Правило трех сигм 3. Нормально распределение. Кривая. Правило трех сигм

24.09.2019

Как я уже писал раньше, в силу естественно-научного образования и перекоса в сторону логического осмысления и объяснения действительности, я являюсь приверженцем технического анализа рынков.

После окончания вуза и получения специальности радиофизика я занимался вопросами исследования и применения методов анализа и обработки сигналов в системах технической диагностики и контроля состояния объектов авиационной и ракетной техники. Специфика работы требовала досконального знания аналоговых и цифровых методов обработки сигналов. В ту пору мне было непонятно, почему зарубежные авторы иллюстрируют цифровые методы на примере биржевых котировок. Но когда я в конце 2000 года впервые увидел графики рыночных цен, мне стало стало все ясно. Где еще будет концентрироваться человеческий интерес и основные мозги, как не там, где пахнет живыми деньгами.
Ну и мне тоже стало крайне интересно попробовать знакомую мне методологию, принципы и математический аппарат в этой области. И деньги играли тут не главную роль, больше амбиции.

Рыночные цены в конечном итоге определяются состоянием и динамикой развития мировой экономической системы и фундаментальными факторами - ключевыми статистическими показателями состояния национальных экономик. На процессы глобального сдвига накладываются локальные тенденции изменения цен, учитывающие циклы обновления производства, сезонные факторы баланса спроса и предложения и т.д. вплоть до изменений, обусловленных влиянием экономических и политических новостей и действиями отдельных участников рынка.
Изучение характера и степени влияния макроэкономических показателей на динамику цен является предметом фундаментального анализа, который базируется на изучении статистических данных за прошедший период времени, т.е. на уже свершившемся факте.

Технический анализ основан на изучении графиков, изображающих поведение цены во времени. Применим ко всем активам, цена которых определяется на основе свободных колебаний спроса и предложения (валюты, товарные фьючерсы, опционы, ценные бумаги и многое другое), и базируется на постулатах, вытекающих из теории Доу. Основной из этих постулатов формулируется так: рынок учитывает все. Цена является следствием и исчерпывающим отражением всех движущих сил рынка. Любой фактор, влияющий на цену (экономический, политический или психологический) уже учтен рынком и включен в цену. Все, что влияет на цену, обязательно на этой самой цене и отразится. С помощью ценовых графиков рынок сам объявляет о своих намерениях внимательному аналитику, задача которого правильно и вовремя интерпретировать эти намерения.

Естественный подход радиофизика - это анализ графика цен - функции времени, представляющей своего рода сигнал, который необходимо проанализировать и выделить из него интересующую нас информацию. А это технический анализ.

Техническим анализом и конструированием индикаторов кто только не занимался и чего только не наворотили. Но испорченный физическим факультетом ум не признавал методы, за которыми не стояло ясного и прозрачного физического смысла и интерпретации результатов. Одним из наиболее красивых и эффективных индикаторов, за которыми что-то стоит является индикатор границ Боллинджера (Bollinger Bands), который строит каналы в единицах среднеквадратического отклонения сигма цены от среднего значения и основывается на критерии трех сигма.

Правило трёх сигм означает, что практически все значения нормально распределённой случайной величины с вероятностью 0,9973 лежат в интервале +-3 сигма от среднего значения. Не будем вдаваться в обсуждение вопроса, насколько обосновано применение критерия к рынкам, которые не подчиняются нормальному закону распределения и не являются стационарными.

Нормальное распределение и границы отклонений.

Вероятности попадания случайной величины в заданные интервалы.

Как мы уже говорили в техническом анализе среднеквадратическое отклонение используется для построения каналов Боллинджера.
Принцип построения индикатора очень прост. В заданном временном окне определяется средняя цена и среднеквадратическое отклонение от среднего, а затем от этой средней цены вверх и вниз откладываются расстояния в единицах среднеквадратического отклонения, указывающие не верхнюю и нижнюю границу канала. Далее окно сдвигается на один отсчет вправо, вычисления повторяются и т.д. В результате получается график простого скользящего среднего и две границы, сверху и снизу, отстоящие от среднего на заданное число единиц среднеквадратического отклонения, обычно это 2 сигма.

Пример индикатора приведен на рисунке внизу.

Индикатор границ Боллинджера и его применение.

Граница Боллинджера представляют собой две линии, удаленные от скользящей средней на величины, пропорциональные среднеквадратическому отклонению цен закрытия от скользящей средней. Этот параметр характеризует волатильность рынка, соответственно ширина канала с ростом волатильности также будет возрастать.
Решение на основе анализа ВВ принимается, когда цена либо поднимается выше верхней линии сопротивления ВВ, либо опускается ниже нижней линии поддержки ВВ. Если же график цены колеблется между этими двумя линиями, то надежных сигналов о покупке/продаже на основе анализа ВВ не подается. Решение об открытии позиции принимается только тогда, когда график цены пересекает линию ВВ для возврата в нормальное состояние.
Иногда выход за границу ВВ означает «ложный пробой», т.е. когда цены только попробовали новый уровень и сразу же вернулись назад. В данном случае появляется возможность для работы против тренда, но следует внимательно оценить - а правда ли пробой оказался «ложным». Хорошим подтверждением в таких случаях является показатель объема, который при ложном пробое должен резко снизиться.
Дополнительные сигналы линий ВВ. Схождение ВВ наблюдается, когда рынок успокаивается и на нем не видны значительные колебания. Происходит консолидация к продолжению действующего или появлению нового тренда. Расхождение ВВ наблюдается при усилении действующего тренда или начале нового. Расхождение при возросших объемах является хорошим подтверждением тренда. Средняя является хорошим уровнем поддержки на бычьем рынке и хорошим уровнем сопротивления на медвежьем рынке.

Индикатор хорош и я им одно время пользовался.
Но в модификации - заменил простое скользящее среднее на экспоненциальное (причины могут объяснить в комментариях), а девиацию, используемую для вычисления сигма, на среднеквадратическое отклонение цены от экспоненциальной средней. В дальнейшем параметры индикатора были сильно модифицированы и от классического Bollinger Bands остался только принцип - три сигма.

Сегодня индикатор выглядит так.

Синяя линия в центре - скользящая средняя.

Вверх и вниз от нее отложены каналы +-сигма, +-2*сигма и +-3*сигма.
Правила интерпретации и использования примерно такие же, как и для классического индикатора BB. Но нет той суетливости в принятии решений.
Параметры индикатора автоматически настраиваются на тайм-фрейм.
Рекомендуемые таймфреймы и параметры для использования:
Недельный график - долгосрочный тренд – цикл 2-3 года;
Дневной график - среднесрочный тренд – цикл 5-7 месяцев;
График Н4 - краткосрочный тренд – цикл 30-40 дней;
График Н1 - локальный тренд – цикл 4-6 дней;
График М15 - дневной тренд – цикл 15-30 часов;
График М5 - внутридневной тренд - цикл 4-6 часов;
График М1 - часовой тренд - цикл 50-70 минут.

P.S. Сам я этим индикатором практически не пользуюсь, так как в наборе инструментов SWT-метода есть каналы волатильности, решающие сходные задачи. Желающим могу выслать.
Поскольку Тимофей еще не ввел в чат возможность обмена файлами, пишите в личку свой e-mail.
Плюс к сообщению приветствуется, но для получения индикатора не обязателен.
Да, совсем забыл. Работает только в терминале МТ4. До МТ5 руки не доходят из-за ненадобности.

P.P.S. Да, прошу извинить. Рассылать буду раз в сутки по мере накопления запросов.

  • Ключевые слова:

1. Правило трёх сигм заключается в том, что практически все результаты, составляющие нормально распределенную выборку, находятся в пределах . Это правило можно использовать при решении следующих важных задач:

1) Оценки нормальности распределения выборочных данных. Если результаты находятся примерно в пределах
и в области среднего арифметического результаты встречаются чаще, а вправо и влево от него – реже, то можно предположить, что результаты распределены нормально.

2) Выявление ошибочно полученных результатов. Если отдельные результаты отклоняются от среднего арифметического значения на величины, значительно превосходящие 3, нужно проверить правильность полученных величин. Часто такие «выскакивающие» результаты могут появиться в результате неисправности прибора, ошибки в измерении и расчетах.

3) Оценка величины . Если размах варьирования R=X наиб - X наим, разделить на 6, то мы получим грубо приближенное значение .

2. Критерий W Шапиро и Уилка предназначен для проверки гипотезы о нормальном распределении генеральной совокупности, когда объём выборки мал (n ≤ 50). Процедура проверки следующая: выдвигается нулевая гипотеза о нормальном распределении генеральной совокупности. Рассчитывается наблюдаемое значение критерия Шапиро и Уилка W набл и сравнивается с критическим значением W крит, которое находится по таблице критических точек критерия Шапиро и Уилка в зависимости от объёма выборки и уровня значимости. Если W набл ≥ W крит, нулевая гипотеза о нормальном распределении результатов принимается; при W набл < W крит она отвергается.

1. В чём заключается правило трёх сигм?

2. Практическое применение правила трёх сигм.

3. Какой критерий применяется для проверки нормальности распределения генеральной совокупности при малом объёме выборки?

4. Опишите процедуру проверки нормальности распределения.

Литература:

1. Основы математической статистики. Уч. пособие для ин-тов физической культуры (под общ. ред. В.С. Иванова). – М.: Физкультура и спорт, 1990. – С. 62 – 63, 110 – 112.

2. Рукавицына С.Л., Волков Ю.О., Солтанович Л.Л. Спортивная метрология. Проверка эффективности методики тренировки с применением методов математической статистики. Практикум для студентов БГУФК. – Минск: БГУФК, 2006. – С. 66 – 67.

3. Гинзбург Г.И., Киселев В.Г. Расчетно-графические работы по спортивной метрологии. – Минск: БГОИФК, 1984. – С. 21 – 22, 26 – 29.

ЛЕКЦИЯ 7.

Тема: Взаимосвязь результатов измерения. Методы вычисления коэффициентов взаимосвязи.

Вопросы для рассмотрения:

1. Виды взаимосвязи.

2. Основные задачи корреляционного анализа.

3. Коэффициент корреляции и его свойства.

4. Методы вычисления коэффициентов взаимосвязи.

1. В спортивных исследованиях между изучаемыми показателями часто обнаруживается взаимосвязь. Вид ее бывает различным. Например, определение ускорения по известным данным скорости в биомеханике, закон Фехнера в психологии, закон Хилла в физиологии и другие характеризуют так называемую функциональную зависимость, или взаимосвязь, при которой каждому значению одного показателя соответствует строго определенное значение другого.

К другому виду взаимосвязи относят, например, зависимость веса от длины тела. Одному значению длины тела может соответствовать несколько значений веса и наоборот. В таких случаях, когда одному значению одного показателя соответствует несколько значений другого, взаимосвязь называют статистической.

Изучению статистической взаимосвязи между различными показателями в спортивных исследованиях уделяют большое внимание, поскольку это позволяет вскрыть некоторые закономерности и в дальнейшем описать их как словесно, так и математически с целью использования в практической работе тренера и педагога.

Среди статистических взаимосвязей наиболее важны корреляционные . Корреляция заключается в том, что средняя величина одного показателя изменяется в зависимости от значения другого.

2. Статистический метод, который используется для исследования взаимосвязей, называется корреляционным анализом. Основной задачей его является определение формы, тесноты и направленности взаимосвязи изучаемых показателей. Корреляционный анализ позволяет исследовать только статистическую взаимосвязь. Он широко используется в теории тестов для оценки их надежности и информативности. Различные шкалы измерений требуют разных вариантов корреляционного анализа.

Анализ взаимосвязи начинается с графического представления результатов измерений в прямоугольной системе координат. Строится график, на оси абсцисс которого откладываются результаты X, а на оси ординатрезультаты Y. Таким образом, каждая пара результатов в прямоугольной системе координат будет отображаться точкой. Полученная совокупность точек обводится замкнутой кривой.

Такая графическая зависимость называется диаграммой рассеивания или корреляционным полем . Визуальный анализ графика позволяет выявить форму зависимости (по крайней мере, сделать предположение). Если форма корреляционного поля близка к эллипсу, такую форму взаимосвязи называют линейной зависимостью или линейной формой взаимосвязи.

Однако, на практике можно встретить и иную форму взаимосвязи. Зависимость, экспериментально полученная при подачах в теннисе, является характерной для нелинейной формы взаимосвязи, или нелинейной зависимости.

Таким образом, визуальный анализ корреляционного поля позволяет выявить форму статистической зависимостилинейную или нелинейную. Это имеет существенное значение для следующего шага в анализевыбора и вычисления соответствующего коэффициента корреляции.

3. Если измерения происходят в шкале отношений или интервалов и наблюдается линейная форма взаимосвязи, для количественной оценки тесноты взаимосвязи используется коэффициент корреляции Бравэ-Пирсона. Обозначается буквой r. Вычисляется по формуле:

,

где и – средние арифметические значения показателей x и y; σ x и σ y – средние квадратические отклонения; n – число измерений (испытуемых).

Его свойства:

1) Значения r могут изменяться от –1 до 1.

2) В случае r=-1 и r=1 взаимосвязь функциональная, соответственно, отрицательная и положительная.

3) При r=0 линейная взаимосвязь не установлена, но при этом может наблюдаться взаимосвязь другой формы.

4) При r<0 взаимосвязь отрицательная, при r>0 – положительная.

Для оценки тесноты взаимосвязи в корреляционном анализе используется значение (абсолютная величина) коэффициента корреляции. Абсолютное значение любого коэффициента корреляции лежит в пределах от 0 до 1. Объясняют (интерпретируют) значение этого коэффициента следующим образом:

коэффициент корреляции равен 1,00 (функциональная взаимосвязь, т.к. значению одного показателя соответствует только одно значение другого показателя);

коэффициент корреляции равен 0,990,7 (сильная статистическая взаимосвязь);

коэффициент корреляции равен 0,690,5 (средняя статистическая взаимосвязь);

коэффициент корреляции равен 0,490,2 (слабая статистическая взаимосвязь);

коэффициент корреляции равен 0,190,01 (очень слабая статистическая взаимосвязь);

коэффициент корреляции равен 0,00 (корреляции нет).

4. Прежде, чем начать механическую процедуру вычисления коэффициента корреляции, необходимо ответить на некоторые вопросы:

1) В какой шкале измеряется изучаемый показатель?

2) Как много измерений этого показателя выполнено?

От ответов на эти вопросы зависит, какой именно коэффициент взаимосвязи будет вычисляться.

В частности, в том случае, когда измерения проводятся в шкале интервалов или отношений, для оценки тесноты взаимосвязи вычисляют коэффициент корреляции Бравэ-Пирсона; в ранговой шкале вычисляют ранговый коэффициент корреляции Спирмэна; а в шкале наименований, когда интересующие признак варьирует альтернативно, используют тетрахорический коэффициент сопряженности.

Ранговый коэффициент корреляции Спирмэна вычисляют по формуле:

,

где d = d x - d y – разность рангов данной пары показателей X и Y; n – объем выборки.

Применяется, когда показатели измерены в шкале наименований (т.е. им присвоены числа, но нельзя сказать, что один из них больше другого), а показатели варьируют альтернативно (пол мужской/женский, выполнение или невыполнение задания и т.д., иначе говоря, есть два состояния: 0 и 1).

Обозначается Т 4 и вычисляется по формуле:

,

где A – значение, которое соответствует числу испытуемых (попыток), совпадающих по обоим показателям X и Y, т.е. 1 и 1; B – значение, которое соответствует числу совпадений 0 – X и 1 – Y; C – значение, соответствующее числу совпадений 1 – X и 0 – Y; D – значение совпадений 0 и 0; n – объем выборки.

Контрольные вопросы для самопроверки:

1. Функциональная взаимосвязь. Определение и примеры.

2. Статистическая взаимосвязь. Определение и примеры. Корреляционная взаимосвязь.

3. Основные задачи корреляционного анализа.

4. Корреляционное поле. Порядок построения, анализ изображения.

6. Коэффициент корреляции Браве-Пирсона и его свойства.

7. Правила выбора коэффициента взаимосвязи.

Литература:

1. Основы математической статистики. Уч. пособие для ин-тов физической культуры (под общ. ред. В.С. Иванова). – М.: Физкультура и спорт, 1990. – С. 124 – 126, 142 – 150, 155 – 162.

2. Рукавицына С.Л., Волков Ю.О., Солтанович Л.Л. Спортивная метрология. Проверка эффективности методики тренировки с применением методов математической статистики. Практикум для студентов БГУФК. – Минск: БГУФК, 2006. – С. 42 – 48.

3. Гинзбург Г.И., Киселев В.Г. Расчетно-графические работы по спортивной метрологии. – Минск: БГОИФК, 1984. – С. 51 – 60.

ЛЕКЦИЯ 8.

Тема: Статистические гипотезы и достоверность статистических характеристик. Проверка статистических гипотез.

Из данной статьи вы узнаете:

    Что такое доверительный интервал ?

    В чем суть правила 3-х сигм ?

    Как можно применить эти знания на практике?

В наше время из-за переизбытка информации, связанного с большим ассортиментом товаров, направлений продаж, сотрудников, направлений деятельности и т.д., бывает трудно выделить главное , на что, в первую очередь, стоит обратить внимание и приложить усилия для управления. Определение доверительного интервала и анализ выхода за его границы фактических значений - методика, которая поможет вам выделить ситуации , влияющие на изменение тенденций. Вы сможете развивать позитивные факторы и снизить влияние негативных. Данная технология применяется во многих известных мировых компаниях.

Существуют так называемые "оповещения" , которые информируют руководителей о том, что очередное значение в определенном направлении вышло за доверительный интервал . Что это означает? Это сигнал, что произошло какое-то нестандартное событие, которое, возможно, изменит существующую тенденцию в данном направлении. Это сигнал к тому, чтобы разобраться в ситуации и понять, что на неё повлияло.

Например, рассмотрим несколько ситуаций. Мы рассчитали прогноз продаж с границами прогноза по 100 товарным позициям на 2011 год по месяцам и в марте фактические продажи:

  1. По «Подсолнечному маслу» пробили верхнюю границу прогноза и не попали в доверительный интервал.
  2. По «Сухим дрожжам» вышли за нижнюю границу прогноза.
  3. По «Овсяным Кашам» пробили верхнюю границу.

По остальным товарам фактические продажи оказались в рамках заданных границ прогноза. Т.е. их продажи оказались в рамках ожиданий. Итак, мы выделили 3 товара, которые вышли за границы, и начали разбираться, что же повлияло на выход за границы:

  1. По «Подсолнечному маслу» мы вошли в новую торговую сеть, которая дала нам дополнительный объем продаж, что привело к выходу за верхнюю границу. Для этого товара стоит пересчитать прогноз до конца года с учетом прогноза продаж в данную сеть.
  2. По «Сухим дрожжам» машина застряла на таможне, и образовался дефицит в рамках 5 дней, что повлияло на снижение продаж и выход за нижнюю границу. Возможно, стоит разобраться, что послужило причиной и постараться не повторять данную ситуацию.
  3. По «Овсяным Кашам» было запущено мероприятие по стимулированию сбыта, которое дало значительный прирост продаж и привело к выходу за границы прогноза.

Мы выделили 3 фактора, которые повлияли на выход за границы прогноза. В жизни их может быть гораздо больше.Для повышения точности прогнозирования и планирования факторы, которые приводят к тому, что фактические продажи могут выйти за границы прогноза, стоит выделить и строить прогнозы и планы по ним отдельно. А затем учитывать их влияние на основной прогноз продаж. Также можно регулярно оценивать влияние данных факторов и менять ситуацию к лучшему за счет уменьшения влияния негативных и увеличения влияния позитивных факторов .

С помощью доверительного интервала мы можем:

  1. Выделить направления , на которые стоит обратить внимание, т.к. в этих направлениях произошли события, которые могут повлиять на изменение тенденции .
  2. Определить факторы , которые реально влияют на изменение ситуации.
  3. Принять взвешенное решение (например, о закупках, при планировании и т.д.).

Теперь рассмотрим, что такое доверительный интервал и как его рассчитать в Excel на примере.

Что такое доверительный интервал?

Доверительный интервал – это границы прогноза (верхняя и нижняя), в рамки которых с заданной вероятностью (сигма) попадут фактические значения.

Т.е. мы рассчитываем прогноз - это наш основной ориентир, но мы понимаем, что фактические значения вряд ли на 100% будут равны нашему прогнозу. И возникает вопрос, в какие границы могут попасть фактические значения, если существующая тенденция сохранится ? И на этот вопрос нам поможет ответить расчет доверительного интервала , т.е. - верхней и нижней границы прогноза.

Что такое заданная вероятность сигма?

При расчете доверительного интервала мы можем задать вероятность попадания фактических значений в заданные границы прогноза . Как это сделать? Для этого мы задаем значение сигма и, если сигма будет равна:

    3 сигма - то, вероятность попадания очередного фактического значения в доверительный интервал составят 99,7%, или 300 к 1, или существует 0,3% вероятности выхода за границы.

    2 сигма - то, вероятность попадания очередного значения в границы составляет ≈ 95,5 %, т.е. шансы примерно 20 к 1, или существует 4,5% вероятности выхода за границы.

    1 сигма - то, вероятность ≈ 68,3%, т.е. шансы примерно 2 к 1, или существует 31,7% вероятность того, что очередное значение выйдет за пределы доверительного интервала.

Мы сформулировали правило 3 сигм, которое гласит, что вероятность попадания очередного случайного значения в доверительный интервал с заданным значением три сигма составляет 99.7% .

Великим русским математиком Чебышевым была доказана теорема о том, что существует 10% вероятность выхода за границы прогноза с заданным значением три сигма. Т.е. вероятность попадания в доверительный интервал 3 сигма составит минимум 90%, в то время как попытка рассчитать прогноз и его границы «на глазок» чревата куда более существенными ошибками.

Как самостоятельно рассчитать доверительный интервал в Excel?

Расчет доверительного интервала в Excel (т.е. верхней и нижней границы прогноза) рассмотрим на примере. У нас есть временной ряд - продажи по месяцам за 5 лет. См. Вложенный файл.

Для расчета границ прогноза рассчитаем:

  1. Прогноз продаж ().
  2. Сигма - среднеквадратическое отклонение модели прогноза от фактических значений.
  3. Три сигма.
  4. Доверительный интервал.

1. Прогноз продаж.

=(RC[-14](данные во временном ряду) - RC[-1](значение модели) )^2(в квадрате)


3. Просуммируем для каждого месяца значения отклонений из 8 этапа Сумма((Xi-Ximod)^2), т.е. просуммируем январи, феврали... для каждого года.

Для этого воспользуемся формулой =СУММЕСЛИ()

СУММЕСЛИ(массив с номерами периодов внутри цикла (для месяцев от 1 до 12);ссылка на номер периода в цикле; ссылка на массив с квадратами разницы исходных данных и значений периодов)


4. Рассчитаем среднеквадратическое отклонение для каждого периода в цикле от 1 до 12 (10 этапво вложенном файле ).

Для этого из значения рассчитанного на 9 этапе мы извлекаем корень и делим на количество периодов в этом цикле минус 1 = КОРЕНЬ((Сумма(Xi-Ximod)^2/(n-1))

Воспользуемся формулами в Excel =КОРЕНЬ(R8 (ссылка на (Сумма(Xi-Ximod)^2) /(СЧЁТЕСЛИ($O$8:$O$67 (ссылка на массив с номерами цикла) ; O8 (ссылка на конкретный номер цикла, которые считаем в массиве) )-1))

С помощью формулы Excel = СЧЁТЕСЛИ мы считаем количество n


Рассчитав среднеквадратическое отклонение фактических данных от модели прогноза, мы получили значение сигма для каждого месяца - этап 10 во вложенном файле .

3. Рассчитаем 3 сигма.

На 11 этапе задаем количество сигм - в нашем примере «3» (11 этапво вложенном файле ):

Также удобные для практики значения сигма:

1,64 сигма - 10% вероятность выхода за предел (1 шанс из 10);

1,96 сигма - 5% вероятность выхода за пределы (1 шанс из 20);

2,6 сигма - 1% вероятность выхода за пределы (1 шанс из 100).

5) Рассчитываем три сигма , для этого мы значения «сигма» для каждого месяца умножаем на «3».

3.Определяем доверительный интервал.

  1. Верхняя граница прогноза - прогноз продаж с учетом роста и сезонности + (плюс) 3 сигма;
  2. Нижняя граница прогноза - прогноз продаж с учетом роста и сезонности – (минус) 3 сигма;

Для удобства расчета доверительного интервала на длительный период (см. вложенный файл) воспользуемся формулой Excel =Y8+ВПР(W8;$U$8:$V$19;2;0) , где

Y8 - прогноз продаж;

W8 - номер месяца, для которого будем брать значение 3-х сигма;

Т.е. Верхняя граница прогноза = «прогноз продаж» + «3 сигма» (в примере, ВПР(номер месяца; таблица со значениями 3-х сигма; столбец, из которого извлекаем значение сигма равное номеру месяца в соответствующей строке;0)).

Нижняя граница прогноза = «прогноз продаж» минус «3 сигма».

Итак, мы рассчитали доверительный интервал в Excel.

Теперь у нас есть прогноз и диапазон с границами в пределах, которого с заданной вероятностью сигма попадут фактические значения.

В данной статье мы рассмотрели, что такое сигма и правило трёх сигм, как определить доверительный интервал и для чего вы можете использовать данную методику на практике.

Точных вам прогнозов и успехов!

Чем Forecast4AC PRO может вам помочь при расчете доверительного интервала ?:

    Forecast4AC PRO автоматически рассчитает верхнюю или нижнюю границы прогноза для более чем 1000 временных рядов одновременно;

    Возможность анализа границ прогноза в сравнении с прогнозом, трендом и фактическими продажами на графике одним нажатием клавиши;

В программе Forcast4AC PRO есть возможность задать значение сигма от 1 до 3.

Присоединяйтесь к нам!

Скачивайте бесплатные приложения для прогнозирования и бизнес-анализа :


  • Novo Forecast Lite - автоматический расчет прогноза в Excel .
  • 4analytics - ABC-XYZ-анализ и анализ выбросов в Excel.
  • Qlik Sense Desktop и QlikView Personal Edition - BI-системы для анализа и визуализации данных.

Тестируйте возможности платных решений:

  • Novo Forecast PRO - прогнозирование в Excel для больших массивов данных.

Как известно, на рынках относительно часто нарушаются законы нормального распределения случайной величины: в каких-то инструментах чаще, в каких-то реже.

По моим наблюдениям, валютные пары менее подвержены нарушениям нормального распределения, чем акции или золото.

В золоте относительно часто происходят отклонения значения цены от нормального распределения на 3 или 4 средних квадратичных отклонения (сигмы).

Здесь, как говорят статистики, наибольшая дисперсия (разброс случайной величины).

Основной закон дисперсии:

Из неравенства Чебышёва следует, что вероятность того, что случайная величина отстоит от своего математического ожидания более чем на k стандартных отклонений, составляет менее 1/k². Так, например, как минимум в 95 % случаев случайная величина, имеющая нормальное распределение, удалена от её среднего не более чем на два стандартных отклонения, а в примерно 99,7 % - не более чем на три.

Приведу еще одну цитату из википедии

Правило трёх сигм (3σ) - практически все значения нормально распределённой случайной величины лежат в интервале (x¯−3σ;x¯+3σ). Более строго - приблизительно с 0,9973 вероятностью значение нормально распределённой случайной величины лежит в указанном интервале (при условии, что величина x¯ истинная, а не полученная в результате обработки выборки).

На рисунке показан график USDJPY с нанесенными на нем 2σ и 3σ.

Как мы видим, пара достигла вчера значения сигма равного 3. Для валютного рынка это чересчур много и мы видим, что сегодня пара начала корректироваться вниз.

Теперь начинается консолидация, которая может затянуться очень надолго.

На мой взгляд ближайшие месяцы пара USDJPY проведет в коридоре 110-115. У меня очень большая уверенность, что до конца года USDJPY обязательно побывает в районе 110. Для этого есть много причин, о которых я напишу в других статьях.

3 сигмы на недельном графике AUDJPY

В продолжение темы о дисперсии приведу еще один рисунок. На нем показан недельный график AUDJPY.

На нем очень хорошо видно, что вслед за касанием линии 3σ всегда происходит достаточно крупный разворот и пара проходила в противоположную сторону как минимум 7-8 фигур и это движение занимает много недель.

Если в ближайшие дни AUDJPY достигнет этого уровня, то с большой вероятностью можно ожидать повторения этого сценария.

Правило 3 сигм в статистика

т. е. вероятность того, что отклонение по абсолютной величине будет меньше утроенного среднего квадратического отклонения, равна 0,9973.

Другими словами, вероятность того, что абсолютная величина отклонения превысит утроенное среднее квадратическое отклонение, очень мала, а именно равна 0,0027=1-0,9973. Это означает, что лишь в 0,27% случаев так может произойти. Такие события, исходя из принципа невозможности маловероятных событий можно считать практически невозможными. В этом и состоит сущность правила трех сигм:

Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математиче­ского ожидания не превосходит утроенного среднего квадратического отклонения.

На практике правило трех сигм применяют так: если распределение изучаемой случайной величины неизвестно, но условие, указанное в приведенном правиле, выполняется, то есть основание предполагать, что изучаемая величина распределена нормально; в противном случае она не распределена нормально.

Определение: Непрерывная случайная величина X, функция плотности которой задается выражением

называется случайной величиной, имеющей показательное, или экспоненциальное, распределение.

Величина срока службы различных устройств и времени безотказной работы отдельных элементов этих устройств при выполнении определенных условий обычно подчиняется показательному распределению. Другими словами, величина промежутка времени между появлениями двух последовательных редких событий подчиняется зачастую показательному распределению.

Как видно из формулы, показательное распределение определяется только одним параметром m .

Найдем функцию распределения показательного закона, используя свойства дифференциальной функции распределения:

Графики дифференциальной и интегральной функций показательного распределения имеют вид:

Правило трёх сигм

Стандартное отклонение (иногда среднеквадратичное отклонение) - в теории вероятности и статистике наиболее распространенный показатель рассеивания значений случайной величины относительно её математического ожидания. Измеряется в единицах измерения самой случайной величины. Равен корню квадратному из дисперсии случайной величины. Стандартное отклонение используют при расчёте стандартной ошибки среднего арифметического, при построении доверительных интервалов, при статистической проверке гипотез, при измерении линейной взаимосвязи между случайными величинами.

где - стандарт, стандартное отклонение, несмещенная оценка среднеквадратического отклонения случайной величины X относительно её математического ожидания; - дисперсия; - i-й элемент выборки; - среднее арифметическое выборки; - объём выборки.

Следует отметить отличие стандарта (в знаменателе n − 1) от корня из дисперсии(среднеквадратического отклонения)(в знаменателе n ), при малом объёме выборки оценка дисперсии через последнюю величину является несколько смещенной, при бесконечно большом объёме выборки разница между указанными величинами исчезает. Выборка - лишь часть генеральной совокупности. Генеральная совокупность - абсолютно все возможные результаты. Получить результат, не входящий в генеральную совокупность абсолютно невозможно в принципе. Для случая с бросанием монетки генеральной совокупностью является: решка, ребро, орел. а вот пара орел-решка уже лишь выборка. Для генеральной совокупности математическое ожидание совпадает с истинным значением оцениваемого параметра. А вот для выборки не факт. Математическое ожидание выборки имеет смещение относительно истинного значения параметра. В силу этого, среднеквадратичная ошибка больше чем дисперсия, так как дисперсия - математическое ожидание квадрата отклонения от среднего значения, а среднеквадратичное отклонение - математическое ожидание отклонения от истинного значения. Разница в том, от чего ищем отклонение, когда дисперсия, то от среднего и не важно истинное это среднее или ошибочно, а когда среднеквадратичное отклонение, то ищем отклонение от истинного значения.

Правило 3-х сигм () - практически все значения нормально распределённой случайной величины лежат в интервале . Более строго - не менее чем с 99,7 % достоверностью, значение нормально распределенной случайной величины лежит в указанном интервале. При условии что величина истинная, а не полученная в результате обработки выборки. Если же истинная величина неизвестна, то следует пользоваться не σ , а s . Таким образом, правило 3-х сигм преобразуется в правило трех s

Wikimedia Foundation . 2010 .

Смотреть что такое «Правило трёх сигм» в других словарях:

Правило трех сигм - Дисперсия случайной величины мера разброса данной случайной величины, т. е. её отклонения от математического ожидания. Обозначается D[X] в русской литературе и (англ. variance) в зарубежной. В статистике часто употребляется обозначение или.… … Википедия

Шесть сигм - (англ. six sigma) концепция управления производством, разработанная в корпорации Motorola в 1980 е годы и популяризированная в середине 1990 х после того, как Джек Уэлч применил её как ключевую стратегию в General Electric. Суть… … Википедия

Среднеквадратическое отклонение - (синонимы: среднеквадратичное отклонение, квадратичное отклонение; близкие термины: стандартное отклонение, стандартный разброс) в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины … Википедия

Выборочное стандартное отклонение - Стандартное отклонение (иногда среднеквадратичное отклонение) в теории вероятности и статистике наиболее распространенный показатель рассеивания значений случайной величины относительно её математического ожидания. Измеряется в единицах… … Википедия

Нормальное распределение - Плотность вероятности Зеленая лин … Википедия

НЕРВНАЯ СИСТЕМА - НЕРВНАЯ СИСТЕМА. Содержание: I. Эмбриогенез, гистогенез и филогенез Н.с. . 518 II. Анатомия Н. с. 524 III. Физиология Н. с. 525 IV. Патология Н.с. 54? I. Эмбриогенез, гистогенез и филогенез Н. е.… … Большая медицинская энциклопедия

Отряд Кремнероговые губки (Cornacuspongida) - Самая многочисленная группа губок. Это преимущественно мягкие эластичные формы. Скелет их образован одноосными иглами. Всегда имеется в том или ином количестве спонгин, с помощью которого иглы склеиваются между собой в пучки или волокна … Биологическая энциклопедия

Математи́ческие ме́тоды - в медицине совокупность методов количественного изучения и анализа состояния и (или) поведения объектов и систем, относящихся к медицине и здравоохранению. В биологии, медицине и здравоохранении в круг явлений, изучаемых с помощью М.м., входят… … Медицинская энциклопедия

Расчет себестоимости по видам деятельности - Содержание 1 Менеджмент на основе хозяйственной деятельности 2 Разработка деловой ситуации 3 … Википедия

Расчёт себестоимости по видам деятельности - Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Расчёт себестоимости по видам деятельности (Activity Based Costing, ABC) ­ это специальная модель описания затрат, которая идентифицирует работы фирмы … Википедия

Правило трёх сигм

При рассмотрении нормального закона распределения выделяется важный частный случай, известный как правило трех сигм .

Запишем вероятность того, что отклонение нормально распределенной случайной величины от математического ожидания меньше заданной величины D:

Если принять D = 3s, то получаем с использованием таблиц значений функции Лапласа :

Т.е. вероятность того, что случайная величина отклонится от своего математического ожидание на величину, большую чем утроенное среднее квадратичное отклонение, практически равна нулю.

Это правило называется правилом трех сигм .

Не практике считается, что если для какой – либо случайной величины выполняется правило трех сигм, то эта случайная величина имеет нормальное распределение.

Пример. Поезд состоит из 100 вагонов. Масса каждого вагона – случайная величина, распределенная по нормальному закону с математическим ожидание а = 65 т и средним квадратичным отклонением s = 0,9 т. Локомотив может везти состав массой не более 6600 т, в противном случае необходимо прицеплять второй локомотив. Найти вероятность того, что второй локомотив не потребуется.

Второй локомотив не потребуется, если отклонение массы состава от ожидаемого (100×65 = 6500) не превосходит 6600 – 6500 = 100 т.

Т.к. масса каждого вагона имеет нормальное распределение, то и масса всего состава тоже будет распределена нормально.

Получаем :

Пример. Нормально распределенная случайная величина Х задана своими параметрами – а = 2 – математическое ожидание и s = 1 – среднее квадратическое отклонение. Требуется написать плотность вероятности и построить ее график, найти вероятность того, Х примет значение из интервала (1; 3), найти вероятность того, что Х отклонится (по модулю) от математического ожидания не более чем на 2.

Плотность распределения имеет вид:

Построим график :

Найдем вероятность попадания случайной величины в интервал (1; 3).

Найдем вероятность отклонение случайной величины от математического ожидания на величину, не большую чем 2.

Тот же результат может быть получен с использованием нормированной функции Лапласа.

Центральная предельная теорема Ляпунова

Теорема. Если случайная величина Х представляет собой сумму очень большого числа взаимно независимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то Х имеет распределение, близкое к нормальному.

На практике для большинства случайных величин выполняются условия теоремы Ляпунова.

Правило 3 сигм в статистика

Здравствуйте!
Скажите а существует ли многомерный аналог правила трёх сигм.
В частности аналог правила трёх сигм для двумерного нормального распределения.
Спасибо.

Ну, например, для стандартного нормального случайного вектора вероятность попасть в круг P(X^2+Y^2

как такового аналога не существует. Просто можно самому расчитать эти вероятности, как это сделали Вы.
Спасибо.

Я могу просто быть не в курсе каких-то инженерно-известных формул.

Скажем, артиллерийское правило считать, что снаряды вне прямоугольника 8Вдх8Вб не ложатся.
(Вд, Вб и Вб это «вероятные отклонения», то есть такие, для которые вероятность получить отклонения более 1Во 50%, то же, что семиинтерквартильные отклонения; приблизительно равны 2/3Сигма).
Очевидно, это правило почти соответствует применению правила «3Сигма» к каждой координате.
Однако в многомерном случае появляется проблема учёта зависимости случайных величин, которая заставляет либо постулировать их независимость (и применять «3Сигма» по каждой величине в отдельности), либо узнавать корреляции и проводить полный расчёт вместо «правила большого пальца».

Если взять фунцию плотности N-мерного нормального распределения самого общего вида и рассмотреть его сечение p(x) = a, где a — меньше плотности в максимуме, то получится эллипсоид (в двумерном случае — эллипс). Если теперь повернуть систему координат x таким образом, чтобы её оси совпадали с главными осями эллипсоида, то в этих координатах плотность распределения запишется как произведение N одномерных нормальных плотностей для координат x1, x2, . и т.д. (с разными сигмами, конечно). Для каждой координаты имеем сответствующую вероятность выхода за три сигмы. А дальше — как Вам будет удобно: Можно посчитать вероятность выхода за параллелепипед со сторонами в шесть сигм по каждой координате — это просто 1 — (1-p)^N. А можно посчитать вероятность выхода за пределы эллипсоида с полуосями в три сигмы (что более правильно) — мне это лень, но вообще-то это нетрудно.

Помогите, пожалуйста, решить задачу.

Студент иванов бросал монету N раз и у него M раз выпал герб. Величина N/2-M=100. При каком минимальном значении числа N это возможно. Использовать правило трех сигм.

Единственное число N, при котором такое возможно, равно 200+2M. Правило трёх сигм тут ни при чём, или посоветуйте Вашему преподавателю корректнее формулировать задачи.

Популярное:

  • Ставки налога на прибыль в 2017-2018 году Общая ставка по налогу на прибыль организаций Размер налоговой ставки в федеральный бюджет в бюджеты субъектов РФ 2% (до 2017), 3%(с 2017 года) 18% (до 2017), (17% с 2017 […]
  • В соответствии с частью 2 ст. 34 Федерального закона от 05.04.2013 N 44-ФЗ "О контрактной системе в сфере закупок товаров, работ, услуг для обеспечения государственных и муниципальных нужд" (далее - Закон N 44-ФЗ) при заключении […]
  • ТРЕБОВАНИЯ ПРАВИЛ БЕЗОПАСНОСТИ В ГАЗОВОМ ХОЗЯЙСТВЕ К ОТВОДУ ПРОДУКТОВ СГОРАНИЯ ГАЗА Общие требования. При сжигании природного или искусственного газа образуются продукты сгорания, состоящие из углекислого газа (СОг), водяных […]
  • Прием на работу белорусов: порядок оформления и налогообложения Осуществление трудовой деятельности иностранными гражданами на территории РФ регулируется Федеральным законом от 25.07.2002 N 115-ФЗ "О правовом положении […]
  • Тестирование на тему: «Электромагнитные волны» Успейте воспользоваться скидками до 50% на курсы «Инфоурок» 1. Колебания, распространяющиеся в пространстве с течением времени, называются: а) свободными г) волной б) вынужденными […]
  • Организация ГБУЗ "ГКБ ИМ. В.В. ВИНОГРАДОВА ДЗМ" Юридический адрес: 117292, МОСКВА Г, ВАВИЛОВА УЛ, ДОМ 61 ОКФС: 13 - Собственность субъектов Российской Федерации ОКОГУ: 2300229 - Органы исполнительной власти субъектов […]
  • Калькулятор налога на имущество организаций Как рассчитать налог на имущество организаций Форма расчета по авансовым платежам изменилась. Начиная с отчетности за первое полугодие 2017, расчет налога на имущество организаций […]
  • Цена реализации акции - как определить и оспорить? Приведем пример из практики. Продавцом акций ОАО является физическое лицо (владеет 95% акций ОАО), покупателями - три юридических лица, каждое из которых приобретает по 24,9% […]

Краткая теория

Нормальным называют распределение вероятностей непрерывной случайной величины , плотность которого имеет вид:

где – математическое ожидание , – среднее квадратическое отклонение .

Вероятность того, что примет значение, принадлежащее интервалу :

где – функция Лапласа :

Вероятность того, что абсолютная величина отклонения меньше положительного числа :

В частности, при справедливо равенство:

При решении задач, которые выдвигает практика, приходится сталкиваться с различными распределениями непрерывных случайных величин .

Кроме нормального распределения, основные законы распределения непрерывных случайных величин:

Пример решения задачи

На станке изготавливается деталь. Ее длина - случайная величина, распределенная по нормальному закону с параметрами , . Найти вероятность того, что длина детали будет заключена между 22 и 24,2 см. Какое отклонение длины детали от можно гарантировать с вероятностью 0,92; 0,98? В каких пределах, симметричных относительно , будут лежать практически все размеры деталей?

Решение:

Вероятность того, что случайная величина, распределенная по нормальному закону, будет находиться в интервале :

Получаем:

Вероятность того, что случайная величина, распределенная по нормальному закону, отклонится от среднего не более чем на величину :

По условию

:

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.



© dagexpo.ru, 2024
Стоматологический сайт