Производство распределение электрической энергии. Производство электроэнергии в России. Производство, передача и использование электроэнергии

21.09.2019

В первом методическом руководстве для начинающего оперативного персонала был рассмотрен принцип производства электроэнергии на тепловых электрических станциях. В этой главе мы рассмотрим основные процессы и особенности эксплуатации оборудования при передаче электроэнергии от электростанции до потребителя.

Электроэнергия, выходящая из генератора в подавляющем большинстве случаев сразу же преобразовывается с помощью повышающего трансформатора в электроэнергию более высокого напряжения, а у потребителя преобразовывается с помощью понижающего трансформатора в электроэнергию более низкого напряжения. Для чего это делается. Генераторное напряжение на большинстве ТЭС составляет 6-10 кВ, на крупных генераторах 15-20 кВ. Электроэнергию, а проще говоря, мощность такого напряжения на большие расстояния передавать экономически не выгодно по двум причинам:

  • 1. Слишком большие потери (чем выше напряжение, тем меньше потери электроэнергии. Об этом подробнее будет рассмотрено в разделе «Потери электрической мощности»);
  • 2. Из-за низкой пропускной способности.

Если кто помнит, каждый проводник определенного сечения может пропустить определенной величины электрический ток и если эту величину превысить, то проводник начнет греться и в дальнейшем просто расплавится. Если посмотреть на формулу полной мощности S=v3UI (U - напряжение, I - ток), то легко догадаться, что при одной и той же величине передаваемой мощности, чем выше напряжение линии, тем меньше величина тока, протекающего по ней. Следовательно, чтобы мощность, передаваемую, например, по одной линии 110 кВ передать при помощи линий 10 кВ, то нужно будет построить 10 линий 10 кВ с проводом такого же сечения, как и линия 110 кВ. Если электростанция расположена рядом с потребителем (например, крупный завод), то нет смысла повышать напряжение для передачи электроэнергии и она подается потребителю на генераторном напряжении, что позволяет сэкономить на трансформаторах. Кстати, чем отличается электроэнергия от электрической мощности? Да ничем. Электрическая мощность - это мгновенное значение электрической энергии и измеряется она в Ваттах, киловаттах, Мегаваттах (Вт, кВт, МВт), а электрическая энергия - это количество электрической мощности, переданное за единицу времени и измеряется она в киловатт часах (кВт*ч,). Агрегат, в котором происходит преобразование электроэнергии с одного напряжения на другое называется трансформатором.

Принцип работы и конструкция трансформатора

Как мы уже сказали, трансформатор служит для преобразования электрической мощности одного напряжения в электрическую мощность другого напряжения. Как это происходит. Трехфазный трансформатор представляет собой магнитопровод (сердечник), набранный из листов электротехнической стали и состоящий из трех вертикальных стержней соединенных сверху и снизу такими же поперечными стержнями (они называются ярмо). На стержни надеваются обмотки низкого и высокого напряжения в виде цилиндрических катушек из изолированного медного провода. В энергетике эти обмотки называются высшего и низшего напряжения, если трансформатор двух обмоточный, то есть имеет только два напряжения. В трех обмоточном трансформаторе есть еще обмотка среднего напряжения. Обмотки надеваются на стержень в следующем порядке: сначала обмотка низшего напряжения (она ближе всех к магнитопроводу), затем на нее надевается обмотка среднего напряжения и затем обмотка высшего напряжения, то есть на каждый стержень надевается три обмотки, если трансформатор трех обмоточный и две обмотки, если трансформатор двух обмоточный. Для простоты будем рассматривать работу двух обмоточного трансформатора. Обмотки одного стержня образуют фазу. К началу каждой обмотки присоединены линейные вывода, по которым электрическая мощность входит и выходит из трансформатора. Обмотка, к которой электрическая мощность подходит к трансформатору называется первичной, а обмотка, от которой преобразованная мощность уходит вторичной. Если мощность подходит к обмотке низшего напряжения, а уходит с обмотки высшего напряжения, то трансформатор называют повышающим. И наоборот, если мощность подходит к обмотке высшего напряжения, а уходит с обмотки низшего напряжения, то трансформатор называют понижающим. По своей конструкции они ничем не отличаются. Концы обмоток высшего и низшего напряжений соединены по разному. Концы обмоток высшего напряжения соединены вместе и образуют звезду, ее еще называют нейтраль (почему, рассмотрим позже). Концы обмоток низшего напряжений соединены мудрено, а именно - конец каждой обмотки соединен с началом другой, образуя, если развернуть на схеме, треугольник, к вершинам которого подключены линейные вывода. Почему обмотки высшего и низшего напряжений соединены по разному? По чисто экономическим соображениям. Электрический ток и напряжение разделяются на фазные и линейные. Линейным называется напряжение между фаз А-Б, Б-С и С-А, его еще называют междуфазным. Фазное напряжение - это напряжение между каждой (отдельной) фазой и землей или, в случае с трансформатором, нейтралью трансформатора. Фазное напряжение в v3 раз (в 1.73 раза) меньше линейного. Линейный и фазный ток лучше рассмотреть на примере соединений обмоток трансформатора. Ток, текущий по каждой фазе линии называется линейный. Ток, текущий по обмотке каждой фазы трансформатора или электродвигателя называется фазным. Если обмотка этих агрегатов соединена в звезду, то линейный ток, как в фазе линии, так и в фазе звезды одинаковый (нарисуйте звезду и линию и сразу будет понятно). То есть при соединении обмотки в звезду линейный ток равен фазному. Если обмотку соединить в треугольник (нарисуйте), то мы видим, как ток из линии, подойдя к вершине треугольника, расходится по двум обмоткам. Здесь уже фазный ток не равен линейному, он меньше его. Фазный ток, так же как и напряжение в v3 раз (в 1.73 раза) меньше линейного. Когда обмотка соединена в звезду, то ток, протекающий по ней равен линейному току, а напряжение на этой обмотке равно фазному напряжению. А когда обмотка соединена в треугольник, то ток, протекающий по ней равен фазному, а напряжение на каждой обмотке равно линейному напряжению. И если, к примеру, обмотку трансформатора, к которой подводится напряжение 110 кВ соединить сначала в звезду, а затем в треугольник, то в первом случае (когда звезда) напряжение приложенное к обмотке каждой фазы будет равно 63 кВ, а во втором случае (когда треугольник) 110 кВ. Следовательно, когда обмотка соединена в треугольник - изоляция на ней должна быть больше, а значит дороже. С токами все наоборот. Когда обмотка соединена в треугольник, то протекающий по ней ток в v3 раз меньше тока, протекающего по этой же обмотке, если ее соединить в звезду. Если меньше ток, значит меньше сечение провода обмотки и обмотка дешевле. Поскольку ток на стороне низшего напряжения больше тока стороны высшего напряжения (а значит и сечение провода обмотки больше), то именно обмотку низшего напряжения и соединяют в треугольник. Чем выше напряжение, тем дороже стоит изоляция. Вот поэтому обмотку высшего напряжения соединяют в звезду. Существуют также такие понятия, как номинальный ток и номинальное напряжение. Номинальный ток - это максимальный ток, длительно протекающий по проводнику, не перегревая его выше допустимой для его изоляции температуры. Номинальное напряжение - это максимальное напряжение относительно земли (фазное напряжение) или других фаз этого оборудования (линейное напряжение), длительно приложенное к проводнику (воздействующее на проводник) без опасности повреждения (пробоя) его изоляции. Для каждого оборудования заводом изготовителем указывается номинальный ток и напряжение его проводников.

Так вот. Когда к первичной обмотке трансформатора подводится электрическая мощность, то протекающий по ней (по обмотке) ток создает в магнитопроводе, на который одеты обмотки, переменный магнитный поток, который в свою очередь наводит во вторичной обмотке, так называемую электродвижущую силу (э.д.с). Э.д.с - это то же самое, что и мощность. Вот таким образом, с помощью электромагнитной связи, мощность и передается через трансформатор. Прошу не путать с электрической связью. Электрическая связь (ее еще называют металлическая) - это когда мощность передается по проводнику безо всяких воздушных промежутков. Зависимость между первичным и вторичным напряжением, а также количеством витков обмоток определяется формулой:

U1 / U2 = w1 / w2

где U1 и w1 - это напряжение и число витков первичной обмотки, а U2 и w2 - соответственно, вторичной. Из этого следует, что подбирая число витков первичной и вторичной обмоток можно получить желаемое вторичное напряжение. Отношение величины высшего напряжения к низшему напряжению или отношение числа витков обмотки высшего напряжения к обмотке низшего напряжения (что одно и то же) называется коэффициентом трансформации трансформатора. Коэффициент трансформации всегда больше единицы (это можно и так догадаться). Трансформаторы, служащие для преобразования электрической мощности одного напряжения в мощность другого напряжения называются силовыми. Существуют также трансформаторы тока и напряжения. Эти трансформаторы называются измерительными, т.к. они предназначены для питания приборов измерения тока и напряжения, но о них подробнее будет рассмотрено в разделе релейная защита, автоматика и измерения. Величина мощности, проходящей через силовой трансформатор, не изменяется (если исключить незначительные потери при трансформации), изменяются только величины тока и напряжения. Вспоминая формулу мощности, S=v3UI не трудно догадаться, что во сколько раз изменяется напряжение при трансформации, во столько же раз изменяется и ток, только в обратную сторону, то есть если напряжение после трансформатора увеличилось в 10 раз, то ток в 10 раз уменьшился. Вот для этого (чтобы уменьшить величину тока) и повышают напряжение на электростанциях с тем, чтобы передавать ее на далекие расстояния. Трансформаторы бывают сухими и масляными. Сухие трансформаторы (серии ТС) - это трансформаторы с воздушным охлаждением для закрытых помещений. Конструкция самая простая, магнитопровод с обмотками стоит на изоляторах на полу помещения и закрыт металлическим сетчатым кожухом. Выделяемое тепло отводится окружающим воздухом. Сухие трансформаторы выпускаются на напряжение до 10 кВ и используются в основном на собственных нуждах электростанций. В промышленности в основном применяются масляные трансформаторы (серии ТМ, ТД, ТДЦ, ТЦ. Буквы М, Д, ДЦ и Ц означают способ охлаждения и циркуляции масла). В масляном трансформаторе магнитопровод с обмотками помещен в герметичный корпус, заполненный трансформаторным маслом, которое служит для охлаждения и одновременно для изоляции магнитопровода и обмоток. На верху корпуса имеется бак-расширитель, который служит для подпитки корпуса и приемки масла из корпуса при температурных изменениях объема масла внутри корпуса трансформатора. По бокам корпуса масляного трансформатора расположены масляные радиаторы, которые служат для охлаждения масла. Масло под воздействием разности температур внутри корпуса и снаружи в радиаторе постоянно циркулирует через радиаторы, охлаждаясь о наружный воздух. Это называется естественное охлаждение и естественная циркуляция масла (система охлаждения М). Такая система охлаждения применяется на трансформаторах до 10 МВт. На трансформаторах мощностью более 10 МВт масляные радиаторы обдуваются вентиляторами для большей эффективности охлаждения. Эта система охлаждения Д - с естественной циркуляцией и принудительным дутьем. Для еще более эффективного охлаждения масла циркуляцию его осуществляют насосами, одновременно обдувая радиаторы вентиляторами. Эта система охлаждения относится к типу ДЦ - с принудительной циркуляцией масла и принудительным дутьем и применяется на трансформаторах мощностью свыше 100 МВт. Самой эффективной на сегодняшний день является система Ц - с принудительной циркуляцией масла и водяным охлаждением масляных радиаторов. Она применяется на трансформаторах 500 МВт и выше.

В технической литературе часто встречается еще одна характеристика трансформатора - это Uк %, что переводится, как напряжение короткого замыкания в процентах. Напряжение Uк % - это напряжение приложенное к одной из обмоток трансформатора, при котором по другой обмотке замкнутой накоротко, протекает номинальный ток (по первой обмотке, к стати, в это время протекает тоже номинальный ток). Uк % характеризует полное сопротивление обмоток трансформатора и используется при расчетах токов за трансформатором в различных режимах работы сети.

Силовые трансформаторы выпускаются в основном в трехфазном исполнении. Мощные трансформаторы (500 МВА и выше) выпускаются в однофазном исполнении по той простой причине, что трехфазный трансформатор такой мощности будет иметь такие размеры, что доставить его к месту установки не будет представляться возможным. Трансформаторы бывают двух обмоточными (ВН, НН), трех обмоточными (ВН, СН, НН) и с расщепленными обмотками. Трансформатор с расщепленными обмотками имеет две одинаковые обмотки низшего напряжения. Для чего это делается? Трансформаторы с расщепленными обмотками имеют повышенный Uк % (сопротивление обмоток), поэтому их целесообразнее использовать для питания РУ с большим количеством присоединений. РУ делается не из двух секций (на каждую по одному трансформатору), а из четырех. Один трансформатор питает две секции (каждая обмотка питает отдельную секцию). Тем самым мы уменьшаем ток КЗ на секции в два раза, по сравнению с тем, если бы секций было две и каждая питалась от двух обмоточного трансформатора.

Регулирование напряжения трансформатора

Как мы уже говорили, величину напряжения на вторичной обмотке трансформатора можно изменять с помощью изменения количества витков первичной или вторичной обмоток. На силовых трансформаторах предусмотрено изменение количества витков на обмотке высшего напряжения. Для этого часть витков обмотки высшего напряжения имеют регулировочные ответвления, с помощью которых можно либо добавлять, либо уменьшать количество витков обмотки высшего напряжения. Уменьшая число витков обмотки высшего напряжения, когда она является первичной обмоткой (понижающий трансформатор), уменьшается сопротивление обмотки, следовательно увеличивается ток и магнитный поток в сердечнике трансформатора, а значит и увеличивается напряжение на обмотке низшего напряжения, которая в данном случае является вторичной. И наоборот. Увеличивая число витков обмотки высшего напряжения, увеличивается сопротивление обмотки, следовательно уменьшается ток и магнитный поток в сердечнике трансформатора, а значит и уменьшается напряжение на обмотке низшего напряжения.

В случае повышающего трансформатора, когда обмотка низшего напряжения является первичной, а высшего напряжения вторичной, процесс повышения напряжения на вторичной обмотке происходит не за счет увеличения магнитного потока, а за счет увеличения числа витков вторичной обмотки, то есть обмотки высшего напряжения.

Почему регулировка напряжения производится именно на обмотке высшего напряжения, будет ясно после рассмотрения конструкции переключателя ответвлений. В масляных трансформаторах применяются два типа переключателей ответвлений - ПБВ и РПН. Переключатель ПБВ означает переключение без возбуждения, то есть на отключенном трансформаторе и представляет собой систему неподвижных контактов, соединенных с ответвлениями обмотки и подвижные контакты, соединенные с основной обмоткой. Подвижные контакты находятся на устройстве в виде барабана, поворачивая который рукояткой привода, расположенной на крышке трансформатора, производят изменение числа витков обмотки высшего напряжения. Поскольку часто регулировать таким способом напряжение неудобно из-за необходимости отключения трансформатора, то с помощью переключателей ПБВ производится в основном сезонное регулирование напряжения, когда изменяются нагрузки в прилегающей сети, то есть зимой и летом (зимой нагрузки больше, а значит больше и падение напряжения в сети и напряжение приходится повышать).

Для частых регулировок напряжения на трансформаторах устанавливают переключатель типа РПН, что означает регулирование под нагрузкой. Переключатель ответвлений типа РПН позволяет регулировать напряжение, не отключая трансформатор и даже не снимая с него нагрузку, поэтому и конструкция его сложнее, нежели переключателя ПБВ. Для того, чтобы во время переключения подвижного контакта с одного ответвления на другое не происходило разрыва цепи тока обмотки, в переключателе типа РПН имеется два подвижных контакта на каждую фазу (основной и шунтирующий) и переключение с одного ответвления на другое происходит в два этапа - сначала на новое ответвление переключается основной контакт, а затем шунтирующий. А для того, чтобы в момент, когда основной контакт стоит уже на новом ответвлении, а шунтирующий остался еще на старом, не происходило закорачивание витков, находящихся между этими контактами, в цепи шунтового контакта установлено специальное сопротивление и ток не идет через закоротку, образованную основным и шунтирующим контактами. Переключатель типа РПН установлен не в общем баке трансформатора, где расположен магнитопровод с обмотками, а в отдельном отсеке, куда выведены ответвления обмоток высшего напряжения. Это связано с тем, что при переключениях под нагрузкой между контактами возникает, хоть и незначительная, но электрическая дуга, которая разлагает масло с выделением водорода. И если бы РПН находился в общем баке, то водород постоянно накапливался в газовом реле трансформатора, вызывая, тем самым, не нужные срабатывания газовой защиты (об этом подробнее будет рассмотрено в граве релейная защита и автоматика). РПН может переключаться, как дистанционно ключом управления, так и с помощью автоматики АРН (автоматическое регулирование напряжения), реагирующей на изменения напряжения на вторичной обмотке.

В сухих трансформаторах переключателей ответвлений нет и изменение количества витков происходит путем пересоединения на обмотке каждой фазы специальной металлической пластины, соединяющей основную часть обмотки с добавочными витками.

Автотрансформаторы

Автотрансформаторы служат для соединения распределительных устройств разного напряжения. Автотрансформатор отличается от трех обмоточного трансформатора тем, что у него нет обмотки среднего напряжения. Среднее напряжение берется с части обмотки высшего напряжения. Ведь у обмотки трансформатора соединенной в звезду напряжение от максимального в начале обмотки уменьшается с каждым витком в сторону нейтрали, пока совсем не снизится до нуля на нейтрали после последнего витка. Вот на основе этого принципа и выполнена обмотка среднего напряжения у автотрансформатора. К примеру, у автотрансформатора напряжением 220/110/10 кВ где-то на середине обмотки высшего напряжения (220 кВ) сделаны ответвления соответствующие напряжению 110 кВ, это и есть обмотка среднего напряжения, совмещенная с обмоткой высшего напряжения (вернее, являющаяся ее частью). Поэтому автотрансформатор меньше по габаритам и дешевле трех обмоточного трансформатора той же мощности. Ответвлений на обмотке высшего напряжения несколько (как и в трансформаторе) для возможности регулирования напряжения с помощью переключателя типа РПН.

В ПТЭ можно встретить такое понятие, как допустимое напряжение для данного ответвления обмотки трансформатора. Как это понимать и где взять эти допустимые напряжения? Как мы уже сказали в начале этого раздела, у обмоток трансформаторов соединенных в звезду с каждым витком в сторону нейтрали напряжение уменьшается. В связи с этим уменьшают и изоляцию с каждым витком, а точнее с каждым ответвлением в сторону нейтрали (в целях экономии). Поэтому каждое ответвление имеет свое допустимое напряжение. А посмотреть это напряжение можно в таблице анцапф трансформатора, в заводской инструкции, на худой конец, на табличке прикрепленной к трансформатору.

Электрическая энергия производится на различных масштабах электрических станциях, в основном, с помощью индукционных электромеханических генераторов.

Производство электроэнергии

Существует два основных типа электростанций:

1. Тепловые.

2. Гидравлические.

Это деление вызвано типом двигателя, который вращает ротор генератора. В тепловых электростанциях в качестве источника энергии используется топливо: уголь, газ, нефть, горючие сланцы, мазут. Ротор приводится во вращение паровыми газовыми турбинами.

Самыми экономичными являются тепловые паротурбинные электростанции (ТЭС). Их максимальный КПД достигает 70%. Это с учетом того, что отработанный пар используется на промышленных предприятиях.

На гидроэлектростанциях для вращения ротора используется потенциальная энергия воды. С помощью гидравлических турбин приводится во вращение ротор. Мощность станции будет зависеть от напора и массы воды, проходящей через турбину.

Использование электроэнергии

Электрическая энергия используется почти повсеместно. Конечно, большая часть производимой электроэнергии приходится на промышленность. Помимо этого, крупным потребителем будет являться транспорт.

Многие железнодорожные линии уже давно перешли на электрическую тягу. Освещение жилищ, улиц городов, производственные и бытовые нужды сел и деревень - все это тоже является крупным потребителем электроэнергии.

Огромная часть получаемой электроэнергии превращается в механическую энергию. Все механизмы, используемые в промышленности, приводятся в движение за счет электродвигателей. Потребителей электроэнергии достаточно, и находятся они повсюду.

А производится электроэнергия лишь в немногих местах. Возникает вопрос о передаче электроэнергии, причем на большие расстояния. При передаче на большие расстояния, происходит много потерь электроэнергии. Главным образом, это потери на нагрев электропроводов.

По закону Джоуля-Ленца энергия, расходуемая на нагрев, вычисляется по формуле:

Так как снизить сопротивление до приемлемого уровня практически невозможно, то приходится уменьшать силу тока. Для этого повышают напряжение. Обычно на станциях стоят повышающие генераторы, а в конце линий передач стоят понижающие трансформаторы. И уже с них энергия расходится по потребителям.

Потребность в электрической энергии постоянно увеличивается. Для того чтобы соответствовать запросам на увеличение потребления есть два пути:

1. Строительство новых электростанций

2. Использование передовых технологий.

Эффективное использование электроэнергии

Первый способ требует затрат большого числа строительных и денежных ресурсов. На строительство одной электростанции тратится несколько лет. К тому же, например, тепловые электростанции потребляют много невозобновляемых природных ресурсов, и наносят вред окружающей природной среде.

Страница 1 из 42

М. Б. Зевин, А. Н. Трифонов

В книге рассмотрены электротехнические устройства и кабельные присоединения к ним, основы электромонтажных работ. Большое внимание уделено механизированной прокладке и описанию механизмов и приспособлений, разработанных и внедренных в практику в последние годы, а также эксплуатации и монтажу кабельных линий.

Глава I. Производство и распределение электрической энергии

§ 1. Электрические станции

Электрической станцией (электростанцией) называется совокупность устройств и оборудования, используемых для производства электрической энергии. На электростанциях электрическую энергию получают благодаря использованию энергоносителей или преобразованию различных видов энергии. Электростанции по виду используемой в них энергии подразделяются на тепловые, атомные и гидроэлектрические .

В тепловых электростанциях в топках котлов сжигается уголь, нефть или природный газ. Получаемая при этом теплота превращает находящуюся в котлах воду в пар, приводящий во вращение роторы паровых турбин и соединенные с ними роторы генераторов, в которых механическая энергия турбин преобразуется в электрическую.

На атомных электростанциях процессы преобразования энергии пара в механическую, а затем в электрическую энергию аналогичны процессам, происходящим в тепловых электростанциях, и отличаются от последних тем, что в них «топливом» служат радиоактивные элементы или их изотопы, выделяющие теплоту в процессе реакции распада

На гидроэлектростанциях энергия потока воды превращается в электрическую энергию.
Существуют также ветро -, гелиоэлектростанции, геотермальные , приливные и другие электростанции, преобразующие в электрическую энергию соответственно перемещающиеся потоки воздуха, тепло солнечных лучей и недр Земли, энергию морских и океанических приливов.

Паротурбинные тепловые электростанции подразделяют на конденсационные и теплофикационные. На конденсационных станциях тепловая энергия полностью преобразуется в электрическую, а на теплофикационных, называемых теплоэлектроцентралями (ТЭЦ) , тепловая энергия частично превращается в электрическую, а в основном расходуется на снабжение промышленных предприятий и городов паром и горячей водой. Поэтому ТЭЦ сооружают вблизи потребителей тепловой энергии. Конденсационные паротурбинные электростанции, как правило, строят недалеко от места добычи твердого топлива - угля, торфа, горючих сланцев. При строительстве гидроэлектростанций (ГЭС) решается комплекс задач, связанных не только с выработкой электрической энергии и снабжением ею потребителей, но и с улучшением судоходства рек, орошения засушливых земель, водоснабжения и др.

Сооружение атомных электростанций (АЭС) особенно целесообразно в районах, где нет запасов местного топлива и рек с большими гидроэнергетическими ресурсами. Они работают на ядерном горючем, которое потребляется в незначительных количествах, поэтому его доставка на электростанцию не вызывает больших транспортных затрат.

Передача энергии, выработанной мощными ГЭС, ТЭЦ и АЭС в электросеть для снабжения потребителей, как правило, осуществляется по линиям высокого напряжения (110 кВ и выше) через повысительные трансформаторные подстанции.

Для рационального распределения нагрузки между электростанциями, наиболее экономичной выработки электрической энергии, лучшего использования установленной мощности станций, повышения надежности электроснабжения потребителей и отпуска им электрической энергии с нормальными качественными показателями по частоте и напряжению широко осуществляется параллельная работа электростанций на общую электрическую сеть районной энергетической системы. В ее состав кроме электростанций входят также линии электропередачи различных напряжений, сетевые трансформаторные подстанции и тепловые сети, связанные общностью режима производства и распределения электрической и тепловой энергии. Многие районные энергетические системы Советского Союза объединены для параллельной работы в общую электрическую сеть и образуют крупные энергосистемы: Единую энергетическую систему (ЕЭС) европейской части СССР, Объединенную энергосистему Сибири, Объединенную энергосистему Казахстана и др.

Дальнейшим этапом развития энергетики СССР будет объединение энергосистем в Единую энергосистему Советского Союза: Энергосистемы ряда социалистических стран объединены в энергосистему «Мир».

Электрические сети

Для передачи и распределения электрической энергии от центров питания электростанций к потребителям служат электрические сети, которые состоят из распределительных устройств (РУ) и воздушных или кабельных линий различных напряжений.

Центром питания (ЦП) называется распределительное устройство генераторного напряжения электростанций или РУ вторичного напряжения понизительной подстанции энергосистемы, к которому присоединены распределительные сети данного района.

Электрические сети могут быть постоянного и переменного тока. К сетям постоянного тока в основном относятся сети электрифицированных железных дорог, метрополитена, трамвая, троллейбуса, а также некоторые электрические сети химических, металлургических и других промышленных предприятий. Электроснабжение всех остальных объектов промышленности, сельского хозяйства, коммунального и бытового назначения ведется трехфазным переменным током частотой 50 Гц.

Электрическая энергия, вырабатываемая турбогенераторами и гидрогенераторами, имеет напряжения 6000 или 10000 В, а иногда 20000 В. Электрическую энергию такого напряжения передавать на большие расстояния экономически нецелесообразно из-за значительных электрических потерь. Поэтому ее повышают до 110, 220 и 500 кВ на повысительных трансформаторных подстанциях, сооружаемых при электростанциях, а затем перед поступлением потребителям понижают до 35, 10 и 6 кВ на понизительных трансформаторных подстанциях.

Упрощенная схема распределения энергии от электростанций до потребителей приведена на рис. 1. Из приведенной схемы видно, что электростанции А, Б, В, Г и Д объединены линиями электропередачи (ЛЭП) напряжением 220 кВ. Передача и распределение электрической энергии осуществляются на напряжениях 220, 110, 35 и 10 кВ. В схеме электроснабжения предусматривается резервирование подстанций на всех уровнях напряжений, что позволяет избежать перебоев в подаче электрической энергии.

Рис 1. Схема энергосистемы:
А - Д - электростанции, ТП - трансформаторные подстанции, I - III - повышающие подстанции, 1-4 - понижающие подстанции

От РУ понижающих подстанций отходят для передачи электрической энергии потребителям воздушные или кабельные линии. Большинство промышленных предприятий получают энергию от энергетических систем и лишь в редких случаях от собственных заводских электростанций. Электроснабжение и распределение энергии в пределах предприятия от собственных электростанций производится в основном на генераторном напряжении 6 и 10 кВ.

Схема электроснабжения и распределения энергии зависит от расстояния между предприятием и источником питания, потребляемой мощности, территориального размещения нагрузок, требований надежного и бесперебойного питания электроприемников, а также от числа приемных и распределительных пунктов на предприятии.

Наличие больших нагрузок, сосредоточенных на определенных участках промышленных предприятий и в отдельных районах крупных городов, ускоряет внедрение в систему электроснабжения глубоких вводов* высокого напряжения. Благодаря этому значительно сокращаются кабельные распределительные сети и экономится кабельная продукция. Глубокие вводы сооружают, как правило, воздушными линиями на напряжения 35, 110, 220 и 330 кВ.

* Глубокий ввод - это канализация высокого напряжения от энергосистемы непосредственно к центру нагрузок.

Электрические сети делятся: на нерезервируемые, когда электроприемники получают электрическую энергию от одного источника питания, и резервируемые, когда электроснабжение ведется от двух или более источников питания. Производство, передача и распределение электрической энергии сопровождаются потерями ее во всех элементах сети; кабельных и воздушных линиях, трансформаторах, высоковольтных аппаратах и др.

Общие потери электрической энергии, включая расходы на собственные нужды, доходят до 10%, из них наибольшие потери приходятся на питающие сети от центров питания до распределительных пунктов.

Для снижения потерь электрической энергии и определения участков и элементов сети с наибольшими потерями производят измерения, расчеты и оценки рационального построения и эксплуатации сети. На основании этих данных принимают меры для снижения потерь электрической энергии, которые в основном сводятся к переводу сети на повышенное напряжение (если это экономически целесообразно), отключению малозагруженных трансформаторов в период минимальных нагрузок.

§ 3. Потребители электрической энергии

Основными характеристиками потребителей электрической энергии являются: расчетная нагрузка, режим работы установки, надежность электроснабжения. По расчетной нагрузке и режиму работы потребителя определяются мощности питающих трансформаторов, сечения кабельных и воздушных линий.

По обеспечению надежности электроснабжения электроприемники делятся на три категории.
К первой категории относятся электроприемники, нарушение электроснабжения которых влечет за собой опасность для жизни людей, значительный ущерб народному хозяйству, повреждение оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение режима работы особо важных объектов (доменных и мартеновских печей, некоторых цехов химических предприятий, электрифицированных железных дорог, метро).

Ко второй категории относятся электроприемники, перерыв в электроснабжении которых связан с массовым недоотпуском продукции, простоем рабочих механизмов и промышленного транспорта, нарушением нормальной работы значительного количества городских предприятий (швейные и обувные фабрики) и электротранспорта.

К третьей категории относятся электроприемники, не входящие в первую и вторую категории.
Перерыв в электроснабжении электроприемников первой категории может быть допущен лишь на время автоматического ввода аварийного питания, второй категории - на время, необходимое для включения резервного питания дежурным персоналом или выездной оперативной бригадой, и для приемников третьей категории - на время, необходимое для ремонта или замены поврежденного элемента системы электроснабжения, но не более суток.

В соответствии с указанными требованиями надежности электроснабжения питание электроприемников первой и второй категорий осуществляется от двух независимых источников, а третьей - от одной питаюшей линии без обязательного резервирования.

Электроснабжение промышленных предприятий и городов производится через РУ и подстанции, максимально приближенные к потребителям.

Распределительным устройством (РУ) называется электроустановка, служащая для приема и распределения электрической энергии и содержащая коммутационные аппараты, сборные и соединительные шины, вспомогательные устройства (компрессорные, аккумуляторные и др.), а также устройства защиты, автоматики и измерительные приборы. Распределительные устройства сооружают открытого исполнения (ОРУ), когда основное оборудование расположено на открытом воздухе, и закрытого (ЗРУ), когда оборудование расположено в здании.

Электроустановка, служащая для преобразования и распределения электрической энергии и состоящая из трансформаторов или других преобразователей энергии, РУ, устройств управления и вспомогательных сооружений, называется подстанцией. В зависимости от преобладания той или иной функции подстанций они называются трансформаторными (ТП) или преобразовательными.

Распределительное устройство, предназначенное для приема и распределения электрической энергии на одном напряжении без преобразования и трансформации и не входящее в состав подстанции, называется распределительным пунктом (РП).


Рис. 2. Двухступенчатая радиальная схема питания: ЦРП - центральная распределительная подстанция, ТП1 , РП2 - распределительные подстанции, ТП1 , ТП 2- трансформаторные подстанции

Для распределения электрической энергии при напряжении 6 и 10 кВ на предприятиях и в городах применяют два вида схем: радиальную (рис. 2) и магистральную (рис. 3). Эти схемы имеют много разновидностей, которые определяются главным образом категорией электроприемников, территориальным размещением и мощностью подстанций и пунктов приема энергии. Качество электрической энергии характеризуется постоянством частоты и стабильностью напряжения у потребителей в пределах установленных норм. Частота задается электростанциями для всей энергосистемы в целом.

Рис. 3. Магистральные схемы: а - одиночная с односторонним питанием, б - кольцевая; РП - распределительная подстанция, ТП1 - ТП5 - трансформаторные подстанции.

Уровень напряжения изменяется в зависимости от конфигурации сети по мере приближения к потребителю, условий загрузки оборудования и расхода электрической энергии потребителями. Номинальное напряжение потребителей указывается в таблицах.

Напряжения электросетей и электрооборудования стандартизованы (табл. 1). Для компенсации потери напряжения в сетях номинальные напряжения генераторов и вторичных обмоток трансформаторов принимаются на 5 % выше номинальных напряжений электроприемников.

Таблица 1. Номинальные напряжения (до 1000 В) электрических сетей и присоединяемых к ним источников и приемников энергии

Напряжение при постоянном токе, В

Напряжение при переменном токе, В

источников и преобразователей

сетей и приемников

однофазном

трехфазном

однофазном

трехфазном

источников и преобразователей

сетей и приемников

Примечание. Номинальное напряжение (свыше 1000 В) электрических сетей и приемников, генераторов и синхронных компенсаторов, а также наибольшее рабочее напряжение электрооборудования приведены в ГОСТ 23366-78.

Правила устройства электроустановок определяют уровни напряжения и порядок его регулирования. Отклонение напряжения на зажимах электродвигателей от номинального, как правило, допускается не более ± 15 %. Снижение напряжения у наиболее удаленных ламп внутреннего рабочего освещения промышленных предприятий и общественных зданий может быть не более 2,5 %, а увеличение не более 5 % от номинального.

Контрольные вопросы
1. Перечислите названия электростанций по видам используемых них энергоносителей.
2. Каковы технические и экономические преимущества сооружения ТЭЦ, ГЭС и АЭС?
3. Из каких элементов состоит энергосистема?
4 Что входит в состав электрической сети?
5. Что называется РУ, ТП, РП?
6. Что называется глубоким вводом?
7. В каких элементах электрической сети имеются наибольшие потери электрической энергии?
8. На какие категории делятся потребители электрической энергии?

I Введение
II Производство и использование электроэнергии
1. Генерация электроэнергии
1.1 Генератор
2. Использование электроэнергии
III Трансформаторы
1. Назначение
2. Классификация
3. Устройство
4. Характеристики
5. Режимы
5.1 Холостой ход
5.2 Режим короткого замыкания
5.3 Нагрузочный режим
IV Передача электроэнергии
V ГОЭЛРО
1. История
2. Результаты
VI Список использованной литературы

I. Введение

Электроэнергия, один из самых важных видов энергии, играет огромную роль в современном мире. Она является стержнем экономик государств, определяя их положение на международной арене и уровень развития. Огромные суммы денег вкладываются ежегодно в развитие научных отраслей, связанных с электроэнергией.
Электроэнергия является неотъемлемой частью повседневной жизни, поэтому важно владеть информацией об особенностях её производства и использования.

II. Производство и использование электроэнергии

1. Генерация электроэнергии

Генерация электроэнергии - производство электроэнергии посредством преобразования её из других видов энергии с помощью специальных технических устройств.
Для генерации электроэнергии используют:
Электрический генератор - электрическую машину, в которой механическая работа преобразуется в электрическую энергию.
Солнечную батарею или фотоэлемент - электронный прибор, который преобразует энергию электромагнитного излучения, в основном светового диапазона, в электрическую энергию.
Химические источники тока - преобразование части химической энергии в электрическую, посредством химической реакции.
Радиоизотопные источники электроэнергии - устройства, использующие энергию, выделяющуюся при радиоактивном распаде, для нагрева теплоносителя или преобразующие её в электроэнергию.
Электроэнергия вырабатывается на электростанциях: тепловых, гидравлических, атомных, солнечных, геотермальных, ветряных и других.
Практически на всех электростанциях, имеющих промышленное значение, используется следующая схема: энергия первичного энергоносителя с помощью специального устройства преобразовывается вначале в механическую энергию вращательного движения, которая передается в специальную электрическую машину - генератор, где вырабатывается электрический ток.
Основные три вида электростанций: ТЭС, ГЭС, АЭС
Ведущую роль в электроэнергетике многих стран играют тепловые электростанции (ТЭС).
Тепловые электростанции требуют огромного количества органического топлива, запасы же его сокращаются, а стоимость постоянно возрастает из-за все усложняющихся условий добычи и дальности перевозок. Коэффициент использования топлива в них довольно низок (не более 40%), а объемы отходов, загрязняющих окружающую среду, велики.
Экономические, технико-экономические и экологические факторы не позволяют считать тепловые электростанции перспективным способом получения электроэнергии.
Гидроэнергетические установки (ГЭС) являются самыми экономичными. Их КПД достигает 93 %, а стоимость одного кВт.ч в 5 раз дешевле, чем при других способах получения электроэнергии. Они используют неисчерпаемый источник энергии, обслуживаются минимальным количеством работ¬ников, хорошо регулируются. По величине и мощности отдельных гидростанций и агрегатов наша страна занимает ведущее положение в мире.
Но темпы развития сдерживают значительные затраты и сроки строительства, обусловленные удаленностью мест строительства ГЭС от крупных городов, отсутствие дорог, трудные условия строительства, подвержены влиянию сезонности режима рек, водохранилищами затапливаются большие площади ценных приречных земель, крупные водохранилища негативно воздействуют на экологическую ситуацию, мощные ГЭС могут быть построены только в местах наличия соответствующих ресурсов.
Атомные электростанции (АЭС) работают по одному принципу с тепловыми электростанциями, т. е. происходит преобразование тепловой энергии пара в механическую энергию вращения вала турбины, которая приводит в действие генератор, где механическая энергия преобразовывается в электрическую.
Главное достоинство АЭС - небольшое количество используемого топлива (1 кг обогащенного урана заменяет 2,5 тыс. т угля), вследствие чего АЭС могут быть построены в любых энергодефицитных районах. К тому же запасы урана на Земле превышают запасы традици-онного минерального топлива, а при безаварийной работе АЭС незначительно воздействуют на окружающую среду.
Главным недостатком АЭС является возможность аварий с катастрофическими последствиями, для предотвращения которых требуются серьезные меры безопасности. Кроме того, АЭС плохо регулируются (для их полной остановки или включения требуется несколько недель), не разработаны технологии переработки радиоактивных отходов.
Атомная энергетика выросла в одну из ведущих отраслей народного хозяйства и продолжает быстро развиваться, обеспечивая безопасность и экологическую чистоту.

1.1 Генератор

Электрический генератор - это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.
Принцип действия генератора основан на явлении электромагнитной индукции, когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС Следовательно, такой проводник может нами рассматриваться как источник электрической энергии.
Способ получения индуктированной ЭДС, при котором проводник перемещается в магнитном поле, двигаясь вверх или вниз, очень неудобен при практическом его использовании. Поэтому в генераторах применяется не прямолинейное, а вращательное движение проводника.
Основными частями всякого генератора являются: система магнитов или чаще всего электромагнитов, создающих магнитное поле, и система проводников, пересекающих это магнитное поле.
Генератор переменного тока - электрическая машина, преобразующая механическую энергию в электрическую энергию переменного тока. Большинство генераторов переменного тока используют вращающееся магнитное поле.

При вращении рамки изменяется магнитный поток через нее, поэтому в ней индуцируется ЭДС. Так как с помощью токосъемника (колец и щеток) рамка соединена с внешней электрической цепью, то в рамке и внешней цепи возникает электрический ток.
При равномерном вращении рамки угол поворота изменяется по закону:

Магнитный поток через рамку также изменяется с течение времени, его зависимость определяется функцией:

где S − площадь рамки.
По закону электромагнитной индукции Фарадея ЭДС индукции, возникающая в рамке равна:

где - амплитуда ЭДС индукции.
Другая величина, которой характеризуется генератор, является сила тока, выражающаяся формулой:

где i — сила тока в любой момент времени, I m - амплитуда силы тока (максимальное по модулю значение силы тока), φ c — сдвиг фаз между колебаниями силы тока и напряжения.
Электрическое напряжение на зажимах генератора меняется по синусодальному или косинусоидальному закону:

Почти все генераторы, установленные на наших электростанциях, являются генераторами трехфазного тока. По существу, каждый такой генератор представляет собой соединение в одной электрической машине трех генераторов переменного тока, сконструированных таким образом, что индуцированные в них ЭДС сдвинуты друг относительно друга на одну треть периода:

2. Использование электроэнергии

Электроснабжение промышленных предприятий. Промышленные предприятия потребляют 30-70% электроэнергии, вырабатываемой в составе электроэнергетической системы. Значительный разброс промышленного потребления определяется индустриальной развитостью и климатическими условиями различных стран.
Электроснабжение электрифицированного транспорта. Выпрямительные подстанции электротранспорта на постоянном токе (городской, промышленный, междугородний) и понижающие ПС междугороднего электрического транспорта на переменном токе питаются электроэнергией от электрических сетей ЭЭС.
Электроснабжение коммунально-бытовых потребителей. К данной группе ПЭ относится широкий круг зданий, расположенных в жилых районах городов и населенных пунктов. Это - жилые здания, здания административно-управленческого назначения, учебные и научные заведения, магазины, здания здравоохранения, культурно-массового назначения, общественного питания и т.п.

III. Трансформаторы

Трансформатор - статическое электромагнитное устройство, имеющее две или большее число индуктивно-связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной (первичной) системы переменного тока в другую (вторичную) систему переменного тока.

Схема устройства трансформатора

1 - первичная обмотка трансформатора
2 - магнитопровод
3 - вторичная обмотка трансформатора
Ф - направление магнитного потока
U 1 - напряжение на первичной обмотке
U 2 - напряжение на вторичной обмотке

Первые трансформаторы с разомкнутым магнитопроводом предложил в 1876 г. П.Н. Яблочков, который применил их для питания электрической "свечи". В 1885 г. венгерские ученые М. Дери, О. Блати, К. Циперновский разработали однофазные промышленные трансформаторы с замкнутым магнитопроводом. В 1889-1891 гг. М.О. Доливо-Добровольский предложил трехфазный трансформатор.

1. Назначение

Трансформаторы широко применяются в различных областях:
Для передачи и распределения электрической энергии
Обычно на электростанциях генераторы переменного тока вырабатывают электрическую энергию при напряжении 6-24 кВ, а передавать электроэнергию на дальние расстояния выгодно при значительно больших напряжениях (110, 220, 330, 400, 500, и 750 кВ). Поэтому на каждой электростанции устанавливают трансформаторы, осуществляющие повышение напряжения.
Распределение электрической энергии между промышленными предприятиями, населёнными пунктами, в городах и сельских местностях, а также внутри промышленных предприятий производится по воздушным и кабельным линиям, при напряжении 220, 110, 35, 20, 10 и 6 кВ. Следовательно, во всех распределительных узлах должны быть установлены трансформаторы, понижающие напряжение до величины 220, 380 и 660 В.
Для обеспечения нужной схемы включения вентилей в преобразовательных устройствах и согласования напряжения на выходе и входе преобразователя (преобразовательные трансформаторы).
Для различных технологических целей: сварки (сварочные трансформаторы), питания электротермических установок (электропечные трансформаторы) и др.
Для питания различных цепей радиоаппаратуры, электронной аппаратуры, устройств связи и автоматики, электробытовых приборов, для разделения электрических цепей различных элементов указанных устройств, для согласования напряжения и пр.
Для включения электроизмерительных приборов и некоторых аппаратов (реле и др.) в электрические цепи высокого напряжения или же в цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопастности. (измерительные трансформаторы)

2. Классификация

Классификация трансформаторов:

  • По назначению: силовые общего(используются в линиях передачи и распределения электроэнергии) и специального применения (печные, выпрямительные, сварочные, радиотрансформаторы).
  • По виду охлаждения: с воздушным (сухие трансформаторы) и масляным (масляные трансформаторы) охлаждением.
  • По числу фаз на первичной стороне: однофазные и трёхфазные.
  • По форме магнитопровода: стержневые, броневые, тороидальные.
  • По числу обмоток на фазу: двухобмоточные, трёхобмоточные, многообмоточные (более трёх обмоток).
  • По конструкции обмоток: с концентрическими и чередующимися (дисковыми) обмотками.

3. Устройство

Простейший трансформатор (однофазный трансформатор) представляет собой устройство, состоящее из стального сердечника и двух обмоток.

Принцип устройства однофазного двухобмоточного трансформатора
Магнитопровод представляет собой магнитную систему трансформатора, по которой замыкается основной магнитный поток.
При подаче в первичную обмотку переменного напряжения, во вторичной обмотке индуцируется ЭДС той же частоты. Если ко вторичной обмотке подключить некоторый электроприемник, то в ней возникает электрический ток и на вторичных зажимах трансформатора устанавливается напряжение, которое несколько меньше, чем ЭДС и в некоторой относительно малой степени зависит от нагрузки.

Условное обозначение трансформатора:
а) - трансформатор со стальным сердечником, б) - трансформатор с сердечником из феррита

4. Характеристики трансформатора

  • Номинальная мощность трансформатора - мощность, на которую он рассчитан.
  • Номинальное первичное напряжение - напряжение, на которое рассчитана первичная обмотка трансформатора.
  • Номинальное вторичное напряжение - напряжение на зажимах вторичной обмотки, получающееся при холостом ходе трансформатора и номинальном напряжении на зажимах первичной обмотки.
  • Номинальные токи, определяются соответствующими номинальными значениями мощности и напряжения.
  • Высшее номинальное напряжение трансформатора - наибольшее из номинальных напряжений обмоток трансформатора.
  • Низшее номинальное напряжение - наименьшее из номинальных напряжений обмоток трансформатора.
  • Среднее номинальное напряжение - номинальное напряжение, являющееся промежуточным между высшим и низшим номинальным напряжением обмоток трансформатора.

5. Режимы

5.1 Холостой ход

Режимом холостого хода - режим работы трансформатора, при котором вторичная обмотка трансформатора разомкнута, а на зажимы первичной обмотки подано переменное напряжение.

В первичной обмотке трансформатора, соединенной с источником переменного тока течёт ток, в результате чего в сердечнике появляется переменный магнитный поток Φ , пронизывающий обе обмотки. Так как Φ одинаков в обеих обмотках трансформатора, то изменение Φ приводит к появлению одинаковой ЭДС индукции в каждом витке первичной и вторичной обмоток. Мгновенное значение ЭДС индукции e в любом витке обмоток одинаково и определяется формулой:

где - амплитуда ЭДС в одном витке.
Амплитуда ЭДС индукции в первичной и вторичной обмотках будет пропорционально числу витков в соответствующей обмотке:

где N 1 и N 2 - число витков в них.
Падение напряжения на первичной обмотке, как на резисторе, очень мало, по сравнению с ε 1 , и поэтому для действующих значений напряжения в первичной U 1 и вторичной U 2 обмотках будет справедливо следующее выражение:

K - коэффициент трансформации. При K >1 трансформатор понижающий, а при K <1 - повышающий.

5.2 Режим короткого замыкания

Режимом короткого замыкания - режим, когда выводы вторичной обмотки замкнуты токопроводом с сопротивлением, равным нулю (Z =0).

Короткое замыкание трансформатора в условиях эксплуатации создает аварийный режим, так как вторичный ток, а следовательно, и первичный увеличиваются в несколько десятков раз по сравнению с номинальным. Поэтому в цепях с трансформаторами предусматривают защиту, которая при коротком замыкании автоматически отключает трансформатор.

Необходимо различать два режима короткого замыкания:

Аварийный режим - тогда, когда замкнута вторичная обмотка при номинальном первичном напряжении. При таком замыкании токи возрастают в 15¸ 20 раз. Обмотка при этом деформируется, а изоляция обугливается. Железо так же подгорает. Это тяжелый режим. Максимальная и газовая защита отключает трансформатор от сети при аварийном коротком замыкании.

Опытный режим короткого замыкания - это режим, когда вторичная обмотка накоротко замкнута, а к первичной обмотке подводится такое пониженное напряжение, когда по обмоткам протекает номинальный ток - это U K - напряжение короткого замыкания.

В лабораторных условиях можно провести испытательное короткое замыкание трансформатора. При этом выраженное в процентах напряжение U K , при I 1 =I 1ном обозначают u K и называют напряжением короткого замыкания трансформатора:

где U 1ном - номинальное первичное напряжение.

Это характеристика трансформатора, указываемая в паспорте.

5.3 Нагрузочный режим

Нагрузочный режим трансформатора - режим работы трансформатора при наличии токов не менее чем в двух его основных обмотках, каждая из которых замкнута на внешнюю цепь, при этом не учитываются токи, протекающие в двух или более обмотках в режиме холостого хода:

Если к первичной обмотке трансформатора подключить напряжение U 1 , а вторичную обмотку соединить с нагрузкой, в обмотках появятся токи I 1 и I 2 . Эти токи создадут магнитные потоки Φ 1 и Φ 2 , направленные навстречу друг другу. Суммарный магнитный поток в магнитопроводе уменьшается. Вследствие этого индуктированные суммарным потоком ЭДС ε 1 и ε 2 уменьшаются. Действующее значение напряжения U 1 остается неизменным. Уменьшение ε 1 вызывает увеличение тока I 1 :

При увеличении тока I 1 поток Φ 1 увеличивается ровно настолько, чтобы скомпенсировать размагничивающее действие потока Φ 2 . Вновь восстанавливается равновесие при практически прежнем значении суммарного потока.

IV. Передача электроэнергии

Передача электроэнергии от электростанции к потребителям - одна из важнейших задач энергетики.
Электроэнергия передаётся преимущественно по воздушным линиям электропередачи (ЛЭП) переменного тока, хотя наблюдается тенденция ко всё более широкому применению кабельных линий и линий постоянного тока.

Необходимость передачи электроэнергии на расстояние обусловлена тем, что электроэнергия вырабатывается крупными электростанциями с мощными агрегатами, а потребляется сравнительно маломощными электроприёмниками, распределёнными на значительной территории. Тенденция к концентрации генерирующих мощностей объясняется тем, что с их ростом снижаются относительные затраты на сооружение электростанций и уменьшается стоимость вырабатываемой электроэнергии.
Размещение мощных электростанций производится с учётом целого ряда факторов, таких, например, как наличие энергоресурсов, их вид, запасы и возможности транспортировки, природные условия, возможность работы в составе единой энергосистемы и т.п. Часто такие электростанции оказываются существенно удалёнными от основных центров потребления электроэнергии. От эффективности передачи электроэнергии на расстояние зависит работа единых электроэнергетических систем, охватывающих обширные территории.
Передавать электроэнергию от мест её производства к потребителям необходимо с минимальными потерями. Главная причина этих потерь - превращение части электроэнергии во внутреннюю энергию проводов, их нагрев.

Согласно закону Джоуля-Ленца, количество теплоты Q , выделяемое за время t в проводнике сопротивлением R при прохождении тока I , равно:

Из формулы следует, что для уменьшения нагрева проводов необходимо уменьшать силу тока в них и их сопротивление. Чтобы уменьшить сопротивление проводов, увеличивают их диаметр, однако, очень толстые провода, висящие между опорами линий электропередач, могут оборваться под действием силы тяжести, особенно, при снегопаде. Кроме того, при увеличении толщины проводов растёт их стоимость, а они сделаны из относительно дорогого металла - меди. Поэтому более эффективным способом минимизации энергопотерь при передаче электроэнергии служит уменьшение силы тока в проводах.
Таким образом, чтобы уменьшить нагрев проводов при передаче электроэнергии на дальние расстояния, необходимо сделать силу тока в них как можно меньше.
Мощность тока равна произведению силы тока на напряжение:

Следовательно, для сохранения мощности, передаваемой на дальние расстояния, надо во столько же раз увеличить напряжение, во сколько была уменьшена сила тока в проводах:

Из формулы следует, что при постоянных значениях передаваемой мощности тока и сопротивления проводов потери на нагрев в проводах обратно пропорциональны квадрату напряжению в сети. Поэтому для передачи электроэнергии на расстояния в несколько сотен километров используют высоковольтные линии электропередач (ЛЭП), напряжение между проводами которых составляет десятки, а иногда сотни тысяч вольт.
С помощью ЛЭП соседние электростанции объединяются в единую сеть, называемую энергосистемой. Единая энергосистема России включает в себя огромное число электростанций, управляемых из единого центра и обеспечивает бесперебойную подачу электроэнергии потребителям.

V. ГОЭЛРО

1. История

ГОЭЛРО (Государственная комиссия по электрификации России) - орган, созданный 21 февраля 1920 года для разработки проекта электрификации России после Октябрьской революции 1917 года.

К работам комиссии было привлечено свыше 200 деятелей науки и техники. Возглавлял комиссию Г.М. Кржижановский. ЦК Коммунистической партии и лично В. И. Ленин повседневно направляли работу комиссии ГОЭЛРО, определяли основные принципиальные положения плана электрификации страны.

К концу 1920 комиссия проделала огромную работу и подготовила «План электрификации РСФСР» - том в 650 страниц текста с картами и схемами электрификации районов.
План ГОЭЛРО, рассчитанный на 10-15 лет, реализовал ленинские идеи электрификации всей страны и создания крупной индустрии.
В области электроэнергетического хозяйства план состоял из программы, рассчитанной на восстановление и реконструкцию довоенной электроэнергетики, строительство 30 районных электрических станций, сооружение мощных районных тепловых электростанций. Электростанции намечалось оборудовать крупными для того времени котлами и турбинами.
Одной из основных идей плана являлось широкое использование огромных гидроэнергоресурсов страны. Предусматривались коренная реконструкция на базе электрификации всех отраслей народного хозяйства страны и преимущественно рост тяжёлой промышленности, рациональное размещение промышленности по всей территории страны.
Осуществление плана ГОЭЛРО началось в трудных условиях Гражданской войны и хозяйственной разрухи.

С 1947 СССР занимал 1-е место в Европе и 2-е в мире по производству электроэнергии.

План ГОЭЛРО сыграл в жизни нашей страны огромную роль: без него не удалось бы вывести СССР в столь короткие сроки в число самых развитых в промышленном отношении стран мира. Реализация этого плана сформировала всю отечественную экономику и до сих пор в значительной мере ее определяет.

Составление и выполнение плана ГОЭЛРО стали возможным и исключительно благодаря сочетанию многих объективных и субъективных факторов: немалого промышленно-экономического потенциала дореволюционной России, высокого уровня российской научно-технической школы, сосредоточения в одних руках всей экономической и политической власти, ее силы и воли, а также традиционного соборно-общинного менталитета народа и его послушно-доверительного отношения к верховным правителям.
План ГОЭЛРО и его реализация доказали высокую эффективность системы государственного планирования в условиях жестко централизованной власти и предопределили развитие этой системы на долгие десятилетия.

2. Результаты

К концу 1935 программа электростроительства была в несколько раз перевыполнена.

Вместо 30 было построено 40 районных электростанций, на которых вместе с другими крупными промышленными станциями было введено 6914 тыс. кВт мощностей (из них районных 4540 тыс. кВт - почти в три раза больше, чем по плану ГОЭЛРО).
В 1935 г. среди районных электростанций было 13 электроцентралей по 100 тыс. кВт.

До революции мощность самой крупной электростанции России (1-й Московской) составляла всего 75 тыс. кВт; не было ни одной крупной ГЭС. К началу 1935 г. общая установленная мощность гидроэлектростанций достигла почти 700 тыс. кВт.
Были построены крупнейшая в то время в мире Днепровская ГЭС, Свирская 3-я, Волховская и др. В высшей точке своего развития Единая энергосистема СССР по многим показателям превосходила энергосистемы развитых стран Европы и Америки.


Электричество было практически неизвестно в деревнях до революции. Большие землевладельцы устанавливали небольшие электростанции, но число их было мало.

Электроэнергия стала применяться в сельском хозяйстве: в мельницах, кормовых резцах, зерноочистительных машинах, на лесопилках; в промышленности, а позже - в быту.

Список использованной литературы

Веников В. А., Дальние электропередачи, М.- Л., 1960;
Совалов С. А., Режимы электропередач 400-500 кв. ЕЭС, М., 1967;
Бессонов, Л.А. Теоретические основы электротехники. Электрические цепи: учебник / Л.А. Бессонов. — 10-е изд. — М. : Гардарики, 2002.
Электротехника: Учебно-методический комплекс. /И. М. Коголь, Г. П. Дубовицкий, В. Н. Бородянко, В. С. Гун, Н. В. Клиначёв, В. В. Крымский, А. Я. Эргард, В. А. Яковлев; Под редакцией Н. В. Клиначёва. — Челябинск, 2006-2008.
Электрические системы, т. 3 - Передача энергии переменным и постоянным током высокого напряжения, М., 1972.

Извините, ничего не найдено.

по физике

на тему «Производство, передача и использование электроэнергии»

ученицы 11 класса А

МОУ школы № 85

Екатерины.

План реферата.

Введение.

1. Производство электроэнергии.

1. типы электростанций.

2. альтернативные источники энергии.

2. Передача электроэнергии.

    трансформаторы.

3. Использование электроэнергии.

Введение.

Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д.

Прекрасный миф о Прометее, даровавшем людям огонь, появился в Древней Греции значительно позже того, как во многих частях света были освоены методы довольно изощренного обращения с огнем, его получением и тушением, сохранением огня и рациональным использованием топлива.

На протяжении многих лет огонь поддерживался путем сжигания растительных энергоносителей (древесины, кустарников, камыша, травы, сухих водорослей и т.п.), а затем была обнаружена возможность использовать для поддержания огня ископаемые вещества: каменный уголь, нефть, сланцы, торф.

На сегодняшний день энергия остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать.

Производство электроэнергии.

Типы электростанций.

Тепловая электростанция (ТЭС), электростанция, вырабатываю­щая электрическую энергию в результате пре­образования тепловой энергии, выделяю­щейся при сжигании органического топлива. Первые ТЭС появились в конце 19 века и получили преимущественное распространение. В середине 70-х годов 20 века ТЭС - основной вид элек­трической станций.

На тепловых электростанциях химическая энергия топлива преобразуется сначала в механическую, а затем в электрическую. Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут.

Тепловые электрические стан­ции подразделяют на конденсационные (КЭС), предназначенные для выработки только электрической энергии, и теплоэлектро­централи (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды и пара. Крупные КЭС районного значения получили название государственных районных электро­станций (ГРЭС).

Простейшая принципиальная схема КЭС, работающей на угле, представлена на рисунке. Уголь подается в топливный бункер 1, а из него - в дробильную установку 2, где превраща­ется в пыль. Угольная пыль поступает в топку парогенератора (парового котла) 3, имеющего систему трубок, в которых цир­кулирует химически очищенная вода, называемая питательной. В котле вода нагревается, испаряется, а образовавшийся насы­щенный пар доводится до температуры 400-650 °С и под дав­лением 3-24 МПа поступает по паропроводу в паровую турби­ну 4. Параметры пара зависят от мощности агрегатов.

Тепловые конденсацион­ные электростанции име­ют невысокий кпд (30- 40%), так как большая часть энергии теряется с отходящими топочными газами и охлаждающей водой конденсатора. Сооружать КЭС выгодно в непосредственной близости от мест добычи топлива. При этом потребители электроэнергии могут находиться на значи­тельном расстоянии от стан­ции.

Теплоэлектроцентраль отли­чается от конденсационной станции установленной на ней специальной теплофикационной турбиной с отбором пара. На ТЭЦ одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе 5 и затем поступает в конденсатор 6, а другая, имеющая большую температуру и давление, отбирается от промежуточной ступени турбины и исполь­зуется для теплоснабжения. Конденсат насосом 7 через деаэра­тор 8 и далее питательным насосом 9 подается в парогенератор. Количество отбираемого пара зависит от потребности предприя­тий в тепловой энергии.

Коэффициент полезного действия ТЭЦ достигает 60-70%. Такие станции строят обычно вблизи потребителей - про­мышленных предприятий или жилых массивов. Чаще всего они работают на привозном топливе.

Значительно меньшее распространение полу­чили тепловые станции с газотурбинными (ГТЭС), парогазовыми (ПГЭС) и дизельными установками.

В камере сгорания ГТЭС сжигают газ или жидкое топливо; продукты сгорания с темпера­турой 750-900 ºС поступают в газо­вую турбину, вращающую электрогене­ратор. Кпд таких ТЭС обычно составляет 26-28%, мощность - до нескольких со­тен МВт. ГТЭС обычно применяются для покрытия пиков электрической нагрузки. Кпд ПГЭС может достигать 42 - 43%.

Наиболее экономичными яв­ляются крупные тепловые паро­турбинные электростанции (сокра­щенно ТЭС). Большинство ТЭС нашей страны используют в ка­честве топлива угольную пыль. Для выработки 1 кВт-ч электроэнергии затрачивается несколько сот грам­мов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кине­тическая энергия струй пара пере­дается ротору. Вал турбины жестко соединен с валом генератора.

Современные паровые турбины для ТЭС - весьма совершенные, быстроходные, высокоэкономичные машины с большим ресурсом работы. Их мощность в одновальном исполнении достигает 1 млн. 200 тыс. кВт, и это не является пределом. Такие машины всегда бывают многоступенчатыми, т. е. имеют обыч­но несколько десятков дисков с рабочими лопат­ками и такое же количество, перед каждым диском, групп сопел, через которые протекает струя пара. Давление и температура пара постепенно снижаются.

Из курса физики из­вестно, что КПД тепловых двига­телей увеличивается с ростом на­чальной температуры рабочего тела. Поэтому поступающий в турбину пар доводят до высоких параметров: температуру - почти до 550 °С и давление - до 25 МПа. Коэффи­циент полезного действия ТЭС дости­гает 40%. Большая часть энергии теряется вместе с горячим отрабо­танным паром.

Гидроэлектрическая станция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гид­ротехнических сооружений, обеспечи­вающих необходимую концентрацию по­тока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию.

Напор ГЭС создается концентрацией падения реки на используемом участке плотиной, либо деривацией, либо плотиной и дери­вацией совместно. Основное энергетическое оборудование ГЭС размещается в здании ГЭС: в машинном зале электростанции - гидроагрегаты, вспомогательное оборудование, устройства автоматического управления и контроля; в центральном посту управления - пульт оператора-диспетчера или автооператор гидро­электростанции. Повышающая транс­форматорная подстанция размещается как внутри здания ГЭС, так и в отдельных зда­ниях или на открытых площадках. Рас­пределительные устройства зачастую располагаются на открытой площадке. Здание ГЭС может быть разделено на секции с одним или несколькими агрегатами и вспомогательным оборудованием, отделённые от смежных частей здания. При здании ГЭС или внутри него создаётся монтаж­ная площадка для сборки и ремонта раз­личного оборудования и для вспомогательных операций по обслуживанию ГЭС.

По установленной мощности (в МВт) различают ГЭС мощные (св. 250), сред­ние (до 25) и малые (до 5). Мощность ГЭС зависит от напора (разности уровней верхнего и нижнего бьефа), расхода воды, используемого в гидротурбинах, и кпд гидроагрегата. По ряду причин (вследствие, например, сезонных изменений уровня воды в во­доёмах, непостоянства нагрузки энерго­системы, ремонта гидроагрегатов или гидротехнических сооружений и т. п.) напор и расход воды непрерывно меняются, а, кроме того, меняется расход при регули­ровании мощности ГЭС. Различают го­дичный, недельный и суточный циклы режима работы ГЭС.

По максимально используемому напо­ру ГЭС делятся на высоконапорные (более 60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м). На равнинных реках напоры редко пре­вышают 100 м, в горных условиях посредством плотины можно создавать напоры до 300 м и более, а с помощью дерива­ции - до 1500 м. Подразделение ГЭС по используемому напору имеет при­близительный, условный характер.

По схеме использования водных ре­сурсов и концентрации напоров ГЭС обыч­но подразделяют на русловые , приплотинные , деривационные с напорной и без­напорной деривацией, смешанные, гидроаккумулирующие и приливные .

В русловых и приплотинных ГЭС напор воды создаётся плотиной, пе­регораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. Русловые и приплотинныс ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах. Для русловых ГЭС характерны напоры до 30-40 м.

При более высоких напорах оказывает­ся нецелесообразным передавать на зда­ние ГЭС гидростатичное давление воды. В этом случае применяется тип плотиной ГЭС, у которой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭС располагается за пло­тиной, примыкает к нижнему бьефу.

Другой вид компоновки приплотинная ГЭС соответствует горным усло­виям при сравнительно малых рас­ходах реки.

В деривационных ГЭС кон­центрация падения реки создаётся по­средством деривации; вода в начале ис­пользуемого участка реки отводится из речного русла водоводом, с уклоном, зна­чительно меньшим, чем средний уклон реки на этом участке и со спрямлением изги­бов и поворотов русла. Конец деривации подводят к месту расположения здания ГЭС. Отработанная вода либо возвраща­ется в реку, либо подводится к следующей де­ривационной ГЭС. Деривация выгодна тогда, когда уклон реки велик.

Особое место среди ГЭС занимают гидроаккумулирующие электростанции (ГАЭС) и приливные электростанции (ПЭС). Сооружение ГАЭС обусловлено ростом потребности в пиковой мощности в крупных энергетических системах, что и определяет генераторную мощность, тре­бующуюся для покрытия пиковых на­грузок. Способность ГАЭС аккумулиро­вать энергию основана на том, что сво­бодная в энергосистеме в некоторый пе­риод времени электрическая энергия используется агрегатами ГАЭС, которые, работая в ре­жиме насоса, нагнетают воду из водохра­нилища в верхний аккумулирующий бас­сейн. В период пиков нагрузки аккуму­лированная энергия возвращается в энергосистему (вода из верхнего бассей­на поступает в напорный трубопровод и вращает гидроагрегаты, работающие в режиме генератора тока).

ПЭС преобразуют энергию морских приливов в электрическую. Электроэнер­гия приливных ГЭС в силу некоторых особенностей, связанных с периодичным ха­рактером приливов и отливов, может быть использована в энергосистемах лишь совместно с энергией регулирующих электростанций, которые восполняют про­валы мощности приливных электростан­ций в течение суток или месяцев.

Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами - их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низ­кую себестоимость вырабатываемой на ГЭС электроэнергии. Поэтому сооруже­нию ГЭС, несмотря на значительные, удельные капиталовложения на 1 кВт установлен­ной мощности и продолжительные сроки строи­тельства, придавалось и придаётся боль­шое значение, особенно когда это связано с размещением электроёмких производств.

Атомная электростанция (АЭС), электростанция, в которой атомная (ядер­ная) энергия преобразуется в элект­рическую. Генератором энергии на АЭС является атомный реактор. Тепло, которое выделя­ется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обыч­ных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отли­чие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горю­чем (в основе 233 U, 235 U, 239 Pu). Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического, топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворе­ния быстро растущих потребностей в топ­ливе. Кроме того, необходимо учиты­вать всё увеличивающийся объём потреб­ления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепло­вых электростанций. Несмотря на откры­тие новых месторождений органического топ­лива и совершенствование способов его добычи, в мире наблюдается тенденция к относительному, увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2. Тепло, выделяемое в активной зоне реактора теплоносителем, вбирается водой 1-го контура, которая прокачивается через реактор циркуляционным насосом.Нагретая вода из реактора поступает в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образуется пар, который затем поступает в турбину 4.

Наиболее часто на АЭС применяют 4 типа реакторов на тепловых нейтронах:

1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя;

2) графитоводные с водяным теплоносителем и графитовым замедлителем;

3) тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя;

4) граффито - газовые с газовым теплоноси­телем и графитовым замедлителем.

Выбор преимущественно применяемого типа реактора определяется главным образом на­копленным опытом в реактороносителе, а также наличием необходимого промышленного оборудования, сырьевых запасов и т. д.

К реактору и обслуживающим его си­стемам относятся: собственно реактор с биологическойзащитой, теплообменни­ки, насосы или газодувные установки, осуществляющие циркуляцию теплоноси­теля, трубопроводы и арматура циркуляции контура, устройства для перезагруз­ки ядерного горючего, системы специальной вентиляции, аварийного расхолаживания и др.

Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, серпантиновый песок. Оборудование реакторного контура должно быть полностью герме­тичным. Предусматривается система конт­роля мест возможной утечки теплоноси­теля, принимают меры, чтобы появление не плотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружаю­щей местности. Радиоактивный воздух и не­большое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС специальной системой вентиляции, в которой для исключения возможно­сти загрязнения атмосферы предусмот­рены очистные фильтры и газгольдеры выдержки. За выполнением правил ра­диационной безопасности персоналом АЭС сле­дит служба дозиметрического контроля.

Наличие биологической защиты, систем специальной вентиляции и аварийного расхо­лаживания и службы дозиметрического контро­ля позволяет полностью обезопасить обслуживающий персонал АЭС от вред­ных воздействий радиоактивного облу­чения.

АЭС, являющиеся наиболее современным видом электростанций, имеют ряд существенных преимуществ перед другими видами электростанций: при нормальных условиях функционирования они абсолютно не загрязняют окружающую среду, не требуют привязки к источнику сырья и соответственно могут быть размещены практически везде. Новые энергоблоки имеют мощность практически равную мощности средней ГЭС, однако коэффициент использования установленной мощности на АЭС (80%) значительно превышает этот показатель у ГЭС или ТЭС.

Значительных недостатков АЭС при нормальных условиях функционирования практически не имеют. Однако нельзя не заметить опасность АЭС при возможных форс-мажорных обстоятельствах: землетрясениях, ураганах, и т. п. - здесь старые модели энергоблоков представляют потенциальную опасность радиационного заражения территорий из-за неконтролируемого перегрева реактора.

Альтернативные источники энергии.

Энергия солнца.

В последнее время интерес к проблеме использования солнечной энергии резко возрос, ведь потенциальные возможности энергетики, основанной на использование непосредственного солнечного излучения, чрезвычайно велики.

Простейший коллектор солнечного излучения представляет собой зачерненный металлический (как правило, алюминиевый) лист, внутри которого располагаются трубы с циркулирующей в ней жид­костью. Нагретая за счет солнечной энергии, поглощенной кол­лектором, жидкость поступает для непосредственного использова­ния.

Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение пот­ребности в материалах, а, следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовления гелиостатов, коллекторов, другой аппаратуры, их перевозки.

Пока еще электрическая энергия, рожденная солнечными луча­ми, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они прове­дут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.

Ветровая энергия.

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры. Климатические условия позволяют развивать ветроэнергетику на огромной территории.

Но в наши дни двигатели, использующие ветер, покрыва­ют всего одну тысячную мировых потребностей в энергии. Потому к созданию конструкций ветроколеса-сердца любой ветроэнергетической установки привлекаются специалисты-са­молетостроители, умеющие выбрать наиболее целесообразный про­филь лопасти, исследовать его в аэродинамической трубе. Усили­ями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.

Энергия Земли.

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унес­ших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощ­ность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится, нет пока у лю­дей возможностей обуздать эту непокорную стихию.

Энергия Земли пригодна не только для отопления помещений, как это происходит в Исландии, но и для получения электроэнергии. Уже давно работают электростанции, использующие горячие подземные источники. Первая такая электростанция, совсем еще маломощная, была построена в 1904 году в небольшом итальянском городке Лардерелло. Пос­тепенно мощность электростанции росла, в строй вступали все новые агрегаты, использовались новые источники горячей воды, и в наши дни мощность станции достигла уже внушительной величи­ны-360 тысяч киловатт.

Передача электроэнергии.

Трансформаторы.

Вы приобрели холодильник ЗИЛ. Продавец вас предупредил, что холодильник рассчитан на напряжение в сети 220 В. А у вас в доме сетевое напряжение 127 В. Безвыходное положение? Ничуть. Просто придется сделать дополнительную затрату и приобрести трансформатор.

Трансформатор - очень простое устройство, которое позволяет, как повышать, так и понижать напряжение. Преобразование переменного тока осуществляется с помощью трансформаторов. Впервые трансформаторы были использованы в 1878 г. русским ученым П. Н. Яблочковым для питания изобре­тенных им «электрических свечей» - нового в то время источника света. Идея П. Н. Яблочкова была развита сотрудником Москов­ского университета И. Ф. Усагиным, сконструировавшим усовершенствованные трансформаторы.

Трансформатор состоит из замкнутого железного сердечника, на который надеты две (иногда и более) катушки с проволочны­ми обмотками (рис. 1). Одна из обмоток, называемая первич­ной, подключается к источнику переменного напряжения. Вторая обмотка, к которой присоединяют «нагрузку», т. е. приборы и устройства, потребляющие электроэнергию, называется вторич­ной.


Действие трансформатора основано на явлении электромаг­нитной индукции. При прохождении переменного тока по первич­ной обмотке в железном сердечнике появляется переменный маг­нитный поток, который возбуждает ЭДС индукции в каждой обмотке. Причем мгновенное значение ЭДС индукции е в любом витке первичной или вторичной обмотки согласно закону Фарадея определяется формулой:

е = - Δ Ф/ Δ t

Если Ф = Ф 0 соsωt, то

е = ω Ф 0 sin ω t , или

е = E 0 sin ω t ,

где E 0 = ω Ф 0 - амплитуда ЭДС в одном витке.

В первичной обмотке, имеющей п 1 витков, полная ЭДС индук­ции e 1 равна п 1 е.

Во вторичной обмотке полная ЭДС. е 2 равна п 2 е, где п 2 - чис­ло витков этой обмотки.

Отсюда следует, что

e 1 е 2 = п 1 п 2 . (1)

Сумма напряжения u 1 , приложенного к первичной обмотке, и ЭДС e 1 должна равняться падению напряжения в первичной обмотке:

u 1 + e 1 = i 1 R 1 , где R 1 - активное сопротивление обмотки, а i 1 - сила тока в ней. Данное уравнение непосредственно вытекает из общего урав­нения. Обычно активное сопротивле­ние обмотки мало и членом i 1 R 1 можно пре­небречь. Поэтому

u 1 ≈ -e 1 . (2)

При разомкнутой вторичной обмотке трансформатора ток в ней не течет, и имеет место соотношение:

u 2 ≈ - e 2 . (3)

Так как мгновенные значения ЭДС e 1 и e 2 изменяются синфазно, то их отношение в формуле (1) можно заменить отношением дей­ствующих значений E 1 и E 2 этих ЭДС или, учитывая равенства (2) и (3), отношением действующих значений напряжений U 1 и U 2 .

U 1 /U 2 = E 1 / E 2 = n 1 / n 2 = k . (4)

Величина k называется коэффициентом трансформации. Ес­ли k >1, то трансформатор является понижающим, при k <1 - повышающим.

При замыкании цепи вторичной обмотки в ней течет ток. Тогда соотношение u 2 ≈ - e 2 уже не выполняется точно, и соответ­ственно связь между U 1 и U 2 становится более сложной, чем в уравнении (4).

Согласно закону сохранения энергии, мощность в первичной цепи должна равняться мощности во вторичной цепи:

U 1 I 1 = U 2 I 2, (5)

где I 1 и I 2 - действующие значения силы в первичной и вто­ричной обмотках.

Отсюда следует, что

U 1 /U 2 = I 1 / I 2 . (6)

Это означает, что, повышая с помощью трансформатора на­пряжение в несколько раз, мы во столько же раз уменьшаем си­лу тока (и наоборот).

Вследствие неизбежных потерь энергии на выделение тепла в обмотках и железном сердечнике уравнения (5) и (6) вы­полняются приближенно. Однако в современных мощных транс­форматорах суммарные потери не превышают 2-3%.

В житейской практике часто приходится иметь дело с трансформаторами. Кроме тех трансформаторов, которыми мы пользуемся волей-неволей из-за того, что промышленные приборы рассчитаны на одно напряжение, а в городской сети используется другое, - кроме них приходится иметь дело с бобинами автомобиля. Бобина - это повышающий трансформатор. Для создания искры, поджигающей рабочую смесь, требуется высокое напряжение, которое мы и получаем от аккумулятора автомобиля, предварительно превратив постоянный ток аккумулятора в переменный с помощью прерывателя. Нетрудно сообразить, что с точностью до потерь энергии, идущей на нагревание трансформатора, при повышении напряжения уменьшается сила тока, и наоборот.

Для сварочных аппаратов требуются понижающие трансформаторы. Для сварки нужны очень сильные токи, и трансформатор сварочного аппарата имеет всего лишь один выходной виток.

Вы, наверное, обращали внимание, что сердечник трансформатора изготовляют из тонких листиков стали. Это сделано для того, чтобы не терять энергии при преобразовании напряжения. В листовом материале вихревые токи будут играть меньшую роль, чем в сплошном.

Дома вы имеете дело с маленькими трансформаторами. Что же касается мощных трансформаторов, то они представляют собой огромные сооружения. В этих случаях сердечник с обмотками помещен в бак, заполненный охлаждающим маслом.

Передача электроэнергии

Потребители электроэнергии имеются повсюду. Производит­ся же она в сравнительно немногих местах, близких к источникам топливных и гидроресурсов. Поэтому возникает необходимость передачи электроэнергии на расстояния, достигающие иногда сотен километров.

Но передача электроэнергии на большие расстояния связана с заметными потерями. Дело в том, что, протекая по линиям электропередачи, ток нагревает их. В соответствии с законом Джоуля - Ленца, энергия, расходуемая на нагрев проводов ли­нии, определяется формулой

где R - сопротивление линии. При большой длине линии переда­ча энергии может стать вообще экономически невыгодной. Для уменьшения потерь можно, конечно, идти по пути уменьшения сопротивления R линии посредством увеличения площади попе­речного сечения проводов. Но для уменьшения R, к примеру, в 100 раз нужно увеличить массу провода также в 100 раз. Ясно, что нельзя допустить такого большого расходования дорогостоя­щего цветного металла, не говоря уже о трудностях закрепления тяжелых проводов на высоких мачтах и т. п. Поэтому потери энергии в линии снижают другим путем: уменьшением тока в ли­нии. Например, уменьшение тока в 10 раз уменьшает количество выделившегося в проводниках тепла в 100 раз, т. е. достигается тот же эффект, что и от стократного утяжеления провода.

Так как мощность тока пропорциональна произведению силы тока на напряжение, то для сохранения передаваемой мощности нужно повысить напряжение в линии передачи. Причем, чем длиннее линия передачи, тем выгоднее использовать более высо­кое напряжение. Так, например, в высоковольтной линии переда­чи Волжская ГЭС - Москва используют напряжение в 500 кв. Между тем генераторы переменного тока строят на напряжения, не превышающие 16-20 кв., так как бо­лее высокое напряжение потребовало бы принятия более слож­ных специальных мер для изоляции обмоток и других частей генераторов.

Поэтому на крупных электростанциях ставят повышающие трансформаторы. Трансформатор увеличивает напряжение в ли­нии во столько же раз, во сколько уменьшает силу тока. Потери мощности при этом невелики.

Для непосредственного использования электроэнергии в дви­гателях электропривода станков, в осветительной сети и для дру­гих целей напряжение на концах линии нужно понизить. Это до­стигается с помощью понижающих трансформаторов. Причем обычно понижение напряжения и соответственно увеличение силы тока происходит в несколько этапов. На каждом этапе напряжение становится все меньше, а территория, охватываемая электрической сетью, - все шире. Схема передачи и распределения электроэнергии приведена на рисунке.



Электрические станции ряда областей страны соединены высоковольтными линиями передач, образуя общую электросеть, к которой присоединены потребители. Такое объединение называется энергосистемой. Энергосистема обеспечивает бесперебойность подачи энергии потребителям не зависимо от их месторасположения.

Использование электроэнергии.

Использование электроэнергетики в различных областях науки.

ХХ век стал веком, когда наука вторгается во все сферы жизни общества: экономику, политику, культуру, образование и т.д. Естественно, что наука непосредственно влияет на развитие энергетики и сферу применения электроэнергии. С одной стороны наука способствует расширению сферы применения электрической энергии и тем самым увеличивает ее потребление, но с другой стороны в эпоху, когда неограниченное использование невозобновляемых энергетических ресурсов несет опасность для будущих поколений, актуальными задачами науки становятся задачи разработки энергосберегающих технологий и внедрение их в жизнь.

Рассмотрим эти вопросы на конкретных примерах. Около 80% прироста ВВП (внутреннего валового продукта) развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Все новое в промышленность, сельское хозяйство и быт приходит к нам благодаря новым разработкам в различных отраслях науки.

Большая часть научных разработок начинается с теоретических расчетов. Но если в ХIХ веке эти расчеты производились с помощью пера и бумаги, то в век НТР (научно-технической революции) все теоретические расчеты, отбор и анализ научных данных и даже лингвистический разбор литературных произведений делаются с помощью ЭВМ (электронно-вычислительных машин), которые работают на электрической энергии, наиболее удобной для передачи ее на расстояние и использования. Но если первоначально ЭВМ использовались для научных расчетов, то теперь из науки компьютеры пришли в жизнь.

Сейчас они используются во всех сферах деятельности человека: для записи и хранения информации, создания архивов, подготовки и редактирования текстов, выполнения чертежных и графических работ, автоматизации производства и сельского хозяйства. Электронизация и автоматизация производства - важнейшие последствия "второй промышленной" или "микроэлектронной" революции в экономике развитых стран. С микроэлектроникой непосредственно связано и развитие комплексной автоматизации, качественно новый этап которой начался после изобретения в 1971 году микропроцессора - микроэлектронного логического устройства, встраиваемого в различные устройства для управления их работой.

Микропроцессоры ускорили рост робототехники. Большинство применяемых ныне роботов относится к так называемому первому поколению, и применяются при сварке, резании, прессовке, нанесении покрытий и т.д. Приходящие им на смену роботы второго поколения оборудованы устройствами для распознавания окружающей среды. А роботы-"интеллектуалы" третьего поколения будут "видеть", "чувствовать", "слышать". Ученые и инженеры среди наиболее приоритетных сфер применения роботов называют атомную энергетику, освоение космического пространства, транспорта, торговлю, складское хозяйство, медицинское обслуживание, переработку отходов, освоение богатств океанического дна. Основная часть роботов работают на электрической энергии, но увеличение потребления электроэнергии роботами компенсируется снижением энергозатрат во многих энергоемких производственных процессах за счет внедрения более рациональных методов и новых энергосберегающих технологических процессов.

Но вернемся к науке. Все новые теоретические разработки после расчетов на ЭВМ проверяются экспериментально. И, как правило, на этом этапе исследования проводятся с помощью физических измерений, химических анализов и т.д. Здесь инструменты научных исследований многообразны - многочисленные измерительные приборы, ускорители, электронные микроскопы, магниторезонансные томографы и т.д. Основная часть этих инструментов экспериментальной науки работают на электрической энергии.

Очень бурно развивается наука в области средств связи и коммуникаций. Спутниковая связь используется уже не только как средство международной связи, но и в быту - спутниковые антенны не редкость и в нашем городе. Новые средства связи, например волоконная техника, позволяют значительно снизить потери электроэнергии в процессе передачи сигналов на большие расстояния.

Не обошла наука и сферу управления. По мере развития НТР, расширения производственной и непроизводственной сфер деятельности человека, все более важную роль в повышении их эффективности начинает играть управление. Из своего рода искусства, еще недавно основывавшегося на опыте и интуиции, управление в наши дни превратилось в науку. Наука об управлении, об общих законах получения, хранения, передачи и переработки информации называется кибернетикой. Этот термин происходит от греческих слов "рулевой", "кормчий". Он встречается в трудах древнегреческих философов. Однако новое рождение его произошло фактически в 1948 году, после выхода книги американского ученого Норберта Винера "Кибернетика".

До начала "кибернетической" революции существовала только бумажная Информатика, основным средством восприятия которой оставался человеческий мозг, и которая не использовала электроэнергию. "Кибернетическая" революция породила принципиально иную - машинную информатику, соответствующую гигантски возросшим потокам информации, источником энергии для которой служит электроэнергия. Созданы совершенно новые средства получения информации, ее накопления, обработки и передачи, в совокупности образующие сложную информационную структуру. Она включает АСУ (автоматизированные системы управления), информационные банки данных, автоматизированные информационные базы, вычислительные центры, видеотерминалы, копировальные и фототелеграфные аппараты, общегосударственные информационные системы, системы спутниковой и скоростной волокнисто-оптической связи - все это неограниченно расширило сферу использования электроэнергии.

Многие ученые считают, что в данном случае речь идет о новой "информационной" цивилизации, приходящей на смену традиционной организации общества индустриального типа. Такая специализация характеризуется следующими важными признаками:

· широким распространением информационной технологии в материальном и нематериальном производстве, в области науки, образования, здравоохранения и т.д.;

· наличием широкой сети различных банков данных, в том числе общественного пользования;

· превращение информации в один из важнейших факторов экономического, национального и личного развития;

· свободной циркуляцией информации в обществе.

Такой переход от индустриального общества к "информационной цивилизации" стал возможен во многом благодаря развитию энергетики и обеспечению удобным в передаче и применении видом энергии - электрической энергией.

Электроэнергия в производстве.

Современное общество невозможно представить без электрификации производственной деятельности. Уже в конце 80-х годов более 1/3 всего потребления энергии в мире осуществлялось в виде электрической энергии. К началу следующего века эта доля может увеличиться до 1/2. Такой рост потребления электроэнергии прежде всего связан с ростом ее потребления в промышленности. Основная часть промышленных предприятий работает на электрической энергии. Высокое потребление электроэнергии характерно для таких энергоемких отраслей, как металлургия, алюминиевая и машиностроительная промышленность.

Электроэнергия в быту.

Электроэнергия в быту неотъемлемый помощник. Каждый день мы имеем с ней дело, и, наверное, уже не представляем свою жизнь без нее. Вспомните, когда последний раз вам отключали свет, то есть в ваш дом не поступала электроэнергия, вспомните, как вы ругались, что ничего не успеваете и вам нужен свет, вам нужен телевизор, чайник и куча других электроприборов. Ведь если нас обесточить навсегда, то мы просто вернемся в те давние времена, когда еду готовили на костре и жили в холодных вигвамах.

Значимости электроэнергии в нашей жизни можно посветить целую поэму, настолько она важна в нашей жизни и настолько мы привыкли к ней. Хотя мы уже и не замечаем, что она поступает к нам в дома, но когда ее отключают, становится очень не комфортно.

Цените электроэнергию!

Список используемой литературы.

1. Учебник С.В.Громова «Физика, 10 класс». Москва: Просвещение.

2. Энциклопедический словарь юного физика. Состав. В.А. Чуянов, Москва: Педагогика.

3. Эллион Л., Уилконс У.. Физика. Москва: Наука.

4. Колтун М. Мир физики. Москва.

5. Источники энергии. Факты, проблемы, решения. Москва: Наука и техника.

6. Нетрадиционные источники энергии. Москва: Знание.

7. Юдасин Л.С.. Энергетика: проблемы и надежды. Москва: Просвещение.

8. Подгорный А.Н. Водородная энергетика. Москва: Наука.



© dagexpo.ru, 2024
Стоматологический сайт