Примеры объектов для математического моделирования. Понятие математической модели. Этапы математического моделирования

21.09.2019

Модель (от лат. modulus - мера) и моделирование являются общенаучными понятиями. Моделирование с общенаучной точки зрения выступает как способ познания с помощью построения особых объектов, систем – моделей исследуемых объектов, явлений или процессов. При этом тот или иной объект называют моделью тогда, когда он используется для получения информации относительно другого объекта – прототипа модели.

Метод моделирования используется фактически во всех без исключения науках и на всех этапах научного исследования. Эвристическая сила этого метода определяется тем, что с помощью метода моделирования удается свести изучение сложного к простому, невидимого и неощутимого и видимому и ощутимому и т.д.

При исследовании какого-то объекта (процесса или явления) с помощью метода моделирования, в качестве модели можно выбрать те свойства, которые нас в данный момент интересуют. Научное исследование любого объекта всегда относительно. В конкретном исследовании нельзя рассмотреть объект во всем его многообразии. Следовательно, один и тот же объект может иметь много различных моделей и ни про одну из них нельзя сказать, что она единственная, настоящая модель данного объекта.

Принято различать четыре основных свойства моделей:

· упрощенность по сравнению с изучаемым объектом;

· способность отражать или воспроизводить объект исследования;

· возможность замещать объект исследования на определенных этапах его познания;

· возможность получать новую информацию об изучаемом объекте.

Исследование различных явлений или процессов математическими методами осуществляется с помощью математической модели. Математическая модель представляет собой формализованное описание на языке математики исследуемого объекта. Таким формализованным описанием может быть система линейных, нелинейных или дифференциальных уравнений, система неравенств, определенный интеграл, многочлен с неизвестными коэффициентами и т. д. Математическая модель должна охватывать важнейшие характеристики исследуемого объекта и отражать связи между ними.

Прежде чем создать математическую модель объекта (процесса или явления) его длительно изучают различными методами: наблюдением, специально организованными экспериментами, теоретическим анализом и т.д., то есть достаточно хорошо изучают качественную сторону явления, выявляют отношения, в которых находятся элементы объекта. Затем объект упрощается, из всего многообразия присущих ему свойств выделяются наиболее существенные. При необходимости делаются предположения об имеющихся связях с окружающим миром.

Как указывалось ранее, любая модель не тождественна самому явлению, она только дает некоторое приближение к действительности. Но в модели перечислены все предположения, которые положены в ее основу. Эти предположения могут быть грубыми и тем не менее давать вполне удовлетворительное приближение к реальности. Для одного и того же явления может быть построено несколько моделей, в том числе и математических. Например, описать движение планет Солнечной системы можно с помощью:

8 модели Кеплера, которая состоит из трех законов, включая математические формулы (уравнение эллипса);

8 модели Ньютона, которая состоит из одной формулы, но тем не менее она более общая и точная.

В оптике рассматривалось несколько моделей света: корпускулярная, волновая и электромагнитная. Для них были выведены многочисленные закономерности количественного характера. Каждая из этих моделей требовала своего математического подхода и соответствующих математических средств. Корпускулярная оптика пользовалась средствами евклидовой геометрии и пришла к выводу законов отражения и преломления света. Волновая модель теории света потребовала новых математических идей и чисто вычислительным путем были открыты новые факты, относящиеся к явлениям дифракции и интерференции света, которые ранее не наблюдались. Геометрическая оптика, связанная с корпускулярной моделью, здесь оказалась бессильной.

Построенная модель должна быть такой, чтобы она могла замещать в исследованиях объект (процесс или явление), должна иметь с ним сходные черты. Сходство достигается либо за счет подобия структуры (изоморфизм), либо аналогии в поведении или функционировании (изофункциональность). Опираясь на сходство структуры или функции модели и оригинала в современной технике проверяют, рассчитывают и проектируют сложнейшие системы, машины и сооружения.

Как указывалось выше, для одного и того же объекта, процесса или явления может быть построено много различных моделей. Некоторые из них (не обязательно все) могут оказаться изоморфными. Например, в аналитической геометрии кривая на плоскости используется в качестве модели соответствующего уравнения с двумя переменными. В этом случае модель (кривая) и прототип (уравнение) являются изоморфнымти системами (точек, лежащих на кривой, и соответствующих пар чисел, удовлетворяющих уравнению),

В книге «Математика ставит эксперимент» академик Н.Н.Моисеев пишет, что любая математическая модель может возникнуть тремя путями:

· В результате прямого изучения и осмысления объекта (процесса или явления) (феноменологическая) (пример – уравнения, описывающие динамику атмосферы, океана),

· В результате некоторого процесса дедукции, когда новая модель получается как частный случай более общей модели (асимптоматическая) (пример – уравнения гидро-термодинамики атмосферы),

· В результате некоторого процесса индукции, когда новая модель является естественным обобщением «элементарных» моделей (модель ансамблей или обобщенная модель).

Процесс разработки математических моделей состоит из следующих этапов :

· формулирование проблемы;

· определение цели моделирования;

· организация и проведение исследования предметной области (исследование свойств объекта моделирования);

· разработка модели;

· проверка ее точности и соответствия реальности;

· практическое использование, т.е. перенос полученных с помощью модели знаний на исследуемый объект или процесс.

Особое значение моделирование как способ познания законов и явлений природы приобретает в изучении объектов, недоступных в полной мере прямому наблюдению или экспериментированию. К ним относятся и социальные системы, единственно возможным способом изучения которых, зачастую служит моделирование.

Общих способов построения математических моделей не существует. В каждом конкретном случае нужно исходить из имеющихся данных, целевой направленности, учитывать задачи исследования, а также соразмерять точность и подробность модели. Она должна отражать важнейшие черты явления, существенные факторы, от которых в основном зависит успех моделирования.

При разработке моделей необходимо придерживаться следующих основных методологических принципов моделирования социальных явлений:

· принципа проблемности, предполагающего движение не от готовых "универсальных" математических моделей к проблемам, а от реальных, актуальных проблем - к поиску, разработке специальных моделей;

· принципа системности, рассматривающего все взаимосвязи моделируемого явления в терминах элементов системы и ее среды;

· принципа вариативности при формализации процессов управления, связанного со специфическими различиями законов развития природы и общества. Для его объяснения необходимо раскрыть коренное отличие моделей общественных процессов от моделей, описывающих явления природы.

ПРЕДИСЛОВИЕ

Целью курса моделирование подъемно-транспортных систем является обучение основам моделирования подъемно-транспортных машин (ПТМ), что включает в себя составление математических моделей ПТМ, программную реализацию моделей на ЭВМ, а также получение, обработку и анализ результатов моделирования.

Для самостоятельного ознакомления с перечисленными вопросами рекомендуется следующая литература: Брауде В. И., Тер-Мхитаров М. С. «Системные методы расчета грузоподъемных машин», Игнатьев Н. Б., Ильевский Б. З., Клауз Л. П. «Моделирование системы машин», Рачков Е. В., Силиков Ю. В. «Подъемно - транспортные машины и механизмы», а также справочники и учебные пособия по численным методам вычислительной математики и использованию математического редактора MathCad.

§1. ОСНОВНЫЕ ЦЕЛИ, ОПРЕДЕЛЕНИЯ И ПРИНЦИПЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ, ВИДЫ МОДЕЛЕЙ

1.1 Основные определения

Моделирование - это теоретико-экспериментальный метод познавательной деятельности, это метод исследования и объяснения явлений, процессов и систем (объектов-оригиналов) на основе создания новых объектов - моделей.

Моделирование – это замещение исследуемого объекта (оригинала) его условным образом или другим объектом (моделью) и изучение свойств оригинала путем исследования свойств модели.

В зависимости от способа реализации все модели можно разделить на 4 группы: физические, математические, предметно-математические и комбинированные [, ].

Физическая модель – реальное воплощение тех свойств оригинала, которые интересует исследователя. Физические модели называют еще макетами, поэтому физическое моделирование называется макетированием.

Математическая модель – это формализованное описание системы (или процесса) с помощью некоторого абстрактного языка (математически), например, в виде графов, уравнений, алгоритмов, математических соответствий и пр.

Предметно-математические модели являются аналоговыми, т.е. при этом для моделирования используется принцип одинакового математического описания процессов, реального и протекающего в модели.

Комбинированные модели представляют собой сочетание математической или предметно-математической и физической модели. Они используются тогда, когда математическое описание одного из элементов исследуемой системы неизвестно или затруднительно, а также по условиям моделирования необходимо ввести в качестве элемента физическую модель (например, тренажер).

Математическое моделирование – это замещение оригинала математической моделью и исследование свойств оригинала на данной модели.

Системой называется объединение нескольких объектов (элементов), взаимосвязанных между собой, образующее определенную целостность.

Элемент - это относительно самостоятельная часть системы, рассматриваемая на данном уровне анализа как единое целое, предназначенная для реализацию некоторой функции.

Система обладает следующими, т.н. «системными» свойствами:

    структурой, т.е. строго определенным порядком объединения элементов в группы;

    целенаправленностью или функциональностью, т.е. наличием цели, для которой создана система;

    эффективностью, способностью достигать цели с наименьшими затратами ресурсов;

    устойчивостью, способностью сохранять характеристики своих свойств неизменными в определенных пределах при изменении внешних условий.

В настоящее время в технике для исследования работы машинных комплексов и машин используется понятие «человеко-машинной системы» (ЧМС), т.е. смешанной системы, составной частью которой наряду с техническими объектами является человек-оператор [, ]. Кроме того, ЧМС взаимодействует с окружающей средой. Таким образом, для моделирования ПТС необходимо рассматривать систему Человек-Машина-Среда, которая может быть отображена следующим графом (Рис. 1).

Р
ис. 1 Граф системы Человек-Машина-Среда.

Стрелками на графе изображены потоки энергии, вещества и информации, которыми обмениваются элементы системы.

Процессы, протекающие в технических системах, образованы совокупностью простейших операций. Операции – преобразования входных физических величин в выходные в низкоуровневом элементе системы (Рис. 2).

В каждом элементе системы (E i) происходит преобразование входных воздействий (X i) в выходные (Y i), причем выходные воздействия одного элемента могут являться входными следующего. Соединение элементов в структурную схему по характеру передачи воздействий происходит последовательно или параллельно.

Рис. 2 Структурная схема системы.

Подъемно-транспортными системами (ПТС), изучаемыми в рамках данного курса, будем называть системы, включающими в себя человека, окружающую среду и подъемно-транспортные машины (ПТМ).

ПТМ – это машины, предназначенные для перемещения груза на относительно небольшие расстояния без его переработки. ПТМ применяются для облегчения, ускорения, повышения эффективности перегрузочных работ.

1.2 Принципы и виды математического моделирования

Математические модели должны обладать следующими свойствами:

    адекватность, свойство соответствия модели и объекта исследований;

    достоверность, обеспечение заданной вероятности попадания результатов моделирования в доверительный интервал,

    точность, незначительное (в пределах допустимой погрешности) расхождение результатов моделирования с показателями реальных объектов (процессов);

    устойчивость, свойство соответствия малых изменений выходных параметров малым изменениям входных;

    эффективность, способность достижения цели с малыми затратами ресурсов;

    адаптабельность, способность легко перестраиваться для решения различных задач.

Для достижения этих свойств существуют некоторые принципы (правила) математического моделирования , ряд которых приведен ниже.

    Принцип целенаправленности заключается в том, что модель должна обеспечивать достижение строго определенных целей и, в первую очередь, отражать те свойства оригинала, которые необходимы для достижения цели.

    Принцип информационной достаточности заключается в ограничении количества информации об объекте при создании его модели и поиске оптимума между вводимой информацией и результатами моделирования. Он может быть проиллюстрирован следующей схемой.

Все возможные случаи моделирования располагаются в столбце 2.

    Принцип осуществимости состоит в том, что модель должна обеспечивать достижение поставленной цели с вероятностью близкой к 1 и за конечное время. Этот принцип можно выразить двумя условиями

и
,
(1)

где
- вероятность достижения цели, - время достижения цели,
и - допустимые значения вероятности и времени достижения цели.

    Принцип агрегатирования заключается в том, что модель должна состоять из подсистем 1-го уровня, которые, в свою очередь, состоят из подсистем 2-го уровня и т.д. Подсистемы должны оформляться в виде отдельных самостоятельных блоков. Подобное построение модели позволяет использовать стандартные процедуры расчетов, а также делает более легкой адаптацию модели к решению различных задач.

    Принцип параметризации состоит в замене при моделировании определенных параметров подсистем, описанных функциями, соответствующими числовыми характеристиками.

Процесс моделирования с использованием этих правил заключается в выполнении следующих 5 шагов (этапов).

    Определение целей моделирования.

    Разработка концептуальной модели (расчетной схемы).

    Формализация.

    Реализация модели.

    Анализ и интерпретация результатов моделирования.

Существенные различия в выполнении 3-5 этапов позволяют говорить о двух подходах к построению модели.

Аналитическое моделирование – это использование математической модели в виде дополненных системой ограничений уравнений, связывающих входные переменные с выходными параметрами. Аналитическое моделирование используется, если существует законченная постановка задачи на исследования и необходимо получить один конечный результат, соответствующий ей.

Имитационное моделирование – это использование математической модели для описания функционирования системы во времени при различных сочетаниях параметров системы и различных внешних воздействиях. Имитационное моделирование используется, если конечной постановки задачи не существует и необходимо исследовать протекающие в системе процессы. Имитационное моделирование предполагает соблюдение временного масштаба. Т.е. события на одели происходят через интервалы времени пропорциональные событиям на оригинале с постоянным коэффициентом пропорциональности.

По использованию средств для реализации модели можно выделить еще один вид моделирования, компьютерное моделирование. Компьютерное моделирование – это математическое моделирование с использованием средств вычислительной техники.

1.3 Классификация математических моделей

Все математические модели можно разделить на несколько групп по следующим классификационным признакам.

    По виду моделируемой системы модели бывают статические и динамические. Статические модели служат для исследования статических систем, динамические для исследования динамических. Динамические системы характеризуются тем, что обладают множеством состояний, которые изменяют во времени.

    По целям моделирования модели подразделяются на нагрузочные, управленческие и функциональные. Нагрузочные модели служат для определения нагрузок, действующих на элементы системы, управленческие – для определения кинематических параметров исследуемой системы, к которым относятся скорости и перемещения элементов системы, функциональные – для определения координат модели в пространстве возможных функциональных состояний системы.

    По степени дискретизации модели подразделяются на дискретные, смешанные и континуальные. Дискретные модели содержат элементы, связанные между собой, характеристики которых сосредоточены в точках. Это могут быть массы, объемы, силовые и прочие воздействия, сосредоточенные в точках. Континуальные модели содержат элементы, параметры которых распределены по длине, по площади или по объему всего элемента. Смешанные модели содержат элементы обоих типов.

ВВЕДЕНИЕ

Невозможно представить себе современную науку без широкого применения математического моделирования. Сущность этой методологии состоит в замене исходного объекта его «образом» - математической моделью - и дальнейшем изучении модели с помощью реализуемых на компьютерах вычислительно-логических алгоритмов. Этот «третий метод» познания, конструирования, проектирования сочетает в себе многие достоинства как теории, так и эксперимента. Работа не с самим объектом (явлением, процессом), а с его моделью дает возможность безболезненно, относительно быстро и без существенных затрат исследовать его свойства и поведение в любых мыслимых ситуациях (преимущества теории). В то же время вычислительные (компьютерные, симуляционные, имитационные) эксперименты с моделями объектов позволяют, опираясь на мощь современных вычислительных методов и технических инструментов информатики, подробно и глубоко изучать объекты в достаточной полноте, недоступной чисто теоретическим подходам (преимущества эксперимента). Неудивительно, что методология математического моделирования бурно развивается, охватывая все новые сферы - от разработки технических систем и управления ими до анализа сложнейших экономических и социальных процессов.

Элементы математического моделирования использовались с самого начала появления точных наук, и не случайно, что некоторые методы вычислений носят имена таких корифеев науки, как Ньютон и Эйлер, а слово «алгоритм» происходит от имени средневекового арабского ученого Аль-Хорезми. Второе «рождение» этой методологии пришлось на конец 40-х-начало 50-х годов XX века и было обусловлено по крайней мере двумя причинами. Первая из них - появление ЭВМ (компьютеров), хотя и скромных по нынешним меркам, но тем не менее избавивших ученых от огромной по объему рутинной вычислительной работы. Вторая - беспрецедентный социальный заказ - выполнение национальных программ СССР и США по созданию ракетно-ядерного щита, которые не могли быть реализованы традиционными методами. Математическое моделирование справилось с этой задачей: ядерные взрывы и полеты ракет и спутников были предварительно «осуществлены» в недрах ЭВМ с помощью математических моделей и лишь затем претворены на практике. Этот успех во многом определил дальнейшие достижения методологии, без применения которой в развитых странах ни один крупномасштабный технологический, экологический или экономический проект теперь всерьез не рассматривается (сказанное справедливо и по отношению к некоторым социально-политическим проектам).

Сейчас математическое моделирование вступает в третий принципиально важный этап своего развития, «встраиваясь» в структуры так называемого информационного общества. Впечатляющий прогресс средств переработки, передачи и хранения информации отвечает мировым тенденциям к усложнению и взаимному проникновению различных сфер человеческой деятельности. Без владения информационными «ресурсами» нельзя и думать о решении все более укрупняющихся и все более разнообразных проблем, стоящих перед мировым сообществом. Однако информация как таковая зачастую мало что дает для анализа и прогноза, для принятия решений и контроля за их исполнением. Нужны надежные способы переработки информационного «сырья» в готовый «продукт», т. е. в точное знание. История методологии математического моделирования убеждает: она может и должна быть интеллектуальным ядром информационных технологий, всего процесса информатизации общества.

Технические, экологические, экономические и иные системы, изучаемые современной наукой, больше не поддаются исследованию (в нужной полноте и точности) обычными теоретическими методами. Прямой натурный эксперимент над ними долог, дорог, часто либо опасен, либо попросту невозможен, так как многие из этих систем существуют в «единственном экземпляре». Цена ошибок и просчетов в обращении с ними недопустимо высока. Поэтому математическое (шире - информационное) моделирование является неизбежной составляющей научно-технического прогресса.

Рассматривая вопрос шире, напомним, что моделирование присутствует почти во всех видах творческой активности людей различных «специальностей» - исследователей и предпринимателей, политиков и военачальников. Привнесение в эти сферы точного знания помогает ограничить интуитивное умозрительное «моделирование», расширяет поле приложений рациональных методов. Конечно же, математическое моделирование плодотворно лишь при выполнении хорошо известных профессиональных требований: четкая формулировка основных понятий и предположений, апостериорный анализ адекватности используемых моделей, гарантированная точность вычислительных алгоритмов и т. д. Если же говорить о моделировании систем с участием «человеческого фактора», т. е. трудно формализуемых объектов, то к этим требованиям необходимо добавить аккуратное разграничение математических и житейских терминов (звучащих одинаково, но имеющих разный смысл), осторожное применение уже готового математического аппарата к изучению явлений и процессов (предпочтителен путь «от задачи к методу», а не наоборот) и ряд других.

Решая проблемы информационного общества, было бы наивно уповать только на мощь компьютеров и иных средств информатики. Постоянное совершенствование триады математического моделирования и ее внедрение в современные информационно-моделирующие системы - методологический императив. Лишь его выполнение дает возможность получать так нужную нам высокотехнологичную, конкурентоспособную и разнообразную материальную и интеллектуальную продукцию.

Выбранная мною тема является актуальной в современной математике и ее приложениях. В современном научном подходе в исследовании естественных, технических и социально-экономических объектов возрастает значение математического моделирования происходящих в них процессов. Натурное изучение поведения объектов и систем в таких режимах и условиях невозможно либо затруднительно, что вынуждает применять методы математического моделирования.

Цель данной курсовой работы это - научиться использовать методы математического моделирования для исследования различных природных социальных процессов.

Задачи поставленные для достижения цели:

n Изучить теоретические вопросы математического моделирования, классификация моделей.

ОСНОВНЫЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

Моделирование - метод научного исследования явлений, процессов, объектов, устройств или систем (обобщенно – объектов исследований), основанный на построении и изучении моделей с целью получения новых знаний, совершенствования характеристик объектов исследований или управления ими.

Модель - материальный объект или образ (мысленный или условный: гипотеза, идея, абстракция, изображение, описание, схема, формула, чертеж, план, карта, блок-схема алгоритма, ноты и т.п.), которые упрощенно отображают самые существенные свойства объекта исследования.

Любая модель всегда проще реального объекта и отображает лишь часть его самых существенных черт, основных элементов и связей. По этой причине для одного объекта исследования существует множество различных моделей. Вид модели зависит от выбранной цели моделирования.

В основе термина «модель» лежит латинское слово modulus - мера, образец. Модель – это заместитель реального объекта исследования. Модель всегда проще исследуемого объекта. При изучении сложных явлений, процессов, объектов не удается учесть полную совокупность всех элементов и связей, определяющих их свойства.

Но все элементы и связи в создаваемой модели и не следует учитывать. Нужно лишь выделить наиболее характерные, доминирующие составляющие, которые в подавляющей степени определяют основные свойства объекта исследования. В результате объект исследования заменяется некоторым упрощенным подобием, но обладающим характерными, главными свойствами, аналогичными свойствам объекта исследования. Появившийся вследствие проведенной подмены новый объект (или абстракция) принято называть моделью объекта исследования.

Для составления математических моделей можно использовать любые математические средства - дифференциальное и интегральное исчисления, регрессионный анализ, теорию вероятностей, математическую статистику и т. д. Математическая модель представляет собой совокупность формул, уравнений, неравенств, логических условий и т.д. Использованные в математическом моделировании математические соотношения определяют процесс изменения состояния объекта исследования в зависимости от его параметров, входных сигналов, начальных условий и времени. По существу, вся математика создана для формирования математических моделей.

О большом значении математики для всех других наук (в том числе и моделирования) говорит следующий факт. Великий английский физик И.Ньютон (1643-1727 г.г.) в середине 17-го века познакомился с работами Рене Декарта и Пьера Гассенди. В этих работах утверждалось, что все строение мира может быть описано математическими формулами. Под влиянием этих трудов И.Ньютон стал усиленно изучать математику. Сделанный им вклад в физику и математику широко известен.

Математическое моделирование - метод изучения объекта исследования, основанный на создании его математической модели и использовании её для получения новых знаний, совершенствования объекта исследования или управления объектом.

Для математического моделирования характерно то, что процессы функционирования объекта записывают в виде математических соотношений (алгебраические, интегральные), записывают в виде логических условий.

Дифференциальные уравнения являются одним из основных средств составления математических моделей, наиболее широко применяемых при решении математических задач. При исследовании физических процессов, решении различных прикладных задач, как правило, не удается непосредственно найти законы, которые связывают величины, характеризующие исследуемые явления. Обычно легче устанавливаются зависимости между теми же величинами и их производными или дифференциалами. Соотношения такого рода и называются дифференциальными уравнениями. Возможности и правила составления дифференциальных уравнений определяются знаниями законов той области науки, с которой связана природа изучаемой задачи. Так, например, в механике могут использоваться законы Ньютона, в теории скоростей химических реакций – закон действия масс и т.д. Однако на практике часто встречаются случаи, когда законы, которые могли бы позволить составить дифференциальное уравнение, неизвестны. Тогда прибегают к различным упрощающим предположениям, касающимся протекания процесса при малых изменениях параметров-переменных. К дифференциальным уравнениям в таком случае приводит предельный переход. Вопрос соответствия математической модели и реального явления решается на основе анализа результатов, опытов и сравнения их с поведением решения полученного дифференциального уравнения

Лекция № 1

Введение. Понятие математических моделей и методов

Раздел 1. Введение

2. Методы построения математических моделей. Понятие о системном подходе. 1

3. Основные понятия математического моделирования экономических систем.. 4

4. Методы аналитического, имитационного и натурного моделирования. 5

Контрольные вопросы.. 6

1. Содержание, цели и задачи дисциплины «Методы моделирования»

Настоящая дисциплина посвящена изучению методов моделирования и практическому применению полученных знаний. Целью дисциплины является обучение студентов общим вопросам теории моделирования, методам построения математических моделей и формального описания процессов и объектов, применению математических моделей для проведения вычислительных экспериментов и решения оптимизационных задач, с использованием современных вычислительных средств.

В задачи дисциплины входит:

Ознакомить студентов с основными понятиями теории математического моделирования, теории систем, теории подобия, теории планирования эксперимента и обработки экспериментальных данных, используемых для построения математических моделей,

Дать студентам навыки в области постановки задачи моделирования, математического описания объектов /процессов/, численных методов реализации математических моделей на ЭВМ и решения оптимизационных задач.

В результате изучения дисциплины студент должен освоить методы математического моделирования процессов и объектов от постановки задачи до реализации математических моделей на ЭВМ и оформления результатов исследования моделей.

Курс дисциплины рассчитан на 12 лекций и 12 практических работ. В результате изучения дисциплины студент должен освоить методы математического моделирования от постановки задачи до реализации математических моделей на ЭВМ

2. Методы построения математических моделей. Понятие о системном подходе

5. Решение задачи.

Последовательное использование методов исследования операций и их реализация на современной информационно-вычислительной технике позволяет преодолеть субъективизм, исключить так называемые волевые решения, основанные не на строгом и точном учете объективных обстоятельств, а на случайных эмоциях и личной заинтересованности руководителей различных уровней, которые к тому же не могут согласовать эти свои волевые решения.

Системный анализ позволяет учесть и использовать в управлении всю имеющуюся информацию об управляемом объекте, согласовать принимаемые решения с точки зрения объективного, а не субъективного, критерия эффективности. Экономить на вычислениях при управлении то же самое, что экономить на прицеливании при выстрелах. Однако ЭВМ не только позволяет учесть всю информацию, но и избавляет управленца от ненужной ему информации, а всю нужную пускает в обход человека, представляя ему только самую обобщенную информацию, квинтэссенцию. Системный подход в экономике эффективен и сам по себе, без использования ЭВМ, как метод исследования, при этом он не изменяет ранее открытых экономических законов, а только учит, как их лучше использовать.

4. Методы аналитического, имитационного и натурного моделирования

Моделирование представляет собой мощный метод научного познания, при использовании которого исследуемый объект заменяется более простым объектом, называемым моделью. Основными разновидностями процесса моделирования можно считать два его вида - математическое и физическое моделирование. При физическом (натурном) моделировании исследуемая система заменяется соответствующей ей другой материальной системой, которая воспроизводит свойства изучаемой системы с сохранением их физической природы. Примером этого вида моделирования может служить пилотная сеть, с помощью которой изучается принципиальная возможность построения сети на основе тех или иных компьютеров, коммуникационных устройств, операционных систем и приложений.

Возможности физического моделирования довольно ограничены. Оно позволяет решать отдельные задачи при задании небольшого количества сочетаний исследуемых параметров системы. Действительно, при натурном моделировании вычислительной сети практически невозможно проверить ее работу для вариантов с использованием различных типов коммуникационных устройств - маршрутизаторов, коммутаторов и т. п. Проверка на практике около десятка разных типов маршрутизатров связана не только с большими усилиями и временными затратами, но и с немалыми материальными затратами.

Но даже и в тех случаях, когда при оптимизации сети изменяются не типы устройств и операционных систем, а только их параметры, проведение экспериментов в реальном масштабе времени для огромного количества всевозможных сочетаний этих параметров практичеки невозможно за обозримое время. Даже простое изменение максимального размера пакета в каком-либо протоколе требует переконфигурирования операционной системы в сотнях компьютеров сети, что требует от администратора сети проведения очень большой работы.

Поэтому, при оптимизации сетей во многих случаях предпочтительным оказывается использование математического моделирования. Математическая модель представляет собой совокупность соотношений (формул, уравнений, неравенств, логических условий), определяющих процесс изменения состояния системы в зависимости от ее параметров, входных сигналов, начальных условий и времени.

Особым классом математических моделей являются имитационные модели. Такие модели представляют собой компьютерную программу, которая шаг за шагом воспроизводит события, происходящие в реальной системе. Применительно к вычислительным сетям их имитационные модели воспроизводят процессы генерации сообщений приложениями, разбиение сообщений на пакеты и кадры определенных протоколов, задержки, связанные с обработкой сообщений, пакетов и кадров внутри операционной системы, процесс получения доступа компьютером к разделяемой сетевой среде, процесс обработки поступающих пакетов маршрутизатором и т. д. При имитационном моделировании сети не требуется приобретать дорогостоящее оборудование - его работы имитируется программами, достаточно точно воспроизводящими все основные особенности и параметры такого оборудования.

Преимуществом имитационных моделей является возможность подмены процесса смены событий в исследуемой системе в реальном масштабе времени на ускоренный процесс смены событий в темпе работы программы. В результате за несколько минут можно воспроизвести работу сети в течение нескольких дней, что дает возможность оценить работу сети в широком диапазоне варьируемых параметров.

Результатом работы имитационной модели являются собранные в ходе наблюдения за протекающими событиями статистические данные о наиболее важных характеристиках сети: временах реакции, коэффициентах использования каналов и узлов, вероятности потерь пакетов и т. п.

Существуют специальные языки имитационного моделирования, которые облегчают процесс создания программной модели по сравнению с использованием универсальных языков программирования. Примерами языков имитационного моделирования могут служить такие языки, как SIMULA, GPSS, SIMDIS.

Существуют также системы имитационного моделирования, которые ориентируются на узкий класс изучаемых систем и позволяют строить модели без программирования.

Контрольные вопросы

Сформулируйте определение процесса моделирования. Что такое модель? Свойства моделирования. Сформулируйте основные этапы построения модели классическим методом. Сформулируйте основные этапы построения модели при системном подходе. Назовите функции моделей. Каковы этапы процесса решения экономических задач? Основные разновидности процесса моделирования.

ЭВМ прочно вошла в нашу жизнь, и практически нет такой области человеческой деятельности, где не применялась бы ЭВМ. ЭВМ сейчас широко используется в процессе создания и исследования новых машин, новых технологических процессов и поиске их оптимальных вариантов; при решении экономических задач, при решении задач планирования и управления производством на различных уровнях. Создание же крупных объектов в ракетотехнике, авиастроении, судостроении, а также проектирование плотин, мостов, и др. вообще невозможно без применения ЭВМ.

Для использования ЭВМ при решении прикладных задач, прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена его математическая модель.

Слово "Модель" происходит от латинского modus (копия, образ, очертание). Моделирование - это замещение некоторого объекта А другим объектом Б. Замещаемый объект А называется оригиналом или объектом моделирования, а замещающий Б - моделью. Другими словами, модель - это объект-заменитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Целью моделирования являются получение, обработка, представление и использование информации об объектах, которые взаимодействуют между собой и внешней средой; а модель здесь выступает как средство познания свойств и закономерности поведения объекта.

Математическое моделирование - это средство изучения реального объекта, процесса или системы путем их замены математической моделью, более удобной для экспериментального исследования с помощью ЭВМ.

Математическое моделирование - процесс построения и изучения математических моделей реальных процессов и явлений. Все естественные и общественные науки, использующие математический аппарат, по сути занимаются математическим моделированием: заменяют реальный объект его моделью и затем изучают последнюю. Как и в случае любого моделирования, математическая модель не описывает полностью изучаемое явление, и вопросы о применимости полученных таким образом результатов являются весьма содержательными. Математическая модель - это упрощенное описание реальности с помощью математических понятий.



Математическая модель выражает существенные черты объекта или процесса языком уравнений и других математических средств. Собственно говоря, сама математика обязана своим существованием тому, что она пытается отразить, т.е. промоделировать, на своем специфическом языке закономерности окружающего мира.

При математическом моделировании исследование объекта осуществляется посредством модели, сформулированной на языке математики с использованием тех или иных математических методов.

Путь математического моделирования в наше время гораздо более всеобъемлющ, нежели моделирования натурного. Огромный толчок развитию математического моделирования дало появление ЭВМ, хотя сам метод зародился одновременно с математикой тысячи лет назад.

Математическое моделирование как таковое отнюдь не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся математическим моделированием, делает все возможное для аналитического исследования модели. Аналитические решения (т.е. представленные формулами, выражающими результаты исследования через исходные данные) обычно удобнее и информативнее численных. Возможности аналитических методов решения сложных математических задач, однако, очень ограниченны и, как правило, эти методы гораздо сложнее численных.

Математическая модель является приближенным представлением реальных объектов, процессов или систем, выраженным в математических терминах и сохраняющим существенные черты оригинала. Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи

Все модели можно разделить на два класса:

  1. вещественные,
  2. идеальные.

В свою очередь вещественные модели можно разделить на:

  1. натурные,
  2. физические,
  3. математические.

Идеальные модели можно разделить на:

  1. наглядные,
  2. знаковые,
  3. математические.

Вещественные натурные модели - это реальные объекты, процессы и системы, над которыми выполняются эксперименты научные, технические и производственные.

Вещественные физические модели - это макеты, муляжи, воспроизводящие физические свойства оригиналов (кинематические, динамические, гидравлические, тепловые, электрические, световые модели).

Вещественные математические - это аналоговые, структурные, геометрические, графические, цифровые и кибернетические модели.

Идеальные наглядные модели - это схемы, карты, чертежи, графики, графы, аналоги, структурные и геометрические модели.

Идеальные знаковые модели - это символы, алфавит, языки программирования, упорядоченная запись, топологическая запись, сетевое представление.

Идеальные математические модели - это аналитические, функциональные, имитационные, комбинированные модели.

В приведенной классификации некоторые модели имеют двойное толкование (например - аналоговые). Все модели, кроме натурных, можно объединить в один класс мысленных моделей, т.к. они являются продуктом абстрактного мышления человека.

Элементы теории игры

В общем случае решение игры представляет довольно трудную задачу, причем сложность задачи и объем необходимых для решения вычислений резко возрастает с увеличением . Однако это трудности не носят принципиального характера и связаны только сочень большим объемом расчетов, который в ряде случаев может оказаться практически невыполнимым. Принципиальная сторона метода отыскания решения остается при любом одной и той же.

Проиллюстрируем это на примере игры . Дадим ей геометрическую интерпретацию - уже пространственную. Три наши стратегии , изобразим тремя точками на плоскости ; первая лежит в начале координат (рис.1). вторая и третья - на осях Ох и Оу на расстояниях 1 от начала.

Через точки проводятся оси I-I, II-II и III-III, перпендикулярные к плоскости . На оси I-I откладываются выигрыши при стратегии на осях II-II и III-III - выигрыши при стратегиях . Каждая стратегия противника изобразится плоскостью, отсекающей на осях I-I, II-II и III-III, отрезки, равные выигрышам

при соответствующих стратегия и стратегия . Построив, таким образом, все стратегии противника, мы по­лучим семейство плоскостей над треугольником (рис2) .

Для этого семейства также можно построить нижнюю границу выигрыша, как мы это делали в случае, и найти на этой границе точку N с максимальной высотой нал плоскостью . Эта высота и будет ценой игры .

Частоты стратегий в оптимальной стра­тегии будут определяться координатами (x, у) точки N, а именно:

Однако такое геометрическое построение даже для случая нелегко осуществимо и требует большой затраты времени и усилий воображения. В общем же случае игры оно переносится в - мерное пространство и теряет всякую наглядность, хотя употребление геометрической терминологии в ряде случаев может оказаться полезным. При решении игр на практике удобнее пользоваться не геометрическими аналогиями, а расчетными аналитическими методами, тем более, что для решения задачи на вычислительных машинах эти методы единственно пригодны.

Все эти методы по существу сводятся к решению задачи путем последовательных проб, но упорядочение последо­вательности проб позволяет построить алгоритм, приводящий к решению наиболее экономичным способом.

Здесь мы вкратце остановимся на одном расчетном методе решения игр - на так называемом методе «линейного программирования».

Для этого дадим сначала общую постановку задачи о нахождении решения игры . Пусть дана игра с т стратегиями игрока А и n стра­тегиями игрока В и задана платежная ма­трица

Требуется найти решение игры, т. е. две оптимальные смешанные стратегии игроков А и В

где (некоторые из чисел и могут быть равными нулю).

Наша оптимальная стратегия S* A должна обеспечивать нам выигрыш, не меньший , при любом поведении про­тивника, и выигрыш, равный , при его оптимальном пове­дении (стратегия S* B ).Аналогично стратегия S* B должна обе­спечивать противнику проигрыш, не больший , при любом нашем поведении и равный при нашем оптимальном пове­дении (стратегия S* A ).

Величина цены игры в данном случае нам неизвестна; будем считать, что она равна некоторому положительному числу. Полагая так, мы не нарушаем общности рассуждений; для того чтобы было > 0, очевидно, достаточно, чтобы все элементы матрицы были неотрицательными. Этого всегда можно добиться, прибавляя к элементам доста­точно большую положительную величину L;при этом цена игры увеличится на L, а решение не изменится.

Пусть мы выбрали свою оптимальную стратегию S* A . Тогда наш средний выигрыш при стратегии противника будет равен:

Наша оптимальная стратегия S* A обладает тем свойством, что при любом поведении противника обеспечивает выигрыш не меньший, чем ; следовательно, любое из чисел не может быть меньше . Получаем ряд условий:

(1)

Разделим неравенства (1) на положительную величину и обозначим:

Тогда условие (1) запишется виде

(2)

где - неотрицательные числа. Так как величины удовле­творяют условию

Мы хотим сделать свой гарантированный выигрыш максимально возможным; очевидно, при этом правая часть равенства (3) принимает минимальное значение.

Таким образом, задача нахождения решения игры сво­дится к следующей математической задаче: определить не­отрицательные величины , удовлетворяющие условиям (2), так, чтобы их сумма

была минимальной.

Обычно при решении задач, связанных с нахождением экстремальных значений (максимумов и минимумов), функцию дифференцируют и приравнивают производные нулю. Но такой прием в данном случае бесполезен, так как функ­ция Ф, которую нужно обратить в минимум, линейна, и ее производные по всем аргументам равны единице, т. е. нигде не обращаются в нуль. Следовательно, максимум функции достигается где-то на границе области изменения аргумен­тов, которая определяется требованием неотрицательности аргументов и условиями (2). Прием нахождения экстре­мальных значений при помощи дифференцирования непри­годен и в тех случаях, когда для решения игры опреде­ляется максимум нижней (или минимум верхней) границы выигрыша, как мы. например, делали при решении игр .Действительно, нижняя граница составлена из участков прямых линий, и максимум достигается не в точке, где производная равна нулю (такой точки вообще нет), а на границе интер­вала или в точке пересечения прямолинейных участков.

Для решения подобных задач, довольно часто встречаю­щихся на практике, в математике разработан специальный аппарат линейного программирования.

Задача линейного программирования ставится следующим образом.

Дана система линейных уравнений:

(4)

Требуется найти неотрицательные значения величин удовлетворяющие условиям (4) и вместе с тем обращающие в минимум заданную однородную линейную функцию величин (линейную форму):

Легко убедиться, что поставленная выше задача теории игр является частным случаем задачи линейного программирование при

С первого взгляда может показаться, что условия (2) не эквивалентны условиям (4), так как вместо знаков равенства они содержат знаки неравенства. Однако от знаков неравенства легко избавиться, вводя новые фиктивные неотрицательные переменные и записывая условия (2) в виде:

(5)

Форма Ф, которую нужно обратить в минимум, равна

Аппарат линейного программирования позволяет путем сравнительно небольшого числа последовательных проб подобрать величины , удовлетворяющие поставленным требованиям. Для большей ясности мы здесь продемонстрируем применение этого аппарата прямо на материале решения конкретных игр.



© dagexpo.ru, 2024
Стоматологический сайт