Реферат Изучение звёздного неба на Древнем Востоке. Развитие астрологии в римской империи

24.09.2019

Введение

1. Возникновение и основные этапы развития астрономии. Ее значение для человека.

5. Астрономия в Древней Индии

6. Астрономия в Древнем Китае

Заключение
Литература

Введение

История астрономии отличается от истории других естественных наук прежде всего своей особой древностью. В далеком прошлом, когда из практических навыков, накопленных в повседневной жизни и деятельности, еще не сформировалось никаких систематических знаний по физике и химии, астрономия уже была высокоразвитой наукой.

Эта древность и определяет то особое место, которое астрономия занимает в истории человеческой культуры. Другие области естествознания развились в науки только за последние столетия, и этот процесс протекал главным образом в стенах университетов и лабораторий, куда лишь изредка проникал шум бурь политической и общественной жизни. В противоположность этому астрономия уже в древности выступала как наука, как система теоретических знаний, которая значительно превосходила практические потребности людей и стала важным фактором в их идейной борьбе.

История астрономии совпадает с процессом развития человечества, начиная с самого возникновения цивилизации, и относится главным образом к тому времени, когда общество и личность, труд и обряд, наука и религия в основном еще составляли единое неразделимое целое.

На протяжении всех этих столетий учение о звездах было существенной частью философско-религиозного мировоззрения, являвшегося отражением общественной жизни.

Если современный физик оглянется на своих предшественников, стоявших первыми у основания здания науки, он найдет таких же людей, как и он сам, с аналогичными представлениями об эксперименте и теории, о причине и следствии. Если же астроном посмотрит назад, на своих предшественников, он обнаружит вавилонских жрецов и прорицателей, греческих философов, мусульманских властителей, средневековых монахов, дворян и духовных лиц эпохи Возрождения и так далее, до тех пор, пока в лице ученых XVII и XVIII вв. не встретит своих собратьев по профессии.

Для всех них астрономия была не ограниченной отраслью науки, а учением о мире, тесно связанным с их мыслями и чувствами, со всем их мировоззрением в целом. Работу этих ученых вдохновляли не сложившиеся по традиции задачи профессиональной гильдии, а глубочайшие проблемы человечества и всего мира.

История астрономии явилась развитием того представления, которое человечество составило себе о мире.

1. Возникновение и основные этапы развития астрономии. Ее значение для человека

Астрономия является одной из древнейших наук. Первые записи астрономических наблюдений, подлинность которых несомненна, относятся к VIII в. до н.э. Однако известно, что еще за 3 тысячи лет до н.э. египетские жрецы подметили, что разливы Нила, регулировавшие экономическую жизнь страны, наступают вскоре после того, как перед восходом Солнца на востоке появляется самая яркая из звезд, Сириус, скрывавшаяся до этого около двух месяцев в лучах Солнца. Из этих наблюдений египетские жрецы довольно точно определили продолжительность тропического года.

В Древнем Китае за 2 тысячи лет до н.э. видимые движения Солнца и Луны были настолько хорошо изучены, что китайские астрономы могли предсказывать солнечные и лунные затмения.

Астрономия возникла из практических потребностей человека. Кочевым племенам первобытного общества нужно было ориентироваться при своих странствиях, и они научились это делать по Солнцу, Луне и звездам. Первобытный земледелец должен был при полевых работах учитывать наступление различных сезонов года, и он заметил, что смена времен года связана с полуденной высотой Солнца, с появлением на ночном небе определенных звезд. Дальнейшее развитие человеческого общества вызвало потребность в измерении времени и в летоисчислении (составлении календарей).

Все это могли дать и давали наблюдения над движением небесных светил, которые велись в начале без всяких инструментов, были не очень точными, но вполне удовлетворяли практические нужды того времени. Из таких наблюдений и возникла наука о небесных телах – астрономия.

С развитием человеческого общества перед астрономией выдвигались все новые и новые задачи, для решения которых нужны были более совершенные способы наблюдений и более точные методы расчетов. Постепенно стали создаваться простейшие астрономические инструменты и разрабатываться математические методы обработки наблюдений.

В Древней Греции астрономия была уже одной из наиболее развитых наук. Для объяснения видимых движений планет греческие астрономы, крупнейший из них Гиппарх (II в. до н.э.), создали геометрическую теорию эпициклов, которая легла в основу геоцентрической системы мира Птолемея (II в. до н.э.). Будучи принципиально неверной, система Птолемея, тем не менее, позволяла вычислять приближенные положения планет на небе и потому удовлетворяла, до известной степени, практическим запросам человека в течение нескольких веков.

Системой мира Птолемея завершается этап развития древнегреческой астрономии.

В средние века наибольшего развития астрономия достигла в странах Средней Азии и Кавказа, в трудах выдающихся астрономов того времени – Аль-Баттани (850–929 гг.), Бируни (973–1048 гг.), Улугбека (1394–1449) и др.

Правитель Самарканда Улугбек, будучи просвещенным государственным деятелем и крупным астрономом, привлекая в Самарканд ученых, выстроил для них грандиозную обсерваторию. Таких крупных обсерваторий не было нигде ни до Улугбека, ни долгое время после него. Самым замечательным из трудов самаркандских астрономов были "Звездные таблицы" – каталог, содержащий точные положения на небе 1018 звезд. Он долго оставался самым полным и самым точным: европейские астрономы переиздавали его еще спустя два века. Не меньшей точностью отличались и таблицы движений планет.

В период возникновения и становления капитализма, пришедшего на смену феодальному обществу, в Европе началось дальнейшее развитие астрономии. Особенно быстро она развивалась в эпоху великих географических открытий (XV–XVI вв.).

Развитие производительных сил и требование практики, с одной стороны, и накопленный наблюдательный материал – с другой, подготовили почву для революции в астрономии, которую и произвел польский ученый Николай Коперник (1473–1543), разработавший свою гелиоцентрическую систему мира, опубликованную за год до его смерти.

Учение Коперника явилось началом нового этапа в развитии астрономии. Кеплером в 1609–1618 гг. были открыты законы движения планет, а в 1687 г. Ньютон опубликовал закон всемирного тяготения.

Новая астрономия получила возможность изучать не только видимые, но и действительные движения небесных тел. Ее многочисленные и блестящие успехи в этой области увенчались в середине XIX в. открытием планеты Нептун, а в наше время – расчетом орбит искусственных небесных тел.

Следующий, очень важный этап в развитии астрономии начался сравнительно недавно – с середины XIX в., когда возник спектральный анализ и в астрономии стала применяться фотография. Эти методы дали возможность астрономам начать изучение физической природы небесных тел и значительно расширить границы исследуемого пространства. Возникла астрофизика, получившая особенно большое развитие в XX в. В 40-х годах XX в. стала развиваться радиоастрономия, а в 1957 г. было положено начало качественно новым методам исследований, основанным на использовании искусственных небесных тел, что в дальнейшем привело к возникновению фактически нового раздела астрофизики – рентгеновской астрономии.

Запуск искусственного спутника Земли (1957 г., СССР), космических станций (1958 г., СССР), первые полеты человека в космос (1961 г., СССР), первая высадка людей на Луну (1969 г., США) – эпохальные события для всего человечества. За ними последовала доставка на Землю лунного грунта, посадка спускаемых аппаратов на поверхность Венеры и Марса, посылка автоматических межпланетных станций к более далеким планетам Солнечной системы. Исследование Вселенной продолжается.

2. Астрономия в Древнем Вавилоне

Вавилонская культура – одна из древнейших культур на земном шаре – восходит своими корнями к IV тысячелетию до н. э. Древнейшими очагами этой культуры были города Шумера и Аккада, а также Элама, издавна связанного с Двуречьем. Вавилонская культура оказала большое влияние на развитие древних народов Передней Азии и античного мира. Одним из наиболее значительных достижений шумерийского народа было изобретение письменности, появившейся в середине IV тысячелетия до н.э. Именно письменность позволила установить связь не только между современниками, но даже между людьми различных поколений, а также передать потомству важнейшие достижения культуры.

Развитие хозяйственной жизни, главным образом земледелия, приводило к необходимости установления календарных систем, которые возникли уже в шумерийскую эпоху. Для создания календаря надо было иметь некоторые знания в области астрономии. Древнейшие обсерватории устраивались обычно на верхней площадке храмовых башен (зиккуратов), развалины которых были найдены в Уре, Уруке и Ниппуре. Вавилонские жрецы умели отличать звезды от планет, которым были даны особые названия. Сохранились перечни звезд, которые были распределены по отдельным созвездиям. Была установлена эклиптика (годичный путь Солнца по небесной сфере), которую разделили на 12 частей и соответственно на 12 зодиакальных созвездий, многие названия которых (Близнецы, Рак, Скорпион, Лев, Весы и т. д.) сохранились до наших дней. В различных документах регистрировали наблюдения над планетами, звездами, кометами, метеорами, солнечными и лунными затмениями.

О значительном развитии астрономии говорят данные, фиксирующие моменты восхода, захода и кульминации различных звезд, а также умение вычислять промежутки времени, их разделяющие.

В VIII–VI вв. вавилонские жрецы и астрономы накопили большое количество знаний, имели представление о процессии (предварения равноденствий) и даже предсказывали затмения.

Некоторые наблюдения и знания в области астрономии позволили построить особый календарь, отчасти основанный на лунных фазах. Основными календарными единицами счета времени были сутки, лунный месяц и год. Сутки делились на три стража ночи и три стража дня. Одновременно с этим сутки делились на 12 часов, а час – на 30 минут, что соответствует шестеричной системе счисления, лежавшей в основе вавилонской математики, астрономии и календаря. Очевидно, и в календаре отразилось стремление разделить сутки, год и круг на 12 больших и 360 малых частей.

Начало каждого лунного месяца и его продолжительность определялись каждый раз специальными астрономическими наблюдениями, так как начало каждого месяца должно было совпадать с новолунием. Различие между календарным и тропическим годом исправлялось при помощи вставочного месяца, что устанавливалось распоряжением государственной власти.

3. Астрономия в Древнем Египте

Египетскую астрономию создала необходимость вычислять периоды разлива Нила. Год исчислялся по звезде Сириус, утреннее появление которой после временной невидимости совпадало с ежегодным наступлением половодья. Большим достижением древних египтян было составление довольно точного календаря. Год состоял из 3 сезонов, каждый сезон – из 4 месяцев, каждый месяц – из 30 дней (трех декад по 10 дней). К последнему месяцу прибавляли 5 добавочных дней, что позволяло совмещать календарный и астрономический год (365 дней). Начало года совпадало с подъемом воды в Ниле, то есть с 19 июля, днем восхода самой яркой звезды – Сириуса. Сутки делили на 24 часа, хотя величина часа была не одинаковой, как сейчас, а колебалась, в зависимости от времени года (летом дневные часы были длинными, ночные – короткими, зимой – наоборот). Египтяне хорошо изучили видимое простым глазом звездное небо, они различали неподвижные звезды и блуждающие планеты. Звезды были объединены в созвездия и получили имена тех животных, контуры которых, по мнению жрецов, они напоминали («бык», «скорпион», «крокодил» и др.).

Постоянные наблюдения над небесными светилами дали возможность установить своеобразную карту звездного неба. Такие звездные карты сохранились на потолках храмов и гробниц. В гробнице архитектора и вельможи времени XVIII династии Сенмута изображена интересная астрономическая карта. В центральной ее части можно различить созвездия Большой и Малой Медведицы и известной египтянам Полярной Звезды. В южной части неба изображены Орион и Сириус (Сотис) в виде символических фигур, как обычно изображали созвездия и звезды египетские художники.

Замечательные звездные карты и таблицы расположения звезд сохранились и на потолках царских гробниц XIX и XX династий. При помощи таких таблиц расположения звезд, пользуясь пассажным, визирным инструментом, два египетских наблюдателя, сидящие в направлении меридиана, определяли время ночью. Днем для определения времени пользовались солнечными и водяными часами (позднейшая клепсидра). Древними картами расположения звезд пользовались и позднее, в греко-римскую эпоху; такие карты сохранились в храмах этого времени в Эдфу и Дендера.

К периоду Нового царства относится изложение догадки о том, что соответствующие созвездия находятся на небе и днем; они невидимы только потому, что тогда на небе находится Солнце.

4. Астрономия в Древней Греции

Астрономические знания, накопленные в Египте и Вавилоне заимствовали древние греки. В VI в. до н. э. греческий философ Гераклит высказал мысль, что Вселенная всегда была, есть и будет, что в ней нет ничего неизменного – все движется, изменяется, развивается. В конце VI в. до н. э. Пифагор впервые высказал предположение, что Земля имеет форму шара. Позднее, в IV в. до н. э. Аристотель при помощи остроумных соображений доказал шарообразность Земли. Он утверждал, что лунные затмения происходят, когда Луна попадает в тень, отбрасываемую Землей. На диске Луны мы видим край земной тени всегда круглым. И сама Луна имеет выпуклую, скорее всего, шарообразную форму.

В то же время Аристотель считал Землю центром Вселенной, вокруг которой обращаются все небесные тела. Вселенная, по мнению Аристотеля, имеет конечные размеры – ее как бы замыкает сфера звезд. Своим авторитетом, который и в древности, и в средние века считался непререкаемым, Аристотель закрепил на много веков ложное мнение, что Земля – неподвижный центр Вселенной. И все-таки, не все ученые поддерживали точку зрения Аристотеля по этому вопросу.

Живший в III в. до н. э. Аристарх Самосский полагал, что Земля обращается вокруг Солнца. Расстояние от Земли до Солнца он определил в 600 диаметров Земли (в 20 раз меньше действительного). Однако это расстояние Аристарх считал ничтожным по сравнению с расстоянием от Земли до звезд.

Эти гениальные мысли Аристарха, через много веков подтвержденные открытием Коперника, не были поняты современниками. Аристарха обвинили в безбожии и осудили на изгнание, а его правильные догадки были забыты.

В конце IV в. до н. э. после походов и завоеваний Александра Македонского греческая культура проникла во все страны Ближнего Востока. Возникший в Египте город Александрия стал крупнейшим культурным центром.

В Александрийской академии, объединившей ученых того времени, в течение нескольких веков велись астрономические наблюдения уже при помощи угломерных инструментов. В III в. до н. э. александрийский ученый Эратосфен впервые определил размеры земного шара. Вот как о это сделал. Было известно, что в день летнего солнцестояния в полдень Солнце освещает дно глубоких колодцев в г. Сиена (теперь Асуан), т.е. бывает в зените. В Александрии же в этот день Солнце не доходит до зенита. Эратосфен измерил, насколько полуденное Солнце в Александрии отклонено от зенита, и получил величину, равную 7°12ў, что составляет 1/50 окружности (рис. 1). Это ему удалось сделать при помощи прибора, называемого скафисом. Скафис (рис. 2) представляет собой чашу в форме полушария. В центре ее отвесно укреплялась игла. Тень от иглы падала на внутреннюю поверхность скафиса. Для измерения отклонения Солнца от зенита (в градусах) на внутренней поверхности скафиса проводились окружности, помеченные числами. Если, например, тень доходила до окружности, помеченной числом 40, Солнце стояло на 40° ниже зенита. Построив чертеж, Эратосфен правильно заключил, что Александрия отстоит от Сиены на 1/50 окружности Земли. Чтобы узнать окружность Земли, оставалось измерить расстояние от Александрии до Сиены и умножить его на 50. Это расстояние было определено по числу дней, которые тратили караваны верблюдов на переход между городами.

Рис.1. Схема направления солнечных лучей: в Сиене они падают вертикально, в Александрии – под углом 7°12”.

Рис. 2. Скафис – древний прибор для определения высоты Солнца над горизонтом (в разрезе).

Размеры земли, определенные Эратосфеном (средний радиус Земли у него получился равным 6290 км – в переводе на современные единицы измерения) близки к тем, которые определены точными приборами в наше время.

Во II в. до н. э. великий александрийский астроном Гиппарх, используя уже накопленные наблюдения, составил каталог более, чем 1000 звезд с довольно точным определением их положения на небе. Гиппарх разделил звезды на группы и к каждой из них отнес звезды примерно одинакового блеска. Звезды с наибольшим блеском он назвал звездами первой величины, звезды с несколько меньшим блеском – звездами второй величины и т.д. Гиппарх правильно определил размеры Луны и ее расстояние от Земли. Он вывел продолжительность года с очень малой ошибкой – только на 6 минут. Позднее, в I в. до н. э., александрийские астрономы участвовали в реформе календаря, предпринятой Юлием Цезарем. Этой реформой был введен календарь, действовавший в Западной Европе до XVI – XVII вв., а в нашей стране – до 1917 года.

Гиппарх и другие астрономы его времени много внимания уделял наблюдениям за движением планет. Эти движения представлялись им крайне запутанными. В самом деле, направление движения планет по небу как будто периодически меняется – планеты как бы описывают в небе петли. Эта кажущаяся сложность в движении планет вызывается движением Земли вокруг Солнца – ведь мы наблюдаем планеты с Земли, которая сама движется. И когда Земля «догоняет» другую планету, то кажется, что планета как бы останавливается, а потом движется назад. Но древние астрономы, считавшие Землю неподвижной, думали, что планеты действительно совершают такие сложные движения вокруг Земли.

Во II в. до н. э. александрийский астроном Птолемей выдвинул свою систему мира, позднее названной геоцентрической: неподвижная Земля в ней была расположена в центре Вселенной. Вокруг Земли, по Птолемею, движутся (в порядке удаленности от Земли) Луна, Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн, звезды (рис.3). Но если движение Луны, Солнца, звезд правильное, круговое, то движение планет гораздо сложнее. Каждая из планет, по мнению Птолемея, движется не вокруг Земли, а вокруг некоторой точки. Точка эта, в свою очередь, движется по кругу, в центре которого находится Земля. Круг, описываемый планетой вокруг точки, Птолемей назвал эпициклом, а круг, по которому движется точка относительно Земли – деферентом.

Система мира Аристотеля-Птолемея казалась правдоподобной. Она давала возможность заранее вычислять движение планет на будущее время – это было необходимо для ориентировки в пути во время путешествий и для календаря. Геоцентрическую систему признавали почти полторы тысячи лет!

Рис. 3. Система мира по Птолемею.

5. Астрономия в Древней Индии

Наиболее ранние сведения о естественнонаучных знаниях индийцев относятся к эпохе Индской цивилизации, датирующейся III тысячелетием до н.э. До нас дошли краткие записи, сделанные на печатях и амулетах и значительно реже на орудиях и оружии. Как правило, крупные города Индии располагались или на берегу океана, или вдоль побережья больших судоходных рек. Для ориентации при передвижении судов в океане требовалось изучать небесные тела и созвездия. Другим побудительным мотивом развития астрономии была потребность измерять интервалы времени.

Вследствие общности черт древнеиндийской цивилизации с древнейшими культурами Вавилона и Египта и наличия между ними контактов, хотя и не регулярных, можно полагать, что ряд астрономических явлений, известных в Вавилоне и Египте, был также известен в Индии.

Сведения по астрономии можно найти в имеющей религиозно-философское направление ведической литературе, относящейся ко II–I тысячелетию до н.э. Там содержатся, в частности, сведения о солнечных затмениях, интеркаляциях с помощью тринадцатого месяца, список накшатр – лунных стоянок; наконец, космогонические гимны, посвященные богине Земли, прославление Солнца, олицетворение времени как начальной мощи, также имеют определенное отношение к астрономии.

В ведическую эпоху Вселенная считалась разделенной на три различные части – региона: Земля, небесный свод и небо. Каждый регион в свою очередь также делился на три части. Солнце во время своего прохождения через Вселенную освещает все эти регионы и их составляющие. Эти идеи неоднократно выражались в гимнах и строфах «Ригведы» – самой ранней по времени составления.

В ведической литературе встречается упоминание о месяце – одной из ранних естественных единиц времени, промежутке между последовательными полнолуниями или новолуниями. Месяц делился на две части, две естественные половины: светлая половина – шукла – от полнолуния до новолуния, и темная половина – кришна – от полнолуния до новолуния. Первоначально лунный синодический месяц определялся в 30 дней, затем он был более точно вычислен в 29,5 дней. Звездный месяц был больше 27, но меньше 28 дней, что нашло свое дальнейшее выражение в системе накшатр – 27 или 28 лунных стоянок.

Сведения о планетах упоминаются в тех разделах ведической литературы, которые посвящены астрологии. Семь адитья, упомянутые в «Ригведе», можно трактовать как Солнце, Луну и пять известных в древности планет – Марс, Меркурий, Юпитер, Венера, Сатурн.

Звезды уже давно использовались для ориентировки в пространстве и во времени. Тщательные наблюдения показали, что расположение звезд в один и тот же час ночи со временем года постепенно изменяется. Постепенно то же самое расположение звезд наступает раньше; самые западные звезды исчезают в вечерних сумраках, а на рассвете на восточном горизонте появляются новые звезды, восходя все раньше с каждым последующим месяцем. Это утреннее появление и вечернее исчезновение, определяемое годичным движением Солнца по эклиптике, повторяется каждый год в одну и ту же дату. поэтому было очень удобно использовать звездные явления для фиксирования дат солнечного года.

В отличие от вавилонских и древнекитайских астрономов, ученые Индии практически не интересовались изучением звезд как таковых и не составляли звездных каталогов. Их интерес к звездам в основном сосредотачивался на тех созвездиях, которые лежали н эклиптике или вблизи нее. Выбором подходящих звезд и созвездий они смогли получить звездную систему для обозначения пути Солнца и Луны. Эта система среди индийцев получила название «системы накшатры», среди китайцев – «системы сю», среди арабов – «системы маназилей».

Самые ранние сведения о накшатрах встречаются в «Ригведе», где термин «накшатра» употребляется как для обозначения звезд, так и для обозначения лунных стоянок. Лунные стоянки представляли собой небольшие группы звезд, удаленные друг от друга примерно на 13°, так что Луна при своем движении по небесной сфере каждую следующую ночь оказывалась в следующей группе.

Полный список накшатр впервые появился в «Черной Яджурведе» и «Атхарваведе», которые были составлены позднее «Ригведы». Древнеиндийские системы накшатр соответствуют лунным стоянкам, приведенным в современных звездных каталогах.

Так, 1-я накшатра «Ашвини» соответствует звездам b и g созвездия Овен; 2-я, «Бхарани» – части созвездия Овен; 3-я, «Криттика» – созвездию Плеяды; 4-я, «Рохини» – части созвездия Телец; 5-я, «Мригаширша» – части созвездия Орион и т.д.

В ведической литературе приводится следущее деление дня: 1 сутки состоят из 30 мухурта, мухурта в свою очередь делится на кшипру, этархи, идани; каждая единица меньше предыдущей в 15 раз.

Таким образом, 1 мухурта = 48 минутам, 1 кшипра = 3,2 минуты; 1 этархи = 12,8 секунды, 1 идани = 0,85 секунды.

Продолжительность года чаще всего составляла 360 дней, которые делили на 12 месяцев. Поскольку это на несколько дней меньше истинного года, к одному или нескольким месяцам прибавляли 5-6 дней или через несколько лет добавляли тринадцатый, так называемый интеркаляционный месяц.

Следующие сведения по индийской астрономии относятся к первым векам нашей эры. Сохранились несколько трактатов, а также сочинение «Ариабхатийа» крупнейшего индийского математика и астронома Ариабхаты I , родившегося в 476 г. В своем сочинении Ариабхата высказал гениальную догадку: ежедневное вращение небес – только кажущееся вследствие вращения Земли вокруг своей оси. Это было чрезвычайно смелой гипотезой, которая не была принята последующими индийскими астрономами.

6. Астрономия в Древнем Китае

Древнейший период развития китайской цивилизации относится ко времени царств Шан и Чжоу. Потребности повседневной жизни, развитие земледелия, ремесла побуждали древних китайцев изучать явления природы и накапливать первичные научные знания. Подобные знания, в частности, математические и астрономические, уже существовали в период Шан (Инь). Об этом свидетельствуют как литературные памятники, так и надписи на костях. Предания, вошедшие в «Шу цзин», рассказывают о том, что уже в древнейшие времена было известно деление года на четыре сезона. Путем постоянных наблюдений китайские астрономы установили, что картина звездного неба, если ее наблюдать изо дня в день в одно и то же время суток, меняется. Они подметили закономерность в появлении на небесном своде определенных звезд и созвездий и временем наступления того или иного сельскохозяйственного сезона года.

Установив эту закономерность, они в дальнейшем уже могли сказать земледельцу, что тот или иной сельскохозяйственный сезон начинается тогда, когда на горизонте появится определенная звезда или созвездие. Такие выдающиеся ориентировочные светила (по-китайски называемые «чэн») наблюдались астрономами древности в вечернее время суток сразу же после захода Солнца или в утреннее, перед самым восходом его.

Нужно отметить, что если египтяне для своей календарной системы пользовались гелиактическим восходом Сириуса (a Большого Пса) , халдейские жрецы – гелиактическим восходом Капеллы (a Возничего), то у древних китайцев мы можем проследить смену нескольких «чэн»: звезды «Дахо» (Антарес, a Скорпиона); созвездия «Цан» (Орион); созвездия «Бэй доу» – «Северный ковш» (Большая Медведица). Эти «чэн», как явствует из китайских источников, употреблялись во времена, предшествующие Чжоуской эпохе, т.е. ранее XII в. до н.э. В известных комментариях к книге «Чуньцю», составленных в III в. до н.э., есть такая фраза: «Дахо является великим ориентировочным светилом; Цан является великим ориентировочным светилом, и «самое северное» [Большая Медведица] тоже является великим ориентировочным светилом».

С древних времен в Китае год делился на четыре сезона. Очень важным было наблюдение акронического восхода «Огненной звезды» (Антарес). Ее восход происходил около момента весеннего равноденствия. За ее появлением на небесном своде следили астрономы и извещали жителей о наступлении весны.

Существует легенда, что император Яо приказал своим ученым составить календарь, которым могли бы пользоваться все жители страны. Для сбора сведений и производства необходимых астрономических наблюдений за Солнцем, Луной, пятью планетами и звездами в разных местах государства он послал четырех своих высших чиновников, ведавших при дворе астрономическими работами, братьев Си и братьев Хэ, в четырех направлениях: на север, юг, восток и запад. В книге «Шуцзин» глава «Яодянь» («Устав владыки Яо») в записи, описывающий период времени между 2109 и 2068 гг. до н.э. говорится: «владыка Яо приказывает своим астрономам Си и Хо поехать на окраины страны на восток, юг, запад и север для определения по звездному небу четырех времен года, а именно весеннего и осеннего равноденствий и зимнего и летнего солнцестояний. Далее Яо указывает, что продолжительность года равна 366 дням и дает распоряжение пользоваться методом «вставочной тринадцатой Луны» для «правильности календаря».

Календарь, связанный с сезонами, определяемыми по движению Солнца, являлся солнечным календарем, он был удобен для земледельца. Продолжительность тропического года китайцы знали уже в глубокой древности. В «Яодянь» говорится: «широко известно, что три сотни дней и шесть декад и шесть дней составляют полный год».

Вместе с тем в Китае, да, очевидно, не только в Китае, а почти у всех народов на известной стадии развития, с незапамятных времен находился в употреблении календарь, связанный со счетом дней по фазам Луны. Древнекитайские астрономы установили, что период от новолуния до следующего новолуния (синодический месяц) равняется примерно двадцати девяти с половиной дням.

Трудность сочетания солнечного и лунного календарей состоит в том, что продолжительность тропического года и синодического месяца несоизмеримы. Поэтому для их сочетания применялся вставной месяц. В «Яодянь» сказано: «четыре времени года сочетаются вставным месяцем».

В книге «Кайюаньчжандан» и в книге «Ханьшу» – летописи династии Хань (206 г до н.э. – 220 г н.э.) имеется упоминание о шести календарях, составленных во времена полулегендарных императоров: Хуан-ди (2696–2597 гг. до н.э.), Чжуан-сюй (2518–2435 гг. до н.э.), в эпоху Ся (2205–1766 гг. до н.э.), а также во времена династий Инь (1766–1050 гг. до н.э.), Чжоу (1050–247 гг. до н.э.) и государства Лу (VII в. до н.э.)

Таким образом, можно сказать, что календарь в Китае зародился в самые древнейшие времена, вероятно, во II–III тысячелетиях до н.э.

В 104 г. до н. э. в Китае была созвана обширная конференция астрономов, посвященная вопросу улучшения действовавшей в то время календарной системы «Чжуань-сюй ли. После оживленной дискуссии на конференции была принята официальная календарная система «Тайчу ли», названная так в честь императора Тай-чу.

Следует сказать, что если календари эпох Инь и Чжоу давали только сведения о том, какой день следует считать началом года, как распределяются дни по месяцам, каким образом вставляется добавочный месяц или день, то календарь «Тайчу ли» помимо указанных сведений содержал данные о продолжительности года и отдельных сельскохозяйственных сезонов, о моментах новолуния и полнолуния, о продолжительности каждого месяца в году, о моментах затмений Луны, сведения о пяти планетах.

Были вычислены и моменты затмений Солнца, но так как люди в древности боялись этого явления, то данные о затмении Солнца в текст календаря, который получил широкое распространение, не были включены. В календаре были указаны также «удачные дни», когда небесные тела, по мнению астрономов, расположены благоприятно для свершения или начала тех или иных дел.

Календарь «Тайчу ли» был первой официальной календарной системой, принятой китайским правительством.

Заключение

Астрономические явления вошли в быт древнего человека как часть окружающей его среды, тесно связанной со всей его деятельностью. Наука началась не с абстрактного стремления к истине и знанию; она возникла как часть жизни, вызванная зарождением социальных потребностей.

Кочевникам, рыбакам, торговцам-путешественникам необходимо было ориентироваться в пространстве. Для этой цели они использовали небесные тела: днем – Солнце, ночью – звезды. Таким образом пробудился их интерес к звездам.

Вторым побудительным мотивом, приведшим к тщательному наблюдению небесных явлений, была потребность измерять интервалы времени. Старейшим практическим применением астрономии, помимо навигации, был счет времени, из которого позднее развилась наука. Периоды Солнца и Луны (т.е. год и месяц) являются естественными единицами счета времени.

Кочевые народы регулируют свой календарь целиком по синодическому периоду 29 1/2 дней, через который фазы Луны повторяются. Луна стала одним из наиболее важных объектов естественного окружения человека. Это послужило основой для установления культа Луны, поклонению ей как живому существу, которое своим возрастанием и убыванием регулировало время.

Лунный период является самой древней календарной единицей. Но даже при чисто лунном счете такой важный период природы, как год, проявляется уже в самом факте существования двенадцати месяцев и двенадцати последовательных названий месяцев, указывающих на их сезонный характер: месяц дождей, месяц молодых животных, месяц сева или жатвы. Постепенно развивается тенденция к более близкому согласованию лунного и солнечного счета.

Земледельческие народы, по характеру своей работы тесно связаны с солнечным годом. Сама природа как бы навязывает его народам, живущим в высоких широтах.

Большинство земледельческих народов используют в своих календарях как месяц, так и год. Здесь, однако, возникают затруднения, потому что даты полнолуния и новолуния смещаются в солнечном году относительно календарных дат, так что фазы Луны не могут указать определенной сезонной даты. Лучшее решение в этом случае дают звезды, движение которых уже было известно, поскольку их использовали для ориентировки в пространстве и во времени.

Необходимость разделять и регулировать время разными путями приводили различные первобытные народы к наблюдению небесных тел и, следовательно, к началу астрономического знания. Из этих истоков на заре цивилизации и возникла наука, прежде всего среди народов наиболее древней культуры – на Востоке.

Литература

1. Авдиев В. И. История Древнего Востока. – М.: Высшая школа, 1970.

2. Арманд Д. Л. Как впервые измерили окружность Земли. Детская энциклопедия. В 12 т. Т 1. Земля. – М.: Просвещение, 1966.

3. Бакулин П. И., Кононович Э. В., Мороз В. И. Курс общей астрономии. – М.: Наука, 1977.

4. Володарский А. И. Астрономия древней Индии. Историко-астрономические исследования. Вып. XII. – М.: Наука, 1975.

5. Всемирная история. В 10 т. Т. 1. М.: Гос. изд. политической литературы, 1956.

6. Завельский Ф. С. Время и его измерение. М.: Наука, 1977.

7. История Древнего Востока. – М.: Высшая школа, 1988.

8. Нейгебауэр О. Точные науки в древности. – М., 1968.

9. Паннекук А. История астрономии. – М.: Физматгиз, 1966.

10. Перель Ю. Г. Астрономия в древности. Детская энциклопедия. В 12 т. Т 2. Мир небесных тел. – М.: Просвещение, 1966.

11. Селешников С. И. История календаря и хронология. – М.: Наука, 1970.

12. Старцев П. А. О китайском календаре. Историко-астрономические исследования. Вып. XII. – М.: Наука, 1975.

Восходом перед самым появлением Солнца утром на горизонте.

Одна из книг, описывающих историю Китая с древнейших времен до эпохи Тан (618-910 гг.)

Зернаев А., Оренбург

Согласитесь, сегодня человек, в какой бы самой отдаленной области науки или народного хозяйства он ни работал, должен иметь представления, хотя бы общее, о нашей Солнечной системе, звездах и современных достижениях астрономии.

Человечеству еще не ясны те условия, которые привели к формированию разнообразных природных комплексов, в том числе благоприятствовавших зарождению и развитию жизни на Земле. На большинство этих вопросов отвечает наука астрономия. В этом докладе речь пойдет о зарождении этой древней науки, ее практической значимости.

Я выбрал эту тему потому, что загадочный мир образования звезд и планет с давних времен притягивал к себе внимание людей. Эта тема была актуальна на протяжении тысячелетий и лишь в последние 10 лет были получены достоверные сведения о наличии планет и планетных систем и у других звезд. Познание планет и планетных систем приведет человечество и к решению другой глобальной проблемы - существование жизни на планетах, а это предстоит решить человечеству только в третьем тысячелетии.

Задачами работы являются: изучить историю возникновения астрономии, проследить этапы ее становления; познакомиться с первыми учеными-астрономами; узнать и описать первые древнейшие обсерватории, составить сравнительную таблицу длины звездного дня.

В этом году мы в школе впервые стали изучать историю нашей земли, планет и звезд. Этот предмет очень заинтересовал меня, и поэтому я обратился к этой теме.

При написании работы использован материал энциклопедий, астрономических сайтов Интернета, астрономических словарей, периодической печати.

Структура работы: в первой части рассматриваются вопросы зарождения астрономии и ее первоначальное значение; во второй части – поднимаются вопросы строительства древнейших обсерваторий.

1. Астрономия как наука, ее первоначальное значение.

Астрономия - наиболее древняя среди естественных наук, в переводе с греческого (греч. αστροννομος , от αστρον - звезда, νομος - закон) наука о расположении, строении, свойствах, происхождении, движении и развитии космических тел (звезд, планет, метеоритов и т. п.) образованных ими систем (звездные скопления, галактики и т. п.) и всей Вселенной в целом. Один из выдающихся астрономов античности - Птолемей, автор энциклопедии древней астрономии, "Альмагеста", - так объяснял причины побуждения к занятиям астрономией, которую он считал частью математики: "Только математика. доставляет своим воспитанникам прочное и надежное знание. В этом также причина, заставляющая нас заниматься со всем усердием этой превосходной наукой. в особенности той ее ветвью, которая касается знания божественных небесных светил. Поскольку одна только эта наука посвящена изучению вечно неизменного мира"

Астрономия, как и все другие науки, возникла из практических потребностей человека. О связи наблюдений небесных светил с практической жизнью и об их влиянии на общественные процессы писал и Коперник: «. необходимость вычислять периоды повышения и спада воды в Ниле создала египетскую астрономию, а вместе с тем господство касты жрецов как руководителей земледелия». Обычно называют две причины возникновения этой науки: необходимость ориентироваться на местности и регламентация сельскохозяйственных работ. Кочевым племенам первобытного общества нужно было ориентироваться при своих странствиях, и они научились это делать по Солнцу, Луне и звездам. Первобытный земледелец должен был при полевых работах учитывать наступление различных сезонов года, и он заметил, что смена времен года связана с полуденной высотой Солнца, с появлением па ночном небе определенных звезд. Дальнейшее развитие человеческого общества вызвало потребность в измерении времени и в летосчислении (составлении календарей). В древности и средние века не одно только чисто научное любопытство побуждало производить вычисления, копирование, исправления астрономических таблиц, но прежде всего тот факт, что они были необходимы для астрологии. Вкладывая большие суммы в построение обсерваторий и точных инструментов, власти ожидали отдачи не только в виде славы покровителей науки, но также в виде астрологических предсказаний. Первые записи астрономических наблюдений, подлинность которых несомненна, относятся к VIII в. до н. э.

С развитием человеческого общества перед астрономией выдвигались все новые и новые задачи, для решения которых нужны были более совершенные способы наблюдений и более точные методы расчетов. Астрономические познания были характерны для многих древних народов.

2. Астрономия в Древнем Египте.

Известно, что еще за 3 тысячи лет до н. э. египтяне уже изобрели египетские календари: лунно-звёздный - религиозный и схематический - гражданский.

Обитатели долины Нила, где нет настоящей зимы, делили год на три сезона, которые зависели от поведения реки. С Нила, от которого зависела вся жизнь египтян, и началась астрономия этой древней цивилизации.

К тому времени в Египте существовал лунный календарь из 12 месяцев по 29 или 30 дней - от новолуния до новолуния. Чтобы его месяцы соответствовали сезонам года, раз в два-три года приходилось добавлять тринадцатый месяц. Сириус "помогал" определять время вставки этого месяца. Такой "наблюдательный" календарь с нерегулярным добавлением месяца плохо подходил для государства, где существовали строгий учёт и порядок. Поэтому для административных и гражданских нужд был введён так называемый схематический календарь. В нём год делился на 12 месяцев по 30 дней с добавлением в конце года дополнительных пяти дней.

В Древнем Египте существовала сложная мифология с множеством богов. Астрономические представления египтян были тесно связаны с ней.

В Карнаке, около Фив, были найдены самые древние египетские водяные часы. Они изготовлены в ХIV в. до н. э. Главными солнечными часами в Египте были, конечно, обелиски, посвящённые Солнцу-Ра. Такой астрономический прибор в виде вертикального столба называется гномон. Древние египтяне, как и все народы, делили небо на созвездия. Всего их известно 45. Планеты египтянам были известны с давних времён. Казалось бы, египетская астрономия не может похвастаться особыми достижениями. Египтяне, оседлый народ, живший в неширокой речной долине, не нуждались в астрономических методах ориентирования. Сроки сельскохозяйственных работ египтянам подсказывала река, и достаточно было установить момент начала её разлива, чтобы, не глядя на небо, знать, что будет дальше. Жрецы наблюдали звёзды в основном для измерения ночного времени, а писцы ввели упрощённый календарь, который не был привязан к сезонам и как бы пренебрегал астрономией. Тем не менее, именно на египетской земле, в Александрии, работали позднее греческие учёные, заложившие основы современной астрономии. Здесь трудились Аристарх Самосский, Тимохарис, Эратосфен, именно здесь написал свой знаменитый астрономический труд Клавдий Птолемей. Схематический календарь не следовал за сезонами, однако он послужил идеальной равномерной шкалой для определения интервалов между затмениями, наблюдавшимися через много лет одно после другого. Именно этим календарём пользовался в своих расчётах Птолемей, а позже и сам Коперник

3. Астрономические познания майя.

Для майя (начало цивилизации майя датируется II тысячелетием до н. э.) астрономия была не абстрактной наукой. В условиях тропиков, где нет резко обозначенных природой времен года, и долгота дня и ночи остается почти неизменной, астрономия служила практическим целям. Благодаря своим астрономическим познаниям жрецы сумели высчитать продолжительность солнечного года: 365,2420 дня! Иными словами, календарь, которым пользовались древние майя, точнее нашего современного на 0,0001 дня! Год делился на восемнадцать месяцев; каждый соответствовал определенным сельскохозяйственным работам: подысканию нового участка, рубке леса, его выжиганию, посеву ранних и поздних сортов кукурузы, сгибанию початков, чтобы защитить их от дождя и птиц, сбору урожая и даже уборке зерен в хранилища. Летосчисление майя велось с некой мифической нулевой даты. Она соответствует, как высчитали современные ученые, 5041 738 году до нашей эры! Известна также начальная дата хронологии майя, но и ее, несомненно, также следует отнести к числу легендарных - это 3113 год до нашей эры. С годами календарь майя становился все сложнее и сложнее. Все больше и больше терял он свое первоначальное значение практического пособия по сельскому хозяйству, пока, наконец, не превратился в руках жрецов в грозный и весьма действенный инструмент мрачной и жестокой религии.

4. Развитие астрономии на Среднем Востоке (Древний Китай).

Большую роль играет происхождение древней китайской астрономии, лежащей в основе астрономических познаний всего Дальнего Востока. В Древнем Китае за 2 тысячи лет до н. э. видимые движения Солнца и Луны были настолько хорошо изучены, что китайские астрономы могли предсказывать наступление солнечных и лунных затмений. В развитии древнекитайской астрономии наблюдается плавный эволюционный ход. Ход этот можно разбить на такие периоды:

1) Введение солнечного календаря во времена легендарного императора Яо, правление которого китайцы относят к XXIV в. до н. э.

2) Введение системы 28 лунных станций (домов), примерно, в начале Чжоуской династии, т. е. в XIII в. до н. э.

3) Введение гномона ту-гуй, около середины периода, охватываемого Весенними и осенними записями для наблюдения точной эпохи солнцестояния.

4) Выработка твердой календарной системы Календаря Чжуаньюй (Чжуань-юй ли) в это время; наблюдение за 5 планетами; основание теории Пяти стихий (У-син шо): дерево (му), огонь (хо), земля (ту), металл (цзинь), вода (шуй), соединение которых обуславливает все в космосе. Начало систематических наблюдений над звездами.

5) Принятие первой официальной системы - Великого первого календаря (Тай-чу ли) в 104 г. до н. э. Это была первая система, официально признанная китайским правительством.

5. Развитие астрономии в Древней Греции.

В Древней Греции астрономия была уже одной из наиболее развитых наук. Для объяснения видимых движений планет греческие астрономы, крупнейший из них Гиппарх Никейский (II в. до н. э.), создали геометрическую теорию эпициклов, которая легла в основу геоцентрической системы мира Птолемея (II в. н. э.). Будучи принципиально неверной, система Птолемея тем не менее позволяла предвычислять приближенные положения планет на небе и потому удовлетворяла, до известной степени, практическим запросам в течение нескольких веков. Гиппарх составил первый в Европе звёздный каталог, включивший точные значения координат около тысячи звёзд. Системой мира Птолемея завершается этап развития древнегреческой астрономии. Развитие феодализма и распространение христианской религии повлекли за собой значительный упадок естественных наук, и развитие астрономии в Европе затормозилось на многие столетия. В эпоху мрачного средневековья астрономы занимались лишь наблюдениями видимых движений планет и согласованием этих наблюдений с принятой геоцентрической системой Птолемея.

Рациональное развитие в этот период астрономия получила лишь у арабов и народов Средней Азии и Кавказа, в трудах выдающихся астрономов того времени - Аль-Баттани (850-929 гг.), Бируни (973-1048 гг.), Улугбека (1394-1449 гг.) и др.

В период возникновения и становления капитализма в Европе, который пришел на смену феодальному обществу, началось дальнейшее развитие астрономии. Особенно быстро она развивалась в эпоху великих географических открытий (XV-XVI вв.). Нарождавшийся новый класс буржуазии был заинтересован в эксплуатации новых земель и снаряжал многочисленные экспедиции для их открытия. Но далекие путешествия через океан требовали более точных и более простых методов ориентировки и исчисления времени, чем те, которые могла обеспечить система Птолемея. Развитие торговли и мореплавания настоятельно требовало совершенствования астрономических знаний и, в частности, теории движения планет. Развитие производительных сил и требования практики, с одной стороны, и накопленный наблюдательный материал, - с другой, подготовили почву для революции в астрономии, которую и произвел великий польский ученый Николай Коперник (1473-1543), разработавший свою гелиоцентрическую систему мира, опубликованную в год его смерти.

III. Древнейшие обсерватории мира.

Стоунхендж - «висячие камни».

«Восьмое чудо света» Стоунхендж был возведен на рубеже каменного и бронзового веков, за несколько столетий до падения гомеровской Трои. Период ее постройки в настоящее время установлен радиоуглеродным методом из анализа сожженных при захоронении человеческих останков.

Астроному Джеральду Хокинсу удалось установить назначение Стоунхенджа. Стоунхендж настолько стар, что уже в эпоху античности его истинная история была забыта. Греческие и римские авторы о нем почти не упоминают. Кто же построил Стоунхендж? Стоунхендж был построен в период между 1900 и 1600 годами до н. э. , примерно на тысячу лет позже египетских пирамид и за несколько столетий до падения Трои. Он воздвигался в три этапа. Первое строительство, следы которого можно обнаружить, было начато около 1900 года до н. э. , когда на исходе каменного века люди вырыли большой кольцевой ров, выбрасывая землю двумя валами по обе его стороны. Внутри, по периметру вала, первые строители вырыли кольцо из 56 «лунок Обри». Внешний вал, теперь уже почти исчезнувший, имел форму почти правильного круга диаметром 115 метров. Прямо от внутреннего края рва поднимался самый внушительный меловой компонент раннего Стоунхенджа - внутренний вал. Эта ослепительно белая насыпь образовывала в окружность диаметром 100 метров. Сооруженный из твердого мела, он и сейчас хорошо заметен. Вход был ориентирован так, что человек, стоящий в центре круга и смотрящий через входной разрыв, утром дня летнего солнцестояния увидел бы, как солнце встает чуть левее Пяточного камня. Этот камень - возможно, самый первый большой камень, который ранние строители установили в Стоунхендже,- имеет длину 6 метров, ширину 2,4 м и толщину 2,1 метр; на 1,2 м он закопан в землю, и оценивается в 35 тонн. Около 1750 года до н. э. начался второй этап строительства Стоунхенджа. Новые строители установили первый ансамбль «больших камней». По меньшей мере 82 голубых камня были установлены двумя небольшими концентрическими кругами на расстоянии 1,8 м друг от друга и около 10,5 м от внутреннего кольца. Двойной круг голубых камней, по-видимому, должен был слагаться из радиально расходящихся лучей, включающий каждый по два камня. В 1700 году до н. э. в Британии начинается бронзовый век, а вместе с ним и третий этап строительства Стоунхенджа. Последними строителями, двойной круг, начатый во второй период, но незавершенный, был разобран. Голубые камни заменили на большие сарсеновые валуны, числом 81 или больше. В этот период был построен, по всей видимости, овал из 20 голубых камней внутри сарсеновой подковы. Может быть, тогда же был поставлен «Алтарный» камень, который был уникален по своему минералогическому составу. Кроме того, они установили кольцо из голубых камней между сарсеновой подковой и сарсеновым кольцом. И на этом постройка завершилась.

Многие люди задумывались над астрономическим значением Стоунхенджа, но не могли сказать по этому поводу ничего определенного. Например, в 1740 году Джон Вуд предположил, что Стоунхендж был «храмом друидов, посвященным Луне». В 1792 году человек, о котором известно только то, что он называл себя Уолтайр, утверждал, что Стоунхендж представлял собой «огромный теодолит для наблюдения за движением небесных тел и был воздвигнут по крайней мере 17 тысяч лет назад». В 1961 году Дж. Хокинс пришел к выводу, что «проблема Стоунхенджа заслуживает того, чтобы призвать на помощь вычислительную машину». Прежде всего, программисты Шошана Розенталь и Джули Коул взяли карту Стоунхенджа и поместили ее в автоматическую измерительную машину «Оскар». После «проверки» выяснилось, что основные и часто повторяющиеся направления Стоунхенджа указывали на Солнце и Луну. После того, как установили, что строители сориентировали Стоунхендж по Солнцу и Луне с таким искусством, последовательностью и упорством, естественно возникает вопрос: «Зачем?» Дж. Хокинс считает, что солнечно-лунные направления в Стоунхендже были установлены и отмечены по двум, а может быть, по четырем причинам:

1) они служили календарем, особенно полезным для предсказания времени начала сева;

2) они способствовали установлению и сохранения власти жрецов;

3) они служили для предсказания затмений Луны и Солнца.

Пользуясь ими для отсчета лет, жрецы Стоунхенджа могли следить за движением Луны и тем самым предсказывать «опасные» периоды, когда могли происходить наиболее эффектные затмения Луны и Солнца.

В 2004 г. во время археологических раскопок в Великобритании обнаружены останки строителей Стоунхенджа с радиоактивными зубами. Скелеты семерых мужчин, которым около 4300 лет, были найдены во время строительных работ недалеко от построек Стоунхенджа. После длительных исследований, британские археологи объявили, что именно эти люди принимали участие в строительстве знаменитого культового сооружения и были захоронены около 4300 лет назад вместе с глиняными сосудами и наконечниками стрел. Это четверо братьев и трое их детей. В то время как ученые все еще продолжают спорить, являлся ли Стоунхендж культовой постройкой или древней обсерваторией, уже найден ответ на вопрос о том, откуда взялись двадцатиметровые каменные глыбы сооружения. Самые необычные из них, так называемые "синие камни", были привезены с холмов Презели, которые находятся в 250 км от Стоунхенджа в Уэльсе - местность с наиболее высокой природной радиоактивностью. Ученые исследовали их зубную эмаль и обнаружили в ней большое количество радиоактивного стронция. Во время роста зубов в них накапливается своего рода химический отпечаток окружающей среды.

Древнейшие обсерватории Китая.

Китайские археологи обнаружили древнейшую в мире астрономическую обсерваторию, возраст которой оценивается в 4300 лет. С ее помощью можно было определить смену времен года с точностью до суток. Древнее сооружение найдено в северной провинции Шаньси на месте поселения Таосы, существовавшего между 2600 и 1600 годами до нашей эры. Раскопки на археологической площадке, ведущиеся на площади около 3 млн кв метров близ города Линьфэнь, открыли взору ученых некое подобие британского "Стоунхенджа": 13 каменных колонн 4-метровой высоты, расположенных на определенном расстоянии друг от друга вдоль полуокружности радиусом 40 метров. Как сообщил Хи Ну, исследователь из Института археологии при Академии общественных наук Китая, эта обсерватория по меньшей мере на 2000 лет старше аналогичного сооружения народа майя в Центральной Америке. По его словам, это сооружение, построенное на закате примитивного общества, "служило не только для астрономических наблюдений, но и совершения жертвенных обрядов" .

Еще одна древняя обсерватория в Китае расположена в юго-западной части моста Цзяньгомэнь города Пекин. Древняя обсерватория была построена при династии Мин (примерно в 1442 году до н. э.) и является одной из самых древних обсерваторий в мире. Древняя обсерватория также известна целостным сооружением, прекрасным прибором высокой точности, продолжительной историей и особенным местонахождением, играет важную роль в обмене восточной и западной культуры всего мира. В династии Мин древняя обсерватория Пекина названа «Гуансинтай» (площадка для наблюдения за звёздами)

На площадке установлена простая сфера, армиллярная сфера, небесный глобус и другие крупные астрологические приборы, также гномон и клепсидра.

Высота корпуса обсерватории – около 14 метров. Длина её площадки с севера на юг – 20,4 метра, а с запада на восток - 23,9 метра, там установили 8 астрологических приборов, которые были произведены при династии Цин.

До 1929 года, Древняя обсерватория служила местом для астрономических наблюдений на протяжении 500 лет, она считается самой давней обсерваторией, где сохранились непрерывные наблюдения проводимые в тот период.

Обсерватория Улугбека.

Развитие астрономии на Среднем Востоке связано со становлением Арабского Халифата в VII - VIII вв. Как и во всех других государствах астрономия использовалась сначала чисто в практических целях и использовалась для строительства многочисленных мечетей, где требовалось определения "киблы" - направления на Мекку, куда мусульмане направляли свои взоры во время молитвы. Однако бурное развитие и расширение государств требовало всё более глубоких знаний математики и астрономии, вследствие чего начали создаваться астрономические обсерватории, в которых работали квалифицированные астрономы и математики, и уже в IX-XI вв. уровень астрономических исследований на Среднем Востоке достиг больших высот. Именно здесь творили выдающиеся энциклопедисты: Мухаммед бин-Муса ал-Хорезми (Алгоритми) (780-850 гг.) в Багдадской обсерватории, Абу-Райхан ал-Бируни (973-1048 гг.), Абу-Али ибн-Сино (980-1037 гг.), ас-Суфи, Омар Хайям (1040-1123 гг.) в Исфаганской обсерватории и Насир-ад-дин Туси (1201-1274 гг.) в Мерагской обсерватории. На этом прочном фундаменте и возникла в начале XV века самаркандская астрономическая школа, идейным и научным вдохновителем которой был Улугбек. Судьба предназначала ему участь наследника престола великой империи, а природный талант, ум и целеустремлённость открыли путь к научному подвигу. Султан Мухаммед Тарагай Улугбек, сын Шахруха, родился 22 марта 1394 года в военном обозе своего знаменитого деда Амира Темура во время стоянки в городе Султании (ныне это территория Ирана). Ещё совсем ребёнком Улугбек сопровождал своего знаменитого деда Тимура в его завоевательных, опустошительных походах. Улугбек побывал в Армении, Афганистане, сопровождал Тимура в походе на Индию и Китай. Наукой Улугбек начал увлекаться ещё в молодости. Большую часть своего времени он проводил в богатейшей библиотеке, где были сосредоточены книги, собранные его дедом и отцом со всего света. Улугбек любил поэзию и историю. Учителями Улугбека были выдающиеся учёные, которыми славился двор Тимура, и среди них - математик и астроном Казы-заде Руми. Он показал девятилетнему Улугбеку руины знаменитой обсерватории в Мараге, возможно, именно это и стало причиной того, что основное внимание Улугбек уделял занятиям астрономией. Главным детищем Улугбека, а может быть и главной целью его жизни, стала обсерватория, которая была построена в 1428-29 годах (832 год хиджры) на скалистом холме у подножия возвышенности Кухак (современный Чупан-Ата) на берегу арыка Обирахмат и представляла собой трёхэтажное здание, покрытое прекрасными изразцами. Ещё до начала строительства для астрономических наблюдений были созданы астролябия с диаметром в один газ (равный 62 см) и звездный глобус. На стене своего дворца Улугбек установил солнечные часы. Круглое здание обсерватории имело в диаметре 46,4 метра, высоту не менее 30 метров и вмещало грандиозный инструмент - квадрант, на котором производились наблюдения за Солнцем, Луной и другими планетами небесного свода. В 60-х годах ХХ-го века архитектор В. А. Нильсен попытался воспроизвести внешний вид обсерватории, каким он представлялся в эпоху Улугбека. План самого здания был весьма сложным, в нём присутствовали большие залы, комнаты, коридоры. Научный труд Улугбека "Новые гураганские астрономические таблицы" явился выдающимся вкладом в сокровищницу мировой астрономической науки. Среди многочисленных астрономических таблиц Улугбека большой интерес представляет таблица географических координат 683 различных городов не только Средней Азии, но России, Армении, Ирана, Ирака и даже Испании. В основе астрономических работ Улугбека лежит геоцентризм, что является вполне закономерным явлением для средневековой эпохи. С поразительной точностью произведено вычисление длины звёздного года. По данным Улугбека, звёздный год равен 365 дням 6 часам 10 минутам 8 секундам, а истинная длина звёздного года (по современным данным) составляет 365 дней 6 часов 9 минут 9,6 секунды. Таким образом, ошибка, допущенная в то время, составляет менее одной минуты.

Звездный каталог самаркандских астрономов был вторым после каталога Гиппарха, составленного за 17 столетий до этого. Звёздные таблицы Улугбека остались последним словом средневековой астрономии и высшей ступенью, которой могла достичь астрономическая наука до изобретения телескопа. Вот сколь велико значение многолетних кропотливых научных исследований самаркандских астрономов XIII века. Результаты их научных достижений оказали огромное влияние на развитие науки на Западе и Востоке, в том числе на развитие науки в Индии и Китае.

Древняя обсерватория Европы.

Обсерватория, найденная в небольшом местечке под название Гозек недалеко от города Галле в федеральной земле Саксония-Анхальт является своего рода европейским Стоунхенджем. Это земляное сооружение представляло собой площадку диаметром 75 метров, где располагались два деревянных ограждения круглой формы. В трех местах в ограждениях были сделаны проходы - ворота к солнцу. 21 декабря, в день зимнего солнцестояния, внутри сооружения можно было наблюдать причудливую игру солнечного света. На восходе солнечный свет попадал точно в восточные ворота, а на закате солнца - непосредственно в ворота западные. Данная конструкция свидетельствует о том, что уже за 5000 лет до рождества Христова люди пытались найти на небосводе точки отсчета, чтобы определять годичные циклы. До сих пор ученые не подозревали, что доисторические земледельцы были на такое способны. Но гозекская обсерватория использовалась не только для наблюдения за звездами и определения времен года для нужд сельского хозяйства. Сооружение было и культовым местом, поскольку в те времена люди почитали созвездия как богов. Данная обсерватория положила начало созданию целой серии аналогичных сооружений в Европе в период неолита и бронзового века.

В Башкирии обнаружена древнейшая евразийская обсерватория.

Челябинские ученые пришли к выводу, что близ поселка Ахуново Учалинского района Башкирии была расположена древняя обсерватория Евразии. Мегалитический памятник Ахуново был обнаружен еще в 1996 году, но раскопки завершились только в этом году. В результате комплекса археоастрономических работ установлено, что мегалитический комплекс был сооружен в древности как астрономическая обсерватория. Наблюдения с его помощью восходов и заходов Солнца позволяют вести систематический календарь, содержащий ключевые астрономические даты: дни летнего и зимнего солнцестояния. По совокупности археологических и археоастрономических данных можно предположить, что он был построен в III тыс. до н. э. , однако эта гипотеза нуждается в дополнительной проверке. В 70 метрах от мегалитического комплекса обнаружено поселение эпохи поздней бронзы.

Рязанский Стоунхендж.

Два года назад российский археолог Илья Ахмедов сделал сенсационное открытие. В непосредственной близи от городища Старой Рязани в местечке Спасская Лука было найдено древнее сооружение, схожее по строению с английским Стоунхенджем. Его возраст оценен в 4 тысячи лет. Однако в отличие от своего британского собрата, Рязанский Стоунхендж оказался меньшим в размерах, к тому же не каменным, а деревянным. Но, по словам Ахмедова, и английская обсерватория первоначально также была из дерева

В течение последующих двух лет подобные открытия происходили почти на всей территории Евразии. Урал, Байкал, Чувашия, Башкирия, Карелия, Якутия, Адыгея, Армения, Казахстан, Таджикистан, Германия, Австрия Словакия – далеко не полная география древних обсерваторий. Причем делали открытия не исследователи-дилетанты, а ученые мужи. Естественно, каждый ученый считал своим долгом подчеркнуть, что открытая им обсерватория как минимум на тысячу лет старше знаменитых «висячих камней» в Англии. Работы археологов продолжаются.

Может быть в ближайшие годы нас ждут новые сенсации.

Заключение.

Познать историю нашей Земли, Вселенной, больше узнать о звездах, затмениях, планетах человечеству хотелось с самого его появления. Еще задолго до возникновения науки астрономии человек замечал различные природные явления, как то: затмение солнца, движение планет, он задумывался, почему наступают разливы рек.

К моменту возникновения науки астрономии древние люди накопили богатый практический опыт в познании мира. Астрономия, как и все другие науки, возникла из практических потребностей человека.

Обычно называют две причины возникновения этой науки: необходимость ориентироваться на местности и регламентация сельскохозяйственных работ. Кроме того, вкладывая большие суммы в построение обсерваторий и точных инструментов, власти ожидали отдачи не только в виде славы покровителей науки, но также в виде астрологических предсказаний.

Первые записи астрономических наблюдений, подлинность которых несомненна, относятся к VIII в. до н. э.

Знаниями в области астрономии активно пользовались жрецы, желая распространять свою власть на верующих.

Древним культовым сооружением древности являлись обсерватории. Люди наблюдали за восходом и закатом солнца, пытались вычислить длину звездного дня и года, составляли календари, вели записи за наступлением затмений.

Все эти знания использовались ими в практических целях вплоть до наступления эпохи Средневековья, когда новые открытия, сделанные астрономами позволили изменить представление человека о положении Земли.

С развитием человеческого общества перед астрономией выдвигались все новые и новые задачи, для решения которых нужны были более совершенные способы наблюдений и более точные методы расчетов.

Астрономия - древнейшая наука. Она воз­никла, как указывал один из великих осново­положников научного коммунизма - Фридрих Энгельс, в связи с практическими потребно­стями людей.

Основным занятием древнейших народов было скотоводство и земледелие. Поэтому им нужно было иметь представление о явлениях природы, об их связи с временами года. Люди

знали, что смена дня и ночи обусловлена вос­ходом и заходом Солнца. В древнейших госу­дарствах: Египте, Вавилонии, Индии и других- земледелие и скотоводство регулировались та­кими сезонными (т. е. повторяющимися в одни и те же времена года) явлениями природы, как разливы больших рек, наступление периода дождей, смена теплой и холодной погоды и т. д.

Давние наблюдения неба привели к открытию связи между сменой времен года и такими не­бесными явлениями, как изменение полуден­ной высоты Солнца в течение года, появление на небе с наступлением вечерней темноты яр­ких звезд.

Таким образом, еще в глубокой древности были заложены основы календаря, в котором основной мерой для счета времени стали сутки (смена дня и ночи), месяц (промежуток между двумя новолуниями) и год (время видимого пол­ного оборота Солнца по небу среди звезд). Календарь был необходим в первую очередь для того, чтобы с известной точностью рас­считывать время начала полевых работ. Еще в седой древности была установлена приблизи­тельная продолжительность года - 3651/4 су­ток. На самом деле продолжительность года (т. е. периода обращения Земли вокруг Солнца) составляет 365 дней 5 часов 48 минут 46 секунд- на 11 минут 14 секунд меньше, чем 365 1/4 су­ток. Эта «приблизительность» давала себя знать тем, что с течением времени календарь расхо­дился с природой; ожидаемые сезонные явле­ния наступали несколько раньше, чем они долж­ны были наступить по календарю. С каждым годом это расхождение увеличивалось, и нужны были наблюдения неба и земных явлений, чтобы постоянно уточнять календарь, «сближать» его с природой. Такие наблюдения и велись в неко­торых странах Древнего Востока.

С течением времени было обнаружено, что, кроме Солнца и Луны, есть еще пять светил, которые постоянно перемещаются по небу среди звезд. Эти «блуждающие» светила - плане­ты - впоследствии были названы Меркури­ем, Венерой, Марсом, Юпитером и Сатурном. Наблюдения позволили также подметить на небе очертания наиболее характерных созвездий и установить периодичность наступления таких явлений, как солнечные и лунные затмения.

Наблюдая небесные явления на протяжении тысячелетий, люди еще не знали вызывающих их причин. Звезды и планеты они видели как светящиеся точки на небе, но об их действитель­ной природе, так же как и о природе Солнца и Луны, им ничего не было известно. Не понимая природы небесных светил, не зная законов раз­вития человеческого общества и истинной при­чины войн и болезней, люди обожествляли све­тила, приписывали им влияние на судьбы лю­дей и народов. Так возникла лженаука астро­логия, пытавшаяся предсказывать судьбы лю­дей по движениям небесных светил. Подлинная наука давно опровергла выдумки астрологии.

Наука и религия глубоко враждебны друг другу. Наука открывает законы природы и помогает людям на основе этих законов исполь­зовать природу в своих интересах. Религия, наоборот, всегда внушала людям чувство бес­помощности и страха перед природой. Она всегда опиралась не на знания, а на суеверия и предрассудки и мешала развитию науки. В древности, когда люди не знали законов при­роды, влияние религии и ее служителей - жре­цов - на народ было особенно сильным. Так как жрецы играли большую роль в хозяйственной и политической жизни древневосточных госу­дарств, они были заинтересованы в астрономи­ческих наблюдениях и широко использовали их; эти наблюдения им были нужны и для уста­новления дат религиозных праздников.

Однако хозяйственный уклад древних го­сударств с их примитивным земледелием, ско­товодством и ремеслом, основанным на ручном труде рабов, не требовал еще сколько-нибудь высокого развития науки и техники. Поэтому астрономические наблюдения, проводившиеся в государствах Древнего Востока - Египте, Вави­лонии, Индии - на протяжении многовековой истории, не могли привести к созданию астрономии как науки, способной объяснить устройст­во Вселенной.

Однако уже тогда астрономы стран Древнего Востока достигли больших успехов в своих наблю­дениях неба, научились предсказывать насту­пление затмений и настойчиво следили за дви­жением планет.

Задолго до нашей эры астрономы состав­ляли так называемые звездные каталоги - списки наиболее ярких звезд с указанием их положения на небе.

Астрономические знания, накопленные в Египте и Вавилоне особенно в VI-V вв. до н. э., заимствовали древние греки. В древ­ней Греции имелись более благоприятные условия для развития науки.

Первые греческие ученые в это время пыта­лись доказать, что Вселенная существует без участия божественных сил. Греческий фило­соф Фалес в VI в. до н. э. учил, что все сущест­вующее в природе - и Земля к небо - возник­ло из одного «первоначального» элемента - воды. Другие ученые считали таким «первоначальным»^элементом огонь или воздух. В VI в. до н. э. греческий философ Гераклит высказал гениальную мысль, что Вселенная никогда ни­кем не была создана, она всегда была, есть и будет, что в ней нет ничего неизменного - все движется, изменяется, развивается. Эта замеча­тельная мысль Гераклита впоследствии легла в основу подлинной науки, изучающей законы развития природы и человеческого общества.

Многие греческие ученые, однако, наивно полагали, что Земля - самое крупное тело во Вселенной и находится в ее центре. При этом они вначале считали Землю неподвижным плоским телом, вокруг которого обращаются Солн­це, Луна и планеты.

Аристотель - величайший ученый древней Греции.

Позднее, систематически наблюдая природу, ученые пришли к выводу, что Вселенная и Земля, на которой мы живем, устроены гораздо сложнее, чем это представ­ляется неискушенному наблюдателю. В конце VI в. до н. э. Пифагор впервые, а за ним в V в. Парменид высказали предположение, что Земля - тело не плоское, а шарообразное.

Крупным достижением науки было учение греческих философов Левкиппа и Демокрита. Они утверждали, что все существующее со­стоит из мельчайших частиц материи - атомов и что все явления природы совершаются без какого-либо участия богов и других сверхъесте­ственных сил.

Позднее, в IV в. до н. э., с изложением своих взглядов на устройство Вселенной вы­ступил Аристотель -величайший из ученых и философов Греции. Аристотель занимался всеми науками, которые были известны в ту эпоху, - физикой, минералогией, зоологией и др. Он много занимался также вопросами формы Земли и ее положения во Вселенной. При помощи остроумных соображений Аристотель доказал шарообразность Земли. Он утверждал, что лунные затмения происходят, когда Луна попадает в тень, отбрасываемую Землей. На ди­ске Луны мы видим край земной тени всегда круглым. И сама Луна имеет выпуклую, скорее всего шарообразную форму.

Таким путем Аристотель пришел к выводу, что Земля, безусловно, шарообразна и что шарообразны, по-видимому, все небесные тела.

В то же время Аристотель считал Землю центром Вселенной, крупнейшим ее телом, во­круг которого обращаются все небесные тела. Вселенная, по мнению Аристотеля, имеет конеч­ные размеры - ее как бы замыкает сфера звезд. Своим авторитетом, который и в древности, и в средние века считался непререкаемым, Аристо­тель закрепил на много веков ложное мнение, что Земля - неподвижный центр Вселенной. Это мнение разделяли и позднейшие греческие ученые. В дальнейшем его приняла как непре­ложную истину христианская церковь.

Впоследствии, уже в XVIII в., великий рус­ский ученый М. В. Ломоносов, всю жизнь стра­стно боровшийся за торжество науки над суе­верием, оглядываясь на прошлые века, писал, что в течение многих веков «идолопоклонниче­ское суеверие держало астрономическую Землю в своих челюстях, не давая ей двигаться».

Однако и в Греции после Аристотеля неко­торые передовые ученые высказывали смелые и правильные догадки об устройстве Вселенной.

Живший в III в. до н. э. Аристарх Самосский считал, что Земля обращается вокруг Солнца. Расстояние от Земли до Солнца он оп­ределил в 600 диаметров Земли. На самом деле это расстояние в 20 раз меньше действитель­ного, но по тому времени и оно казалось нево­образимо огромным. Однако это расстояние Ари­старх считал ничтожным по сравнению с рас­стоянием от Земли до звезд. Эти гениальные мысли Аристарха, через много веков подтверж­денные открытием Коперника, не были поняты современниками. Аристарха обвинили в безбо­жии и осудили на изгнание, а его правильные догадки были забыты.

В конце IV в. до н. э. после походов и за­воеваний Александра Македонского греческая культура проникла во все страны Ближнего Востока. Возникший в Египте город Александ­рия стал крупнейшим культурным центром. В Александрийской академии, объединяв-

шей ученых того времени, в течение нескольких веков велись астрономические наблюдения уже при помощи угломерных инструментов. Алек­сандрийские астрономы достигли большой точ­ности в своих наблюдениях и внесли много но­вого в астрономию.

В III в. до н. э. александрийский ученый Эратосфен впервые определил размеры земного шара (см. том 1 ДЭ).

Во II в. до н. э. великий александрийский астроном Гиппарх, используя уже накоплен­ные наблюдения, составил каталог более чем 1000 звезд с довольно точным определением их положения на небе. Гиппарх разделил зве­зды на группы и к каждой из них отнес звезды примерно одинакового блеска. Звезды с наи­большим блеском он назвал звездами первой величины, звезды с несколько меньшим бле­ском - звездами второй величины и т. д. Гиппарх ошибочно считал, что все звезды находят­ся от нас на одинаковом расстоянии и что раз­ница в их блеске зависит от их размеров.

В действительности дело обстоит иначе: звезды находятся на различных расстояниях от нас. Поэтому звезда огромных размеров, но находящаяся на очень большом расстоянии от нас, будет по своему блеску казаться звездой далеко не первой величины. Наоборот, звезда первой величины может быть по своим разме­рам весьма скромной, но находиться сравнитель­но близко от нас. Однако гиппарховы «величи­ны» как обозначение видимого блеска звезд сохранились до нашего времени.

Гиппарх правильно определил размеры Луны и ее расстояние от нас. Сопоставляя результаты личных наблюдений и наблюдений своих пред­шественников, он вывел продолжительность солнечного года с очень малой ошибкой (только на 6 минут).

Позднее, в I в. до н. э., александрийские астрономы участвовали в реформе календаря, предпринятой римским диктатором Юлием Це­зарем. Этой реформой был введен календарь, действовавший в Западной Европе до XVI-XVIII вв., а в нашей стране - до Великой Ок­тябрьской социалистической революции.

Гиппарх и другие астрономы его времени уделяли много внимания наблюдениям за дви­жением планет. Эти движения представлялись им крайне запутанными. В самом деле, направле­ние движения планет по небу как будто перио­дически меняется - планеты как бы описывают по небу петли. Эта кажущаяся сложность в дви­жении планет вызывается движением Земли во­круг Солнца - ведь мы наблюдаем планеты с Земли, которая сама движется. И когда Земля «догоняет» другую планету, то кажется, что планета как бы останавливается, а потом дви­жется назад. Но древние астрономы, считавшие Землю неподвижной, думали, что планеты дей­ствительно совершают такие сложные движения вокруг Земли.

Во II в. н. э. александрийский астроном Пто­лемей выдвинул свою «систему мира». Он пы­тался объяснить устройство Вселенной с учетом видимой сложности движения планет.

Считая Землю шарообразной, а размеры ее ничтожными по сравнению с расстоянием до планет и тем более до звезд, Птолемей, однако, вслед за Аристотелем утверждал, что Земля - неподвижный центр Вселенной. Так как Пто­лемей считал Землю центром Вселенной, его система мира была названа геоцентри­ческой.

Вокруг Земли, по Птолемею, движутся (в по­рядке удаленности от Земли) Луна, Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн, звез­ды. Но если движение Луны, Солнца, звезд правильное круговое, то движение планет гораздо сложнее. Каждая из планет, по мнению Птолемея, движется не вокруг Зем­ли, а вокруг некоторой точки. Точка эта в свою очередь движется по кругу, в центре ко­торого находится Земля. Круг, описываемый планетой вокруг движущейся точки, Птолемей назвал эпициклом, а круг, по которому движется точка около Земли,- деферентом.

Трудно представить себе, чтобы в природе могли совершаться такие запутанные движения, да еще вокруг воображаемых точек. Такое искусственное построение потребовалось Пто­лемею для того, чтобы, основываясь на ложном представлении о неподвижности Земли, распо­ложенной в центре Вселенной, объяснить ви­димую сложность движения планет.

Птолемей был блестящим для своего време­ни математиком. Но он разделял взгляд Ари­стотеля, который считал, что Земля неподвиж­на и только она может быть центром Вселенной.

Система мира Аристотеля - Птолемея ка­залась современникам правдоподобной. Она да­вала возможность заранее вычислять движение планет на будущее время - это было необхо­димо для ориентировки в пути во время путеше­ствий и для календаря. Эту ложную систему признавали почти полторы тысячи лет.

Геоцентрическая система мира Птолемея появилась в то время, когда и Египет и Греция

Система мира по Птолемею.

уже были завоеваны Римом. Потом пришла в упадок Римская империя, к которому ее при­вели изживший себя рабовладельческий строй, войны и нашествия других народов. Наряду с разрушением огромных городов истреблялись памятники греческой науки.

На смену рабовладельческому строю при­шел феодальный строй. Христианская религия, распространившаяся к этому времени в стра­нах Европы, признала геоцентрическую систе­му мира согласной со своим учением.

В основу своего миропонимания христиан­ство положило библейскую легенду о сотворе­нии мира богом за шесть дней. По этой легенде Земля является «средоточием» Вселенной, а не­бесные светила созданы для того, чтобы осве­щать Землю и украшать небесный свод. Всякое отступление от этих взглядов христианство беспощадно преследовало. Система мира Ари­стотеля - Птолемея, ставившая Землю в центр мироздания, как нельзя лучше отвечала хри­стианскому вероучению, хотя многие «отцы церк­ви» отказывались признавать именно те положе­ния этой системы мира, которые были верными, например положение о шарообразности Земли. В христианских странах получило признание и широко распространилось «учение» монаха Козьмы Индикоплова, считавшего Землю пло­ской, а небо как бы «крышкой» над ней. Это учение было возвращением к самым примитив­ным представлениям древнейших народов об устройстве Вселенной.

Истоки астрономии теряются в глубине веков. Ее начатки возникли у всех цивилизованных народов древности. Первые астрономические сведения о смене времен года и периодичности солнечных и лунных затмений были известны еще более четырех тысячелетий назад в Древнем Китае, другой родиной первых астрономических знаний в ту же эпоху были страны Ближнего Востока и Египет.
Подобно другим наукам, астрономия развивалась в значительной мере благодаря запросам человеческой практики. Развитие астрономии было обусловлено потребностями сельскохозяйственного производства - необходимостью счета времени и правильно го предсказания начала соответствующих сезонов сельскохозяйственных работ, разливов рек и т.д. Прокладка караванных путей, военные походы, сезонные перемещения кочевых племен, мореплавание - все это побуждало искать способы ориентирования по Солнцу и звездам. Постепенно возрастающие требования к точности предсказания календарных сроков и определения местоположения на земной поверхности привели к созданию простейших угломерных астрономических инструментов.
В века, предшествующие началу нашей эры, вместе с развитием математики, прежде всего геометрии, получила развитие и астрономия. Наиболее существенные результаты в астрономии были получены древнегреческими астрономами. На базе геоцентрической системы мира ими были разработаны теории видимых движений планет, Луны и Солнца. Большой вклад в эту теорию был сделан Гиппархом (II в. до н.э.), а последняя, наиболее совершенная теория была создана Птолемеем (II в. н.э.).
В пору средневекового мракобесия в Европе науки пришли в полный упадок. В эти мрачные времена римская церковь придала учению Птолемея откровенно реакционную, теологическую окраску. Прогресс наук стал невозможен.
Лишь арабские и среднеазиатские астрономы в период, предшествующий эпохе Возрождения, смогли добиться значительных успехов. Прогрессировала техника астрономических наблюдений, предвычислялись и корректировались таблицы видимых планетных движений. Исключительных результатов добились среднеазиатские ученые Бируни (973-1048), Улугбек (1394-1449) и другие.
Рост точности наблюдений, накопление богатого наблюдательного материала о видимом движении планет поставили перед учеными сложнейшую задачу - ревизию теории движения планет, созданной Птолемеем, и построение новой теории. Развитию астрономии вместе с другими науками способствовало изменение социально-экономических условий в странах Европы. Развитие в недрах феодализма капиталистических производственных отношений создало условия для активизации научных исследований. Великие географические открытия, развитие мореплавания и торгового судоходства требовали форсированной разработки способов морской навигации, а значит, и астрономии. Надежная морская навигация была невозможна без точной теории движения планет, так как по их положению определяли координаты кораблей в открытом море.
Революционным был, опубликованный в 1543 г. многолетний труд выдающегося польского ученого Николая Коперника (1473-1543). Коперник отказался от птолемеевой геоцентрической системы мира и в основу своей теории положил гелиоцентрическую систему, поместив Солнце в центр мира. Этот смелый шаг имел значение, далеко выходящее за пределы астрономии и физики. Это был вызов церковному мировоззрению. Коперникова гелиоцентрическая теория активнейшим образом служила утверждению материалистического мировоззрения.
Гелиоцентрическая система мира Коперника явилась краеугольным камнем астрономии. Уже в самом начале XVII в. на ее основе Иоганн Кеплер (1571-1630), обрабатывая многолетние наблюдения планет, проведенные датским астрономом Тихо Браге (1546-1601), установил три закона планетных движений, имеющие не только кинематический, но и динамический характер. С открытием Исааком Ньютоном (1643-1727) аксиом динамики и закона тяготения динамическая астрономия (небесная механика) начала свое бурное развитие.
Небесная механика привлекла к себе внимание многих выдающихся математиков мира. Исключительный вклад в небесную механику внесли французские математики, в частности Лагранж (1736-1813) и Лаплас (1749-1827), заложившие основы современных теорий движения больших планет и Луны. Во второй половине XIX в. были созданы достаточно точные теории движения больших планет, а открытие Нептуна в 1846 г. на основе математических расчетов французского ученого У. Леверье (1811-1877) явилось торжеством небесной механики, утвердившей за ней славу одной из самых надежных наук.
Параллельно с небесной механикой быстрыми темпами развивалась и наблюдательная астрономия. Современные ее методы берут свое начало от Галилея (1564-1642), который первым использовал зрительную трубу в качестве телескопа (1610) и тем самым стимулировал как телескопостроение, так и создание астрономического приборостроения вообще. В первые же годы телескопических наблюдений, выполненных Галилеем и его современниками, удалось обнаружить много неизвестных ранее явлений. Открытие Галилеем спутников Юпитера служило убедительнейшим свидетельством в пользу гелиоцентрической системы Коперника. Земля оказалась окончательно низведенной с ее «геоцентрического пьедестала». Изучение поверхности Луны, обнаружение фаз Венеры, разложение Млечного Пути на отдельные звезды - все это лишало Землю ореола уникальности и идеальности и ставило ее в один ряд с другими небесными телами.
Много ценных наблюдений было выполнено на грани XVIII и XIX вв. В это время благодаря совершенствованию телескопов резко возросла их разрешающая способность и улучшилось качество изображений. Астрономы, и прежде всего английский астроном В. Гершель (1738-1822), смогли проникнуть в глубь Вселенной и положить начало изучению звездного мира. Началось систематическое исследование распределения звезд в пространстве, были открыты и исследовались звездные скопления и туманности, кратные и переменные звезды.
Девятнадцатый век стал веком торжества небесной механики и физики небесных тел. В середине XIX в. астрономия взяла на свое вооружение фотографию и спектральный анализ. С этих пор зародилась астрофизика, и началось изучение физических процессов на небесных телах.
К началу второй четверти XX в. выяснилось, что звезды входят в состав грандиозной звездной системы - Галактики, а спиральные туманности представляют собой аналогичные звездные системы, находящиеся за пределами Галактики. Было обнаружено явление разбегания галактик, что указывало на расширение видимой части Вселенной - Метагалактики.
С течением времени астрономы не только совершенствовали приемники излучения небесных светил, но и подвергали анализу все новые и новые участки их спектров. В 30-х гг. XX в. благодаря применению кварцевой оптики стало возможным изучать ультрафиолетовое излучение небесных объектов, а в 40-х гг. XX в. исследование было распространено на радиодиапазон. Возник раздел астрофизики - радиоастрономия. Благодаря радиоастрономии были обнаружены новые необычные классы небесных тел - квазары, пульсары, специфическое микроволновое радиоизлучение, не связанное ни с одним известным небесным телом, приходящее на Землю со всех направлений, похожее на излучение абсолютно черного тела с температурой около 3 К и получившее название фонового реликтового излучения.
1957 г. открыл новый этап в развитии астрономии. Запуск в нашей стране первых искусственных спутников и последовавшее освоение межпланетного пространства с помощью космических аппаратов привели не просто к техническому перевооружению астрономии, но и к превращению ее из науки наблюдательной в науку экспериментальную. В наши дни астрономические инструменты вынесены за пределы земной атмосферы, и она более не препятствует исследованию излучения небесных светил во всех диапазонах спектра. С космических аппаратов были обнаружены новые типы небесных тел - рентгеновские и инфракрасные звезды, существенно исследованы быстрые заряженные частицы, приходящие из глубин Вселенной, - космические лучи.
Посадка космических аппаратов на Луну, доставка лунного грунта на Землю, первая высадка людей на Луну, посадка спускаемых аппаратов на поверхности Венеры и Марса, пролеты космических аппаратов вблизи Юпитера и Сатурна и их спутников вот далеко не полный перечень тех космических экспериментов, осуществленных за последнее пол века в СССР и США, которые привели к революции в астрономических методах исследования Вселенной.
Современный период развития исследования космоса связан с запуском многоразовых ракетоносителей SpaceX американского бизнесмена Илона Маска.

В тех местах на Земле, где зародились древнейшие цивилизации, сохранилось множество письменных документов, из которых видно, что с появлением письменности стала развиваться и астрономия. Наличие письменности позволяло астрономам надежнее сохранять свои наблюдения и знания об окружающем их мире. Письменная история астрономии берет начало в III-II тысячелетиях до н. э.

Поначалу развивалась наблюдательная астрономия, которая рассматривалась как часть астрологии. Для того чтобы получать более точные сведения о передвижениях небесных тел, человек придумал гномон и астрономический календарь. Креме этого, к древнейшим астрономическим инструментам относятся устройства типа отвеса с подвижней линейкой. Их направляли на Солнце для определения углового расстояния от зенита.

Накопление наблюдений и сведений о закономерностях небесных явлений привело к развитию новой науки, причем в разных странах обращали внимание на различные астрономические явления. Люди решали одни и те же задачи, описывали движения светил. Но главным было все-таки социально-экономическое различие, другой уклад жизни общества. Наиболее крупные государства (Вавилон, Египет, Китай) имели развитые торговые и государственные связи. Благодаря этому в области науки у них существовало взаимное влияние.

Государство Вавилон возникло на берегах Евфрата примерно во II тысячелетии до н. э. Согласно письменным источникам, вавилоняне уже в те времена систематически вели наблюдение за небом. Поначалу они просто фиксировали небесные явления, которые воспринимались ими как астральные божества. И только в VII веке до н. э. получила бурное развитие вавилонская математическая астрономия. Она при помощи необычных моделей и методов описывала движение светил. Прежде всего, вавилонянами была выделена на небе Луна, затем Сириус, Орион и Плеяды. Все эти звезды описаны на глиняных табличках, относящихся ко II тысячелетию до н. э. В это же время в Вавилоне появилась официальная должность придворного астронома. Он наблюдал и записывал наиболее важные изменения и явления на небе.

Систематизировав все астрономические записи, вавилоняне изобрели лунный календарь. Немного позднее он был усовершенствован. В календаре было 12 синодических лунных месяцев по 29 и 30 дней поровну, год равнялся 354 дням. Вавилонянам был известен и солнечный год. Для того чтобы согласовать с этим годом лунный календарь, они от случая к случаю делали вставки 13-го месяца.

Начиная с 763 года до н. э. вавилоняне составили практически полный список затмений. Впоследствии эти записи использовал Птолемей. Вставки в календарь, предсказание затмений и другие нужды — все это потребовало развития математики. Достижения вавилонян в математике были очень высокими. Они были знакомы со стереометрией, задолго до греков сформулировали теорему, которая сейчас называется «теорема Пифагора». В IV веке до н. э. в Вавилоне была изобретена эклиптическая система небесных координат. Там же астрономы составили таблицы лунных эфемерид, точно показывавших положение Луны.

Государство Египет, как полагают историки, существовало уже в IV тысячелетии до н. э. Побудительным мотивом интереса египтян к изучению неба стало, скорее всего, сельское хозяйство, полностью зависели от разливов Нила. Разливы происходили строго периодично, в определенный сезон, и египтяне сразу подметили их связь с полуденной высотой Солнца. Поэтому они и стали поклоняться Солнцу как главному богу Ра.

В Египте установилась власть фараонов, которых простые люди обожествляли. Фараоны учредили должность придворного астронома и тщательно следили за развитием этой науки, которая имела не только прикладные, но и хозяйственные и социально-политические цели. Кроме этого, астрономией занимались жрецы и специальные чиновники, которые вели записи.

Согласно египетскому мифу, Солнце возникло из цветка лотоса, который, в свею очередь, появился из первичного водяного хаоса. Практически с самого начала зарождения цивилизации у египтян существовала религиозно-мифологическая картина мира, имеющая астрономическую основу. По их мнению, Земля является центром Вселенной, вокруг которого вращаются все светила. А Меркурий и Венера обращаются еще и вокруг Солнца.

Поздняя астрономия получила в наследство от египтян 365-дневный календарь без вставок. Он использовался европейскими астрономами до XVI века.

Астрономия как наука была известна и в Китае. Примерно во II-I тысячелетии до н. э. китайскими астрономами небо было разделено на 28 участков-созвездий, в которых двигались Солнце, Луна и планеты. Потом они выделили Млечный Путь, назвав его явлением неизвестной природы. Самый ранний звездный каталог, включающий свыше 800 звезд, был составлен Гань Гуном и Ши Шэнем приблизительно в 355 году до н. э. Это примерно на сто лет раньше Тимохариса и Аристилла в Греции. Немного позднее знаменитый китайский астроном Чжан Хэн поделил небо на 124 созвездия и зафиксировал около 2,5 тысячи видимых звезд.

С III века до н. э. в Китае пользовались солнечными и водяными часами. Все астрономические наблюдения велись со специальных площадок-обсерваторий.

Как и у других народов древности, общие представления китайцев о Вселенной имели мифологическую основу. Центром мира у них считалась Китайская империя («Поднебесная, или Серединная, империя»). Вообще, история космогонических представлений древних китайцев дошла до настоящего времени в хрониках ранних династий. В это время было создано учение о пяти земных первоэлементах-стихиях. Это вода, огонь, металл, дерево, земля. Число стихий связано с древним делением на пять сторон света, а также соответствует числу подвижных звезд-планет. Символически это можно представить в сочетаниях: вода — Меркурий — север, огонь— Марс— юг, металл — Венера — запад, дерево — Юпитер— восток, земля — Сатурн — центр. Кроме этого, существовал еще и шестой элемент — ци (воздух, эфир).

В VIII-VII веках до н. э. возникла идея всеобщего изменения в природе и зарождения самой Вселенной. Считалось, что она появилась в результате борьбы двух противоположных начал — положительного, светлого, активного, мужского (ян) и отрицательного, темного, пассивного, женского (инь).

В связи с тем что Китай со временем стал замкнутой страной, развитие наук, в том числе и астрономии, затормозилось.

Не меньший интерес вызывает и Индия. Самыми древними источниками, рассказывающими об астрономических занятиях древних индийцев, считаются печати с изображениями на космогонические мифологические темы (которые датируются III тысячелетием до н. э.). Содержащиеся на них короткие надписи не расшифрованы и по сей день. Печати относятся к индской цивилизации, главными городами которой являлись Хараппа, Мохенджо-Даро, Калибанган. К XVII-XVI векам центры индской культуры были значительно ослаблены землетрясениями и внутренними противоречиями, а затем окончательно разрушены ариями и индо-ираноязычными племенами, давшими начало нынешнему населению Индии.

Документов об астрономических наблюдениях периода индской культуры сохранилось очень немного, но по ним все же можно понять, как складывались представления древних индусов о Вселенной. Первыми объектами исследования были Солнце и Лука. Как и у других древних народов, астрономическими изысканиями занимались жрецы, которые и составили впоследствии календарь. В нем начиная с VI века до н. э. в названиях дней семидневной недели были использованы имена семи подвижных светил: первый день Луны, второй — Марса, третий — Меркурия, четвертый — Юпитера, пятый — Венеры, шестой — Сатурна, седьмой — Солнца. Некоторое сходство с египетским календарем придавало деление месяца на две половины. В древнеиндийской астрономии это были светлая и темная половины.

На представление древних греков о Вселенной большое влияние оказали более ранние культуры: египетская, щумеро-вавилонская и, вероятно, древнеиндийская. Греция имела связи с Египтом, Вавилоном, с государствами Ближнего Востока.

Астрономическими наблюдениями занимались многие греческие философы и астрономы. Из поэм Гесиода и Гомера известно, что древним грекам были знакомы многие созвездия. Они даже создали практически о каждом из них свею легенду.



© dagexpo.ru, 2024
Стоматологический сайт