Пружинный маятник дифференциальное уравнение собственных колебаний. Дифференциальное уравнение затухающих колебаний для пружинного маятника

21.09.2019

Гармонические колебания

Простейшими из колебаний являются гармонические колебания, т.е. такие колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса.

Механические колебания, которые происходят под действием силы (восстанавливающая сила), пропорциональной смещению и направленной противоположно ему, называют гармоническими колебаниями -диференциальное уравнение, -решение

x- смещение колеблющейся величины от положительного равновесия

66.Основные харак-ки ГК

А – амплитуда- максимальное смещение от положения равновесия

0 ) – фаза колебаний – определяет смещение в данный момент времени

0 – начальная фаза – определяется положением системы в начальный момент времени

ω – собственная частота колебаний, определяется параметрами системы

Роль начальных условий – А, начальная фаза

67.Способы графического представления колебательных процессов:

Плоская диаграмма

Векторная диаграмма

68.Векторная диаграмма – способ графического задания колебательного движения в виде вектора.

Возьмем ось, которую обозначим буквой х. Из т. О, взятой на оси, отложим вектор длины а, образующий с осью угол α. Если привести этот вектор во вращение с угловой скоростью ω 0 , то проекция конца вектора будет перемещаться по соси х в пределах от –а до +а, причем координата этой проекции будет изменяться со временем по закону х=а cos (ω 0 t + α).

Следовательно, проекция вектора на ось будет совершать гармоническое колебание с амплитудой, равной длине вектора, с круговой частотой, равной угловой скорости вращения вектора, и с начальной фазой, равной углу, образуемому вектором с осью в начальный момент времени.

Т.о. гармоническое колебание может быть задано с помощью вектора, длина кот равна амплитуде колебания, а направление вектора образует с осью х угол, равный начальной фазе колебаний.

69.Пружинный маятник – груз, подвешенный на пружине.



Выведем диф ур-е пружинного маятника

70.Математическим маятником называют идеализированную систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке. Отклонение маятника от положения равновесия будем характеризовать углом , образованным нитью с вертикалью. При отклонении маятника от положения равновесия возникает вращающий момент М, равный M=-mgl sin .Он имеет такое направление, что стремится вернуть маятник в положение равновесия.

71.Физический маятник – любое твердое тело, имеющее ось вращения, которая не совпадает с центром масс.

Вывод дифференциального ур-я колебаний:

72.Приведенная длина физического маятника – длина такого матем маятника, период колебаний которого совпадает с периодом данного физического маятника.

Собственная частота для пружинного маятника

Собственная частота математического маятника

73. Периодические или почти периодические изменения заряда, силы тока и напряжения называются электромагнитными колебаниями .

Простейшая система, в которой могут происходить свободные электромагнитные колебания, состоит из конденсатора и катушки, присоединённой к его обкладкам. Такая система называется колебательным контуром.

Частота колебаний – это число колебаний в единицу времени. υ = 1/T

Продолжительность одного полного колебания называется периодом колебания. T = 1/υ

где L – индуктивность, С - электроемкость

74.Сложение коллинеарных колебаний одинаковой частоты:

Смещение х колеблющегося тела будет суммой смещений х1 и х2, которые запишутся след образом: х 1 =а 1 cos (ω 0 t+α 1) х 2 =а 2 cos (ω 0 t+α 2)

Представим оба колебания с помощью векторов а1 и а2. Построим по правилам сложения векторов результирующий вектор а. Проекция этого вектора на ось х равна сумме проекций слагаемых векторов: х1=х1+х2. След-но, вектор а представляет собой результирующее колебание. Этот вектор вращается с той же угловой скоростью ω 0, как и векторы а1 и а2, так что результирующее движение будет гармоническим колебанием с частотой ω 0, амплитудой а и начальной фазой α.

75. Пусть маленькое тело колеблется на взаимно-перпендикулярных пружинках одинаковой жесткости. По какой траектории будет двигаться это тело? Это уравнения траектории в параметрическом виде.

Для получения явной зависимости между координатами x и y надо из уравнений исключить параметр t. Из первого уравнения:

Из второго:

После подстановки:

Избавимся от корня: - это уравнение эллипса.

76.В реальных условиях всегда присутствуют рассеянные силы (десепативные?), приводящие к уменьшению энергии в контуре. Рассмотрим частный случай механических колебаний при наличии силы вязкого трения.

Дифференциальное уравнение затухающих колебаний

77.Основные параметры затухающих колебаний.

ω0- собственная частота колебательной системы, без затухания,β - коэффициент затухания- характеризует скорость затухания

Время релаксации, в течение которого амплитуда уменьшается в е раз.

Добротность - показатель скорости ухода энергии из колебательной системы

Q=2π , где Е-энергия, запасенная в контуре, - энергия за период. Q=πNe, гдеNe – кол-во колебаний за время релаксации.

Дифференциальное уравнение затухающих колебаний для пружинного маятника.

79.Дифференциальное уравнение для затухающих колебаний э\м контура

Его решением является функция

q(t)=q 0 e - βtcos (ωt+ ), где частота колебаний ω= Для колебательного контура

80.Амплитуда и частота затухающих колебаний , - амплитуда затухающих колебаний

ω0- собственная частота колебательной системы, без затухания.Частота затухающих колебаний меньше чем собственная частота.

Амплитуда уменьшается по экспоненциальному закону,где

Здесь - - частота затухающих колебаний.

τ- переходный режим, после него колебания устанавливаются с частотой вынуждающей силы.

83. Вынужденные колебания – совершаются в колебательных системах под действием внешней периодической силы, меняющейся по гармоническому закону:

f 0 – амплитуда вынужденной силы

Частота вынужденной силы

Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы.

Резонанс – явление резкого возрастания амплитуды при частоте вынужденных колебаний близкой к собственной.

Резонансная частота

84.Амплитудно – частотные характеристики. В контуре с большой добротностью амплитуда резонанса велика, но мала полоса пропускания, а в контуре с резкой добротностью амплитуда мала, но большая ширина полосы пропускания в контурах, где коэф затухания близок к критическому.

(1.7.1)

Если сместить шарик от положения равновесия на расстояние х, то удлинение пружины станет равным Δl 0 + х. Тогда результирующая сила примет значение:

Учитывая условие равновесия (1.7.1), получим:

Знак "минус" показывает, что смещение и сила имеют противоположные направления.

Упругая сила f обладает следующими свойствами:

  1. Она пропорциональна смещению шарика из положения равновесия;
  2. Она всегда направлена к положению равновесия.

Для того, чтобы сообщить системе смещение х, нужно совершить против упругой силы работу:

Эта работа идет на создание запаса потенциальной энергии системы:

Под действием упругой силы шарик будет двигаться к положению равновесия со все возрастающей скоростью . Поэтому потенциальная энергия системы будет убывать, зато возрастает кинетическая энергия (массой пружины пренебрегаем). Придя в положение равновесия, шарик будет продолжать двигаться по инерции. Это - замедленное движение и прекратится тогда, когда кинетическая энергия полностью перейдет в потенциальную. Затем такой же процесс будет протекать при движении шарика в обратном направлении. Если трение в системе отсутствует, шарик будет колебаться неограниченно долго.

Уравнение второго закона Ньютона в этом случае имеет вид:

Преобразуем уравнение так:

Вводя обозначение , получим линейное однородное дифференциальное уравнение второго порядка:

Прямой подстановкой легко убедиться, что общее решение уравнения (1.7.8) имеет вид:

где а - амплитуда и φ - начальная фаза колебания - постоянные величины. Следовательно, колебание пружинного маятника является гармоническим (Рис. 1.7.2).


Рис. 1.7.2. Гармоническое колебание


Вследствие периодичности косинуса различные состояния колебательной системы повторяются через определенный промежуток времени (период колебаний) Т, за который фаза колебания получает приращение 2π. Рассчитать период можно с помощью равенства:

откуда следует:

Число колебаний в единицу времени называется частотой:

За единицу частоты принимается частота такого колебания, период которого равен 1 с. Такую единицу называют 1 Гц.

Из (1.7.11) следует, что:

Следовательно, ω 0 - это число колебаний, совершаемое за 2π секунд. Величину ω 0 называют круговой или циклической частотой. Используя (1.7.12) и (1.7.13), запишем:

Дифференцируя () по времени, получим выражение для скорости шарика:

Из (1.7.15) следует, что скорость также изменяется по гармоническому закону и опережает смещение по фазе на ½π. Дифференцируя (1.7.15), получим ускорение:

1.7.2. Математический маятник

Математическим маятником называют идеализированную систему, состоящую из нерастяжимой невесомой нити, на которой подвешено тело, вся масса которого сосредоточена в одной точке.

Отклонение маятника от положения равновесия характеризуют углом φ, образованным нитью с вертикалью (Рис. 1.7.3).


Рис. 1.7.3. Математический маятник


При отклонении маятника от положения равновесия возникает вращательный момент, который стремится вернуть маятник в положение равновесия:

Напишем для маятника уравнение динамики вращательного движения, учитывая, что момент его инерции равен ml 2:

Это уравнение можно привести к виду:

Ограничиваясь случаем малых колебаний sinφ ≈ φ и вводя обозначение:

уравнение (1.7.19) может быть представлено так:

что совпадает по форме с уравнением колебаний пружинного маятника. Следовательно, его решением будет гармоническое колебание:

Из (1.7.20) следует, что циклическая частота колебаний математического маятника зависит от его длины и ускорения свободного падения. Используя формулу для периода колебаний () и (1.7.20), получим известное соотношение:

1.7.3. Физический маятник

Физическим маятником называется твердое тело, способное совершать колебания вокруг неподвижной точки, не совпадающей с центром инерции. В положении равновесия центр инерции маятника С находится под точкой подвеса О на одной с ней вертикали (Рис. 1.7.4).


Рис. 1.7.4. Физический маятник


При отклонении маятника от положения равновесия на угол φ возникает вращательный момент, который стремится вернуть маятник в положение равновесия:

где m - масса маятника, l - расстояние между точкой подвеса и центром инерции маятника.

Напишем для маятника уравнение динамики вращательного движения, учитывая, что момент его инерции равен I:

Для малых колебаний sinφ ≈ φ. Тогда, вводя обозначение:

что также совпадает по форме с уравнением колебаний пружинного маятника. Из уравнений (1.7.27) и (1.7.26) следует, что при малых отклонениях физического маятника от положения равновесия он совершает гармоническое колебание, частота которого зависит от массы маятника, момента инерции и расстояния между осью вращения и центром инерции. С помощью (1.7.26) можно вычислить период колебаний:

Сравнивая формулы (1.7.28) и () получим, что математический маятник с длиной:

будет иметь такой же период колебаний, что и рассмотренный физический маятник. Величину (1.7.29) называют приведенной длиной физического маятника. Следовательно, приведенная длина физического маятника - это длина такого математического маятника, период колебаний которого равен периоду колебаний данного физического маятника.

Точка на прямой, соединяющей точку подвеса с центром инерции, лежащая на расстоянии приведенной длины от оси вращения, называется центром качания физического маятника. По теореме Штайнера момент инерции физического маятника равен:

где I 0 - момент инерции относительно центра инерции. Подставляя (1.7.30) в (1.7.29), получим:

Следовательно, приведенная длина всегда больше расстояния между точкой подвеса и центром инерции маятника, так что точка подвеса и центр качания лежат по разные стороны от центра инерции.

1.7.4. Энергия гармонических колебаний

При гармоническом колебании происходит периодическое взаимное превращение кинетической энергии колеблющегося тела Е к и потенциальной энергии Е п, обусловленной действием квазиупругой силы. Из этих энергий слагается полная энергия Е колебательной системы:

Распишем последнее выражение

Но к = mω 2 , поэтому получим выражение для полной энергии колеблющегося тела

Таким образом полная энергия гармонического колебания постоянна и пропорциональна квадрату амплитуды и квадрату круговой частоты колебания.

1.7.5. Затухающие колебания.

При изучении гармонических колебаний не учитывались силы трения и сопротивления, которые существуют в реальных системах. Действие этих сил существенно изменяет характер движения, колебание становится затухающим .

Если в системе кроме квазиупругой силы действуют силы сопротивления среды (силы трения), то второй закон Ньютона можно записать так:

где r - коэффициент трения, характеризующий свойства среды оказывать сопротивление движению. Подставим (1.7.34б) в (1.7.34а):

График этой функции показан на рис.1.7.5 сплошной кривой 1, а штриховой линией 2 изображено изменение амплитуды:

При очень малом трении период затухающего колебания близок к периоду незатухающего свободного колебания (1.7.35.б)

Быстрота убывания амплитуды колебаний определяется коэффициентом затухания : чем больше β, тем сильнее тормозящее действие среды и тем быстрее уменьшается амплитуда. На практике, степень затухания часто характеризуют логарифмическим декрементом затухания , понимая под этим величину, равную натуральному логарифму отношения двух последовательных амплитуд колебаний, разделенных интервалом времени, равным периоду колебаний:

;

Следовательно, коэффициент затухания и логарифмический декремент затухания связаны достаточно простой зависимостью:

При сильном затухании из формулы (1.7.37) видно, что период колебания является мнимой величиной. Движение в этом случае уже называется апериодическим . График апериодического движения в виде показан на рис. 1.7.6. Незатухающие и затухающие колебания называют собственными или свободными . Они возникают вследствие начального смещения или начальной скорости и совершаются при отсутствии внешнего воздействия за счет первоначально накопленной энергии.

1.7.6. Вынужденные колебания. Резонанс.

Вынужденными колебаниями называются такие, которые возникают в системе при участии внешней силы, изменяющейся по периодическому закону.

Предположим, что на материальную точку кроме квазиупругой силы и силы трения действует внешняя вынуждающая сила

,

где F 0 - амплитуда; ω - круговая частота колебаний вынуждающей силы. Составим дифференциальное уравнение (второй закон Ньютона):

,

Амплитуда вынужденного колебания (1.7.39) прямо пропорциональна амплитуде вынуждающей силы и имеет сложную зависимость от коэффициента затухания среды и круговых частот собственного и вынужденного колебания. Если ω 0 и β для системы заданы, то амплитуда вынужденных колебаний имеет максимальное значение при некоторой определенной частоте вынуждающей силы, называемой резонансной .

Само явление - достижение максимальной амплитуды для заданных ω 0 и β - называют резонансом.

Рис. 1.7.7. Резонанс

При отсутствии сопротивления амплитуда вынужденных колебаний при резонансе бесконечно большая. При этом из ω рез =ω 0 , т.е. резонанс в системе без затухания наступает тогда, когда частота вынуждающей силы совпадает с частотой собственных колебаний. Графическая зависимость амплитуды вынужденных колебаний от круговой частоты вынуждающей силы при разных значениях коэффициента затухания показана на рис. 5.

Механический резонанс может быть как полезным, так и вредным явлением. Вредное действие резонанса связано главным образом с разрушением, которое он может вызвать. Так, в технике, учитывая разные вибрации, необходимо предусматривать возможные возникновения резонансных условий, в противном случае могут быть разрушения и катастрофы. Тела обычно имеют несколько собственных частот колебаний и соответственно несколько резонансных частот.

Если коэффициент затухания внутренних органов человека был бы не велик, то резонансные явления, возникшие в этих органах под воздействием внешних вибраций или звуковых волн, могли бы привести к трагическим последствиям: разрыву органов, повреждению связок и т.п. Однако такие явления при умеренных внешних воздействиях практически не наблюдаются, так как коэффициент затухания биологических систем достаточно велик. Тем не менее резонансные явления при действии внешних механических колебаний происходят во внутренних органах. В этом, видимо, одна из причин отрицательного воздействия инфразвуковых колебаний и вибраций на организм человека.

1.7.7. Автоколебания

Существуют и такие колебательные системы, которые сами регулируют периодическое восполнение растраченной энергии и поэтому могут колебаться длительное время.

Незатухающие колебания, существующие в какой-либо системе при отсутствии переменного внешнего воздействия, называются автоколебаниями , а сами системы - автоколебательными.

Амплитуда и частота автоколебаний зависят от свойств в самой автоколебательной системе, в отличие от вынужденных колебаний они не определяются внешними воздействиями.

Во многих случаях автоколебательные системы можно представить тремя основными элементами (рис.1.7.8): 1) собственно колебательная система; 2) источник энергии; 3) регулятор поступления энергии в собственно колебательную систему. Колебательная система каналом обратной связи (рис. 6) воздействует на регулятор, информирую регулятор о состоянии этой системы.

Классическим примером механической автоколебательной системы являются часы, в которых маятник или баланс являются колебательной системой, пружина или поднятая гиря - источником энергии, а анкер - регулятором поступления энергии от источника в колебательную систему.

Многие биологические системы (сердце, легкие и др.) являются автоколебательными. Характерный пример электромагнитной автоколебательной системы - генераторы автоколебательных колебаний.

1.7.8. Сложение колебаний одного направления

Рассмотрим сложение двух гармонических колебаний одинакового направления и одинаковой частоты:

x 1 =a 1 cos(ω 0 t + α 1), x 2 =a 2 cos(ω 0 t + α 2).

Гармоническое колебание можно задать с помощью вектора, длина которого равна амплитуде колебаний, а направление образует с некоторой осью угол, равный начальной фазе колебаний. Если этот вектор вращается с угловой скоростью ω 0 , то его проекция на выбранную ось будет изменяться по гармоническому закону. Исходя из этого, выберем некоторую ось Х и представим колебания с помощью векторов а 1 и а 2 (рис.1.7.9).

Из рис.1.7.6 следует, что

.

Схемы, в которых колебания изображаются графически в виде векторов на плоскости, называются векторными диаграммами.

Из формулы 1.7.40 следует. Что если разность фаз обоих колебаний равна нулю, амплитуда результирующего колебания равна сумме амплитуд складываемых колебаний. Если разность фаз складываемых колебаний равна , то амплитуда результирующего колебания равна . Если частоты складываемых колебаний не одинаковы, то векторы, соответствующие этим колебаниям будут вращаться с разной скоростью. В этом случае результирующий вектор пульсирует по величине и вращается с непостоянной скоростью. Следовательно, в результате сложения получается не гармоническое колебание, а сложный колебательный процесс.

1.7.9. Биения

Рассмотрим сложение двух гармонических колебаний одинакового направления мало отличающихся по частоте. Пусть частота одного из них равна ω , а второго ω+∆ω, причем ∆ω<<ω. Положим, что амплитуды складываемых колебаний одинаковы и начальные фазы обоих колебаний равны нулю. Тогда уравнения колебаний запишутся следующим образом:

x 1 =a cos ωt, x 2 =a cos(ω+∆ω)t.

Сложив эти выражения и используя формулу для суммы косинусов, получаем:

Колебания (1.7.41) можно рассматривать как гармоническое колебание частотой ω, амплитуда которого изменяется по закону . Эта функция является периодической с частотой в два раза превышающей частоту выражения, стоящего под знаком модуля, т.е. с частотой ∆ω. Таким образом, частота пульсаций амплитуды, называемая частотой биений, равна разности частот складываемых колебаний.

1.7.10. Сложение взаимно перпендикулярных колебаний (фигуры Лиссажу)

Если материальная точка совершает колебания как вдоль оси х, так и вдоль оси у, то она будет двигаться по некоторой криволинейной траектории. Пусть частота колебаний одинакова и начальная фаза первого колебания равна нулю, тогда уравнения колебаний запишем в виде:

Уравнение (1.7.43) представляет собой уравнение эллипса, оси которого ориентированы произвольно относительно координатных осей х и у. Ориентация эллипса и величина его полуосей зависят от амплитуд а и b и разности фаз α. Рассмотрим некоторые частные случаи:

(m=0, ±1, ±2, …). В этом случае уравнение имеет вид

Это уравнение эллипса, оси которого совпадают с осями координат, а его полуоси равны амплитудам (рис. 1.7.12). Если амплитуды равны, то эллипс становится окружностью.

Рис.1.7.12

Если частоты взаимно перпендикулярных колебаний отличаются на малую величину ∆ω, их можно рассматривать как колебания одинаковой частоты, но с медленно изменяющейся разностью фаз. В этом случае уравнения колебаний можно записать

x=a cos ωt, y=b cos[ωt+(∆ωt+α)]

и выражение ∆ωt+α рассматривать как разность фаз, медленно изменяющуюся со временем по линейному закону. Результирующее движение в этом случае происходит по медленно изменяющейся кривой, которая будет последовательно принимать форму, отвечающую всем значениям разности фаз от -π до+π.

Если частоты взаимно перпендикулярных колебаний не одинаковы, то траектория результирующего движения имеет вид довольно сложных кривых, называемых фигурами Лиссажу . Пусть, например, частоты складываемых колебаний относятся как 1: 2 и разность фаз π/2. Тогда уравнения колебаний имеют вид

x=a cos ωt, y=b cos.

За то время, пока вдоль оси х точка успевает переместиться из одного крайнего положения в другое, вдоль оси у, выйдя из нулевого положения, она успевает достигнуть одного крайнего положения, затем другого и вернуться. Вид кривой показан на рис. 1.7.13. Кривая при таком же соотношении частот, но разности фаз равной нулю показана на рис.1.7.14. Отношение частот складываемых колебаний обратно отношению числа точек пересечения фигур Лиссажу с прямыми, параллельными осям координат. Следовательно, по виду фигур Лиссажу можно определить соотношение частот складываемых колебаний или неизвестную частоту. Если одна из частот известна.

Рис.1.7.13
Рис.1.7.14

Чем ближе к единице рациональная дробь, выражающая отношение частот колебаний, тем сложнее получающиеся фигуры Лиссажу.

1.7.11. Распространение волн в упругой среде

Если в каком-либо месте упругой (твёрдой жидкой или газообразной) среды возбудить колебания её частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью υ. процесс распространения колебаний в пространстве называется волной .

Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение, они лишь совершают колебания около своих положений равновесия.

В зависимости от направлений колебаний частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны. В продольной волне частицы среды колеблются вдоль распространения волны. В поперечной волне частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волн. Упругие поперечные волны могут возникнуть лишь в среде, обладающей сопротивлением сдвигу. Поэтому в жидкой и газообразной средах возможно возникновения только продольных волн. В твёрдой среде возможно возникновение как продольных, так и поперечных волн.

На рис. 1.7.12 показано движение частиц при распространении в среде поперечной волны. Номерами 1,2 и т. д. обозначены частицы отстающие друг от друга на расстояние, равное (¼ υT), т.е. на расстояние, проходимое волной за четверть периода колебаний, совершаемых частицами. В момент, времени принятый за нулевой, волна, распространяясь вдоль оси слева направо, достигла частицы 1, вследствие чего частица начала смещаться из положения равновесия вверх, увлекая за собой следующие частицы. Спустя четверть периода частица 1 достигает крайнего верхнего положения равновесия частица 2. По пришествие ещё четверти периода первая часть будет проходить положение равновесия, двигаясь в направлении сверху вниз, вторая частица достигнет крайнего верхнего положения, а третья частица начнёт смещаться вверх из положения равновесия. В момент времени равный T, первая частица закончит полный цикл колебания и будет находиться в таком же состоянии движения, как чальный момент. Волна к моменту времени T, пройдя путь (υT), достигнет частицы 5.

На Рис. 1.7.13 показано движение частиц при распространении в среде продольной волны. Все рассуждения, касающиеся поведения частиц в поперечной волне, могут быть отнесены и к данному случаю с заменой смещений вверх и вниз смещениями вправо и влево.

Из рисунка видно, что при распространении продольной волны в среде создаются чередующиеся сгущения и разряжения частиц (места сгущения обведены на рисунке пунктиром), перемещающиеся в направлении распространения волны со скоростью υ.


Рис. 1.7.15

Рис. 1.7.16

На рис. 1.7.15 и 1.7.16 показаны колебания частиц, положения, равновесия которых лежат на оси x. В действительности колеблются не только частицы, расположенные вдоль оси x, а совокупность частиц, заключённых в некотором объёме. Распространяясь от источников колебаний, волновой процесс охватывает всё новые и новые части пространства, геометрическое место точек, до которых доходят колебания к моменту времени t, называется фронтом волны (или волновым фронтом). Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания ещё не возникли.

Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Следовательно, волновых поверхностей существует бесконечное множество, в то время как волновой фронт каждый момент времени только один. Волновые поверхности остаются не подвижными (они проходят через положения равновесия частиц, колеблющихся в одной фазе). Волновойфронт всё время перемещается.

Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, в сферической волне - множество концентрических сфер.

Рис. 1.7.17

Пусть плоская волна распространяется вдоль оси x . Тогда все точки сферы, положения, равновесия которых имеет одинаковую координату x (но различие значения координат y и z), колеблются в одинаковой фазе.

На Рис. 1.7.17 изображена кривая, которая даёт смещение ξ из положения равновесия точек с различными x в некоторый момент времени. Не следует воспринимать этот рисунок как зримое изображение волны. На рисунке показан график функций ξ (x, t) для некоторого фиксированного момента времени t. Такой график можно строить как для продольной так и для поперечной волны.

Расстояние λ, на короткое распространяется волна за время, равное периоду колебаний частиц среды, называется длиной волны . Очевидно, что

где υ - скорость волны, T- период колебаний. Длину волныможноопределить также как расстояние между ближайшими точками среды, колеблющимися с разностью фаз, равной 2π (см. рис. 1.7.14)

Заменив в соотношении(1.7.45) T через 1/ν (ν - частота колебаний), получим

К этой формуле можно придти также из следующих соображений. За одну секунду источник волн совершает ν колебаний, порождая в среде при каждом колебании один "гребень" и одну "впадину" волны. К тому моменту, когда источник будет завершать ν - е колебание, первый "гребень" успеет пройти путь υ. Следовательно, ν "гребней" и "впадин" волны должны уложиться в длине υ.

1.7.12. Уравнение плоской волны

Уравнением волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат x, y, z и времени t :

ξ = ξ (x, y, z; t)

(имеются в виду координаты равновесного положения частицы). Эта функция должна быть периодической относительно времени t , и относительно координат x, y, z. . Периодичность по времени вытекает из того, что точки, отстоящие друг от друга на расстоянии λ , колеблются одинаковым образом.

Найдем вид функции ξ в случае плоской волны, предполагая, что колебания носят гармонический характер. Для упрощения направим оси координат так, чтобы ось x совпадала с направлением распространения волны. Тогда волновые поверхности будут перпендикулярными к оси x и, поскольку все точки волновой поверхности колеблются одинаково, смещение ξ будет зависеть только от x и t :

ξ = ξ (x, t) .

Рис.1.7.18

Пусть колебания точек, лежащих в плоскости x = 0 (рис. 1.7.18), имеют вид

Найдем вид колебания точек в плоскости, соответствующей произвольному значению x . Для того, чтобы пройти путь от плоскости x =0 до этой плоскости, волне требуется время(υ - cкорость распространения волны). Следовательно, колебания частиц, лежащих в плоскости x , будут отставать по времени на τ от колебаний частиц в плоскости x = 0 , т.е. будут иметь вид

Итак, уравнение плоской волны (продольной, и поперечной), распространяющейся в направлении оси x , выглядит следующим образом:

Это выражение определяет связь между временем t и тем местом x , в котором фаза имеет зафиксированное значение. Вытекающее из него значение dx/dt дает скорость, с которой перемещается данное значение фазы. Продифференцировав выражение (1.7.48), получим

Уравнение волны, распространяющейся в сторону убывания x :

При выводе формулы (1.7.53) мы предполагали, что амплитуда колебаний не зависит от x . Для плоской волны это наблюдается в том случае, когда энергия волны не поглощается средой. При распространении в поглощающей энергию среде интенсивность волны с удалением от источника колебаний постепенно уменьшается - наблюдается затухание волны. Опыт показывает, что в однородной среде такое затухание происходит по экспоненциальному закону:

Соответственно уравнение плоской волны, с учетом затухания , имеет следующий вид:

(1.7.54)

(a 0 - амплитуда в точках плоскости x = 0).

Цель работы . Ознакомиться с основными характеристиками незатухающих и затухающих свободных механических колебаний.

Задача . Определить период собственных колебаний пружинного маятника; проверить линейность зависимости квадрата периода от массы; определить жесткость пружины; определить период затухающих колебаний и логарифмический декремент затухания пружинного маятника.

Приборы и принадлежности . Штатив со шкалой, пружина, набор грузов различной массы, сосуд с водой, секундомер.

1. Свободные колебания пружинного маятника. Общие сведения

Колебаниями называются процессы, в которых периодически изменяется одна или несколько физических величин, описывающих эти процессы. Колебания могут быть описаны различными периодическими функциями времени. Простейшими колебаниями являются гармонические колебания – такие колебания, при которых колеблющаяся величина (например, смещение груза на пружине) изменяется со временем по закону косинуса или синуса. Колебания, возникающие после действия на систему внешней кратковременной силы, называются свободными.

Если груз вывести из положения равновесия, отклонив на величину x , то сила упругости возрастает: F упр = – kx 2= – k (x 1 + x ). Дойдя до положения равновесия, груз будет обладать отличной от нуля скоростью и пройдет положение равновесия по инерции. По мере дальнейшего движения будет увеличиваться отклонение от положения равновесия, что приведет к возрастанию силы упругости, и процесс повторится в обратном направлении. Таким образом, колебательное движение системы обусловлено двумя причинами: 1) стремлением тела вернуться в положении равновесия и 2) инерцией, не позволяющей телу мгновенно остановиться в положении равновесия. В отсутствии сил трения колебания продолжались бы сколь угодно долго. Наличие силы трения приводит к тому, что часть энергии колебаний переходит во внутреннюю энергию и колебания постепенно затухают. Такие колебания называются затухающими.

Незатухающие свободные колебания

Сначала рассмотрим колебания пружинного маятника, на который не действуют силы трения – незатухающие свободные колебания. Согласно второму закону Ньютона c учетом знаков проекций на ось X

Из условия равновесия смещение, вызываемое силой тяжести: . Подставляя в уравнение (1), получим: Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциальное уравнение

https://pandia.ru/text/77/494/images/image008_28.gif" width="152" height="25 src=">. (3)

Данное уравнение называется уравнением гармонических колебаний . Наибольшее отклонение груза от положения равновесия А 0 называется амплитудой колебаний . Величина , стоящая в аргументе косинуса, называется фазой колебания . Постоянная φ0 представляет собой значение фазы в начальный момент времени (t = 0) и называется начальной фазой колебаний . Величина

есть круговая или циклическая частота собственных колебаний , связанная с периодом колебаний Т соотношением https://pandia.ru/text/77/494/images/image012_17.gif" width="125" height="55">. (5)

Затухающие колебания

Рассмотрим свободные колебания пружинного маятника при наличии силы трения (затухающие колебания). В простейшем и вместе с тем наиболее часто встречающемся случае сила трения пропорциональна скорости υ движения:

F тр = – , (6)

где r – постоянная, называемая коэффициентом сопротивления. Знак минус показывает, что сила трения и скорость имеют противоположные направления. Уравнение второго закона Ньютона в проекции на ось Х при наличии упругой силы и силы трения

ma = – kx . (7)

Данное дифференциальное уравнение с учетом υ = dx / dt можно записать

https://pandia.ru/text/77/494/images/image014_12.gif" width="59" height="48 src="> – коэффициент затухания ; – циклическая частота свободных незатухающих колебаний данной колебательной системы, т. е. при отсутствии потерь энергии (β = 0). Уравнение (8) называют дифференциальным уравнением затухающих колебаний .

Чтобы получить зависимость смещения x от времени t , необходимо решить дифференциальное уравнение (8)..gif" width="172" height="27">, (9)

где А 0 и φ0 – начальная амплитуда и начальная фаза колебаний;
– циклическая частота затухающих колебаний при ω >> https://pandia.ru/text/77/494/images/image019_12.gif" width="96" height="27 src=">. (10)

На графике функции (9), рис. 2, пунктирными линиями показано изменение амплитуды (10) затухающих колебаний.

Рис. 2. Зависимость смещения х груза от времени t при наличии силы трения

Для количественной характеристики степени затухания колебаний вводят величину, равную отношению амплитуд, отличающихся на период, и называемую декрементом затухания :

. (11)

Часто используют натуральный логарифм этой величины. Такой параметр называется логарифмическим декрементом затухания :

Амплитуда уменьшается в n раз, то из уравнения (10) следует, что

Отсюда для логарифмического декремента получаем выражение

Если за время t " амплитуда уменьшается в е раз (е = 2,71 – основание натурального логарифма), то система успеет совершить число колебаний

Рис. 3. Схема установки

Установка состоит из штатива 1 с измерительной шкалой 2 . К штативу на пружине 3 подвешиваются грузы 4 различной массы. При изучении затухающих колебаний в задании 2 для усиления затухания используется кольцо 5 , которое помещается в прозрачный сосуд 6 с водой.

В задании 1 (выполняется без сосуда с водой и кольца) в первом приближении затуханием колебаний можно пренебречь и считать гармоническими. Как следует из формулы (5) для гармонических колебаний зависимость T 2 = f (m ) – линейная, из которой можно определить коэффициент жесткости пружины k по формуле

где – угловой коэффициент наклона прямой T 2 от m .

Задание 1. Определение зависимости периода собственных колебаний пружинного маятника от массы груза.

1. Определить период колебаний пружинного маятника при различных значениях массы груза m . Для этого с помощью секундомера для каждого значения m трижды измерить время t полных n колебаний (n ≥10) и по среднему значению времени https://pandia.ru/text/77/494/images/image030_6.gif" width="57 height=28" height="28">. Результаты занести в табл. 1.

2. По результатам измерений построить график зависимости квадрата периода T 2 от массы m . Из углового коэффициента графика определить жесткость пружины k по формуле (16).

Таблица 1

Результаты измерений для определения периода собственных колебаний

3. Дополнительное задание. Оценить случайную , полную и относительную εt ошибки измерения времени для значения массы m = 400 г.

Задание 2. Определение логарифмического декремента затухания пружинного маятника.

1. На пружину подвесить груз массой m = 400 г с кольцом и поместить в сосуд с водой, так чтобы кольцо полностью находилось в воде. Определить период затухающих колебаний для данного значения m по методу, изложенному в п. 1 задания 1. Измерения повторить три раза и результаты занести в левую часть табл. 2.

2. Вывести маятник из положения равновесия и, отметив по линейке его начальную амплитуду, измерить время t " , в течение которого амплитуда колебаний уменьшается в 2 раза. Измерения произвести три раза. Результаты занести в правую часть табл. 2.

Таблица 2

Результаты измерений

для определения логарифмического декремента затухания

Измерение периода колебаний

Измерение времени

уменьшения амплитуды в 2 раза

4. Контрольные вопросы и задания

1. Какие колебания называются гармоническими? Дайте определение их основных характеристик.

2. Какие колебания называются затухающими? Дайте определение их основных характеристик.

3. Поясните физический смысл логарифмического декремента затухания и коэффициента затухания.

4. Вывести зависимости от времени скорости и ускорения груза на пружине, совершающего гармонические колебания. Привести графики и проанализировать.

5. Вывести зависимости от времени кинетической, потенциальной и полной энергии для груза, колеблющегося на пружине. Привести графики и проанализировать.

6. Получить дифференциальное уравнение свободных колебаний и его решение.

7. Построить графики гармонических колебаний с начальными фазами π/2 и π/3.

8. В каких пределах может изменяться логарифмический декремент затухания?

9. Привести дифференциальное уравнение затухающих колебаний пружинного маятника и его решение.

10. По какому закону изменяется амплитуда затухающих колебаний? Являются ли затухающие колебания периодическими?

11. Какое движение называется апериодическим? При каких условиях оно наблюдается?

12. Что называется собственной частотой колебаний? Как она зависит от массы колеблющегося тела для пружинного маятника?

13. Почему частота затухающих колебаний меньше частоты собственных колебаний системы?

14. Подвешенный к пружине медный шарик совершает вертикальные колебания. Как изменится период колебаний, если к пружине подвесить вместо медного шарика алюминиевый того же радиуса?

15. При каком значении логарифмического декремента затухания колебания затухают быстрее: при θ1 = 0,25 или θ2 = 0,5? Привести графики этих затухающих колебаний.

Библиографический список

1. Трофимова Т. И . Курс физики / . – 11-е изд. – М. : Академия, 2006. – 560 с.

2. Савельев И. В . Курс общей физики: в 3 т. / . – СПб. : Лань, 2008. – Т. 1. – 432 с.

3. Ахматов А. С . Лабораторный практикум по физике / .
– М. : Высш. шк., 1980. – 359 с.

Для изучения любого физического явления необходима модель. Моделью для изучения механических колебаний является гармонический осциллятор.

Гармоническим осциллятором называется система, совершающая колебания, которые могут быть описаны дифференциальным уравнением свободных гармонических колебаний, имеющим вид:

Выражение (19.5) является линейным однородным дифференциальным уравнением второго порядка . Согласно общей теории линейных дифференциальных уравнений, решением уравнения (19.5) является выражение (19.1).

Колебания гармонического осциллятора являются важным примером периодического движения. Примерами гармонического осциллятора являются пружинный, математический и физический маятники .

Пружинный маятник - Пружинный маятник тело, подвешенное на пружине жесткостью k .Модель пружинного маятника показана на рис.19.1. Положение тела, при котором пружина не деформирована, является положением устойчивого равновесия. При отклонении тела от положения равновесия в результате деформации возникает сила упругости, которая согласно закону Гука равна .

Свободные колебания совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колебательную систему.

В случае пружинного маятника уравнение движения согласно второму закону Ньютона можно записать . Делим на m, получим:

Учтем, что , получим уравнение (19.5)

Период колебаний пружинного маятника определяется как

. (19.7)

Потенциальная энергия пружинного маятника определяется как:

. (19.8)

Математический маятник. Математическим маятником называют подвешенный на тонкой нерастяжимой нити груз, размеры которого меньше длины нити, а масса больше массы нити.

Положение, в котором нить вертикальна – положение устойчивого равновесия. В положении устойчивого равновесия сила тяжести уравновешена силой натяжения нити , как показано на рис.19.2. При отклонении нити на угол α торавнодействующая сил тяжести и силы натяжения нити будет направлена к положению устойчивого равновесия.

Если тело отпустить, то будем наблюдать свободные колебания. Во время колебаний можно считать, что меняется только координата х . Запишем проекцию равнодействующей силы на ось х

. (19.10)

При малых значениях a (a ~4 о) пренебрегаем движением вдоль оси y

(19.11)

Из уравнения (19.10), учитывая (19.11) определим проекцию равнодействующей силы на ось х , которая согласно второму закону Ньютона равна

,

учтем, что , получим

Уравнение гармонических колебаний математического маятника можно записать в дифференциальной форме

Подставим значение . Получим уравнение (19.5). Отсюда период математического маятника равен

, (19.13)

где l – длина математического маятника.

Физический маятник. Физический маятник – твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной оси, не проходящей через центр масс. Ось вращения, которого, расположена выше центра масс (рис.19.3).

При колебаниях физического маятника, возникает вращающий момент , который согласно основному уравнению динамики вращательного движения равен:

где J – момент инерции,

ε – угловое ускорение,

l – расстояние между точкой подвеса и центром масс. Уравнение (19.14) можно записать в виде: или .

Принимая во внимание или .

Можно получить выражение периода колебаний физического маятника:

, (19.15)

где - приведенная длина физического маятника. Приведенная длина, приравнивается длине математического маятника с таким же периодом колебаний.

Период колебаний физического маятника, следовательно, и его приведенная длина, немонотонно зависят от расстояния от точки подвеса до центра масс маятника. Это легко заметить, если в соответствии с теоремой Штейнера (4.7) момент инерции выразить через момент инерции относительно параллельной горизонтальной оси, проходящей через центр масс. Тогда период колебаний будет равен

, (19.16)

где J 0 момент инерции центра масс.

На практике значения низших собственных частот систем могут быть весьма малыми. Например, бельевая веревка, подвешенная на двух столбах, может в случае достаточного провисания совершать свободные колебания с частотой 1-2Гц. Колебания такого типа были обнаружены осенью 1959г. у проводов линии электропередачи, пересекавшей реку Северную, частота собственных колебаний была весьма низкой - около 1/8Гц. Провода диаметром 43мм, протянутые над рекой, были прикреплены к двум большим пилонам, расстояние между которыми превышало 1,6км. Было обнаружено, что когда ветер дул с небольшой силой, но в определенном направлении, возникали столь интенсивные низкочастотные колебания проводов, что эти провода, минимальное расстояние между которыми составляло 8,2м, входили в соприкосновение, вызывавшее короткое замыкание в системе электропередачи. (Была найдена вероятная причина этих колебаний, и в дальнейшем их удалось предотвращать путем покрытия тросов тонкой пластиковой лентой: благодаря этому изменялась геометрия поверхности, обтекаемой воздушным потоком).

Колебания проводов над рекой не представляют собой свободных колебаний, поскольку в этом случае пассивная система находилась под действием внешнего источника энергии - ветра. Однако характерно, что при решении этой проблемы инженерам, как обычно, потребовалась информация относительно значений собственных частот системы, близких к частоте наблюдавшихся колебаний.

18.3.Скорость и ускорение гармонических колебаний

Если материальная точка совершает прямолинейные гармонические колебания вдоль оси координат х около положения равновесия, принятого за начало координат тогда зависимость координаты х от времени t описывается уравнением (19.1). Скорость и ускорение a колеблющееся точки соответственно равны:

т.е. имеем гармонические колебания с той же циклической частотой. Амплитуды скорости и ускоренияколебаний соответственно равны υ max = Аw и a max = Аw 0 2 . Фаза скорости (19.17) отличается от фазы величины (19.1) на , а фаза ускорения (19.18) отличается от фазы величины (19.1) на . В момент времени, когда х =0скорость колеблющейся точки максимальна по величине и равна амплитуде скорости в моменты прохождения колеблющейся точки через положение равновесия. При максимальных смещениях (х =±А ) скорость равна нулю. Вектор скорости всегда направлен в сторону движения.

Ускорение равно нулю при прохождении колеблющейся точки через положение равновесия и достигает максимального по величине значения, которое равно амплитуде ускорения, при максимальных смещениях колеблющейся точки. Вектор ускорения всегда направлен в сторону положения равновесия. Удаляясь от положения равновесия, колеблющаяся точка движется, замедлено, приближаясь к нему – ускоренно.

График гармонического колебания, который описывается уравнением (19.1), скорость гармонического колебания, описываемая уравнением (19.17), и ускорение (19.18) показаны на рис.19.4. Видно, что смещение, скорость и ускорение гармонически колеблющейся точки являются периодическими функциями от времени с одинаковыми периодами.



© dagexpo.ru, 2024
Стоматологический сайт