Поток векторного поля: теория и примеры

21.09.2019

Своим названием поток векторного поля обязан задачам гидродинамики о потоке жидкости. Поток векторного поля может быть вычислен в виде поверхностного интеграла , который выражает общее количество жидкости, протекающей в единицу времени через некоторую поверхность в направлении вектора скорости течения жидкости в данной точке. Понятие потока векторного поля обобщается также на магнетический поток, поток электричества, поток тепла через заданную поверхность и другие. Поток векторного поля может быть вычислен в виде поверхностного интеграла как первого, так и второго рода и далее мы дадим его вывод через эти интегралы.

Пусть в некоторой области пространства задано векторное поле

и поверхность σ , в каждой точке M которой определён единичный вектор нормали . Пусть также направляющие косинусы этого вектора - непрерывные функции координат x , y , z точки M .

Определение потока векторного поля . Потоком W поля вектора через поверхность σ называется поверхностный интеграл

Обозначим как a n проекцию вектора на на единичный вектор . Тогда поток можем записать как поверхностный интеграл первого рода

Учитывая, что

поток векторного поля можно вычислить и как поверхностный интеграл второго рода

.

Направление и интенсивность потока векторного поля

Поток векторного поля зависит от местоположения поверхности σ . Если поверхность размещена так, что во всех её точках вектор поля образует с вектором нормали поверхности острый угол, то проекции вектора a n положительны и, таким образом поток W также положителен (рисунок ниже). Если же поверхность размещена так, что во всех её точках вектор образует с вектором нормали поверхности тупой угол, то поток W отрицателен.

Через каждую точку поверхности проходит одна векторная линия, поэтому поверхность σ пересекает бесконечное множество векторных линий. Однако условно можно принять, что поверхность σ пересекает некоторое конечное число векторных линий. Поэтому можно считать, что поток векторного поля - это число векторных линий, пересекающих поверхность σ . Чем интенсивнее поток векторного поля, тем более плотно расположены векторные линии и в результате получается бОльший поток жидкости.

Если поток векторного поля - поле скорости частиц текущей жидкости через поверхность σ , то поверхностный интеграл равен количеству жидкости, протекающей в единицу времени через поверхность σ . Если рассматривать магнетическое поле, которое характеризуется вектором магнетической индукции , то поверхностный интеграл называется магнетическим потоком через поверхность σ и равен общему количеству линий магнетической индукции, пересекающих поверхность σ . В случае электростатического поля интеграл выражает число линий электрической силы, пересекающих поверхность σ . Этот интеграл называется потоком вектора интенсивности электростатического поля через поверхнсть σ . В теории теплопроводности рассматривается стационарный поток тепла через поверхность σ . Если k - коэффициент теплопроводности, а u (M ) - температура в данной области, то поток тепла, протекающего через поверхность σ в единицу времени, определяет интеграл .

Вычисление потока векторного поля: примеры

Пример 1. Вычислить поток векторного поля через верхнюю сторону треугольника, образованного пересечением плоскости с координатными плоскостями. Решить задачу двумя способами: 1) через поверхностный интеграл первого рода; 2) через поверхностный интеграл второго рода.

1) Поверхностью σ является треугольник ABC , а её проекцией на ось xOy - треугольник AOB .

Координатами вектора нормали данной поверхности являются коэффициенты при переменных в уравнении плоскости:

Длина вектора нормали:

.

Единичный вектор нормали:

.

Таким образом,

Из выражения единичного вектора нормали следует, что направляющий косинус . Тогда .

Теперь можем выразить поток векторного поля в виде поверхностного интеграла первого рода и начать решать его:

Выразим переменную "зет":

Продолжаем вычислять интеграл и, таким образом, поток векторного поля:

Получили ответ: поток векторного поля равен 64.

2) Выражая поток векторного поля через поверхностный интеграл второго рода, получаем

.

Представим этот интеграл в виде суммы трёх интегралов и каждый вычислим отдельно. Учитывая, что проекция поверхности на ось yOz является треугольник OCB , который ограничивают прямые y = 0 , z = 0 , y + 3z = 6 или y = 6 − 3z и в точках поверхности 2x = 6 − y − 3 , получаем первый интеграл и вычисляем его:

Проекцией поверхности на ось xOz является треугольник OAC , который ограничен прямыми x = 0 , z = 0 , 2x + 3z = 6 или . По этим данным получаем второй интеграл, который сразу решаем:

Проекцией поверхности на ось xOy является треугольник OAB , который ограничен прямыми x = 0 , y = 0 , 2x + y = 6 . Получаем третий интеграл и решаем его:

Осталось только сложить все три интеграла:

Получили ответ: поток векторного поля равен 64. Как видим, он совпадает с ответом, полученным в первом случае.

Пример 2. Вычислить поток векторного поля через верхнюю сторону треугольника, образованного пересечением плоскости с координатными плоскостями. Решить задачу двумя способами: 1) через поверхностный интеграл первого рода; 2) через поверхностный интеграл второго рода.

Решение. Данная поверхность представляет собой треугольник ABC , изображённый на рисунке ниже.

1) Коэффициенты при x , y и z из уравнения плоскости являются координатами вектора нормали плоскости, которые нужно взять с противоположным знаком (так как вектор нормали верхней стороны треугольника образует с осью Oz острый угол, так что третья координата вектора нормали плоскости должна быть положительной). Таким образом, вектор нормали запишется в координатах так.

Поток векторного поля.
Поток через замкнутую поверхность

Просто чтобы не запутаться.

В основе этого перехода лежит известная формула скалярного произведения , и тут будет полезно проанализировать её содержательный смысл. Пусть – это единичный вектор нормали «комнатой» стороны нашего «сигма-окна» и пусть в рассматриваемых ниже ситуациях дует ветер некоторой постоянной скорости.

Теперь ответим на вопрос: когда поток будут максимальным? Математически максимум достигается при , то есть когда углы между «полевыми» и нормальным вектором равны нулю. Что это значит? Это значит, что ветер дует «прямо в окно» – строго по направлению нормалей. Логично, что именно в этом случае в комнату и попадёт максимальное количество воздуха.

Если «угол задува» увеличивать от 0 до 90 градусов, то косинус (а значит, и поток) будет уменьшаться до нуля. Тоже логично. В частности, если ветер (такой же силы!) дует в окно под углом в 60 градусов, то поток воздуха по абсолютной величине будет уже в два раза меньше .Случаю соответствует «невероятная ситуация», когда воздух перемещается в «плоскости окна». И, наконец, отрицательным значениям косинуса (углы от 90 до 180 градусов) соответствуют случаи, когда ветер дует против вектора нормали (т.е. из окна).

Ещё раз призываю научиться решать поверхностные интегралы тех, кто не успел этого сделать, поскольку сейчас мы фактически продолжаем тему:

Поток векторного поля через замкнутую поверхность

Наверное, все интуитивно понимают, что это за поверхность. К простейшим замкнутым поверхностям можно отнести сферу и треугольную пирамиду .

Вычисление потока через замкнутую поверхность имеет свои особенности, с которыми мы познакомимся в ходе решения следующего каноничного примера:

Пример 1

Найти поток векторного поля через замкнутую поверхность, ограниченную плоскостью и координатными плоскостями, в направлении внешней нормали

Решение , как повелось, начинаем с чертежа. Перепишем уравнение плоскости в отрезках и изобразим предложенную поверхность, которая представляет собой треугольную пирамиду:

По условию, поверхность ориентирована в направлении внешней нормали, и поэтому к обозначению пирамиды я добавлю условную стрелочку: .

Поток векторного поля вычислим с помощью того же поверхностного интеграла 2-го рода , и так как поверхность замкнута, то к его обозначению обычно добавляют символический кружочек:

Если совсем тяжко, используйте привычную «сигму»:
, подразумевая под чёрточкой внешнее направление. Заметьте также, что здесь крайне нежелательно ставить «плюсик»: – по той причине, что три грани пирамиды «смотрят» против координатных осей!

Несмотря на «страшный вид», смысл задачи опять же прост: представьте, что пирамида ограничивает фрагмент нЕкоего водного русла. Требуется выяснить, сколько жидкости туда поступило/вытекло в единицу времени.

И, очевидно, что здесь придётся воспользоваться свойством аддитивности поверхностного интеграла, а конкретнее, представить его в виде суммы четырёх поверхностных интегралов по ориентированным граням пирамиды :

Здесь можно тоже использовать короткие обозначения , но чтобы всё было понятнее, я предпочёл пусть громоздкие, но зато «говорящие» названия поверхностей.

…что-то не вижу энтузиазма в ваших глазах:)) …и напрасно – с каждым экраном будет всё интереснее и интереснее;)

1) Вычислим поток векторного поля через ориентированный треугольник в направлении нормального вектора . По сути дела, это Пример 5 урока Поверхностные интегралы .

Поскольку внешняя нормаль образует с полуосью острый угол, то для нахождения единичного нормального вектора используем формулу:

Запишем функцию плоскости :

и найдём частные производные 1-го порядка :

Таким образом:

Убедимся, что его длина действительно равна единице:
, ч.т.п. На чертеже он выглядит коротеньким, но что поделать – такой уж наклон плоскости.

Вычислим скалярное произведение:

и сведём решение к вычислению поверхностного интеграла 1-го рода :

Теперь используем формулу , где – проекция поверхности «сигма» на плоскость . Напоминаю, что интеграл 1-го рода можно вычислить ещё двумя способами, но во избежание путаницы (опять же) лучше пойти привычным путём:

Осталось разрулить двойной интеграл . Найдём прямую, по которой по пересекаются плоскости и :

и изобразим проекцию на двумерном чертеже (не ленимся!!!):

Очевидно, что с порядком обхода я уже определился чуть ранее:

Продолжаем:

Повторные интегралы удобнее вычислить по порядку. Сначала внутренний:

затем внешний:

Готово. Обратите внимание на рациональную технику вычисления и оформления.

Для лучшего понимания задачи продолжим вкладывать в решение гидродинамический смысл. Что означает полученный результат ? Он означает, что за единицу времени через треугольник в направлении вектора прошло 26 единиц жидкости. Кстати, это не значит, что она движется ИСКЛЮЧИТЕЛЬНО в данном направлении. Вполне возможно, что здесь «водоворот»: попробуйте поподставлять в функцию различные точки треугольника , и если окажется, что векторы поля торчат из него в разные стороны, то дело обстоит именно так.

Оставшиеся три интеграла, благо, проще:

2) Найдём поток векторного поля через ориентированный треугольник . Единичный вектор нормали тут очевиден: или . Вычислим скалярное произведение:

и перейдём к поверхностному интегралу 1-го рода

Так как поверхность лежит непосредственно в плоскости , то формула
сильно упрощается – ведь «зет» и её производные равны нулю. Двойной интеграл возьмём по тем же пределам интегрирования:

Отрицательное значение означает, что за единицу времени через треугольник по итогу прошло 9 единиц жидкости против вектора (то есть, поступило внутрь пирамиды). Любопытные читатели могут снова поподставлять точки треугольника в функцию и проанализировать характер течения.

3) Вычислим поток векторного поля через ориентированный треугольник . Внешняя нормаль здесь тоже как на ладони: или . Скалярное произведение:

и стандартный переход:



Укажем некоторые способы вычисления потока вектора через незамкнутые поверхности. 1. . Пусть поверхность 5 однозначно проектируется на область Dxy плоскости хОу. В этом случае поверхность S можно задать уравнением вида Орт п° нормали к поверхности S находится по формуле Если в формуле (1) берется знак« то угол 7 между осью Oz и нормалью острый; если же знак то угол 7 - тупой. Так как элемент площади этой поверхности равен то вычисление потока П через выбранную сторону поверхности 5 сводится к вычи-слениюдвойного интеграла по формуле Символ Поток вектора через незамкнутую поверхность метод проектирования на одну из координатных плоскостей Метод проектирования на все координатные плоскости Метод введения криволинейных координат на поверхности Поток вектора через замкнутую поверхность. Теорема Гаусса-Остроградского означает, что при вычислении в подынтегральной функции надо вместо z всюду поставить f(x} у). Пример 1. Найти поток вектора через часть поверхности параболоида z = s2 + y2, отсеченной плоскостью z = 2. По отношению к области, ограниченной параболоидом, берется внешняя нормаль (рис. 15). Данная поверхность проектируется на круг плоскости хОу с центром в начале координат радиуса. Находим орт п° нормали к параболоиду: Согласно условию задачи вектор п° образует с осью Oz тупой угол 7, поэтому перед дробью следует взять знак минус. Таким образом, Находим скалярное произведение, значит, Согласно формуле (3) Вводя полярные координаты где получаем Если поверхность 5 проектируется однозначно на область плоскости yOz, то ее можно задать уравнением х = г). В этом случае имеем Наконец, если поверхность S проектируется однозначно на область Dxz плоскости xOzy то ее можно задать уравнением и тогда Знак « + » перед дробью в формуле (10) означает, чтоугол /3 между осью Оу и вектором нормали п° - острый, а знак «-», что угол /3 - тупой. Замечание. Для нахождения потока вектора через поверхность 5, заданную уравнением г = /(х,у), методом проектирования на координатную плоскость хОу, не обязательно находить орт п° нормали, а можно брать вектор Тогда формула (2) для вычисления потока П примет вид: Аналогичные формулы получаются для потоков через поверхности, задэнные уравнениями Пример 2. Вычислить поток вектора а = хг\ через внешнюю сторону параболоида ограниченного плоскостью Имеем Так как угол 7 - острый, следует выбрать знак « + ». Отсюда Искомый поток вычисляется так: Переходя к полярным координатам, получим Метод проектирования на все координатные плоскости. Пусть поверхность S однозначно проектируется на все три координатные плоскости. Обозначим через Dzy, Dxz, Dyz проекции 5 на плоскости хОу, xOz, yOz соответственно. В этом случае уравнение F{x} у, z) = 0 поверхности S однозначно разрешимо относительно каждого из аргументов, т. е. Тогда погок вектора к через поверхность S, единичный вектор нормали к которой равен можно записать так: Известно, что причем знак в каждой из формул (14) выбирается таким, каков знак на поверхности S. Подставляя соотношения (12) и (14) в формулу (13), получаем, что Пример 3. Вычислить поток векторного поля через треугольник, ограниченный плоскостями 4 Имеем так что Значит, перед всеми интегралами в формуле (15) следует взять знак « + ». Полагая получим Вычислим первый интеграл в правой части формулы (16). Область Dvz -треугольник ВОС в плоскости yOz, уравнение стороны. Имеем Аналогично получим. Значит, искомый поток равен 3. Метод введения криволинейных координат на поверхности. Если поверхность 5 является частью кругового цилиндра или сферы, при вычислении потока удобно, не применяя проектирования на координатные плоскости, ввести на поверхности криволинейные координаты. А. Поверхность 5 является частью кругового цилиндра ограниченного поверхностями будем иметь Элемент площади поверхности выражается так: и поток вектора а через внешнюю сторону поверхности 5 вычисляется по формуле: где 4. Найти поток вектора через внешнюю сторону поверхности цилиндра ограниченной плоскостями Так как то скалярное произведение (а, п°) на цилиндре равно: Тогда по формуле (18) получим В. Поверхность 5 является частью сфсры офаничснной коническими поверхностями, уравнения которых в сферических координатах имеют вид и полуплоскостями Точки данной сферы описываются соотношениями где Поэтому элемент площади В этом случае поток векторного поля а через внешнюю часть поверхности 5 вычисляется по формуле где Пример 5. Найти поток вектора через внешнюю часть сферы Положим Тогда скалярное произведение выразится так: По формуле (21) получим Замечание. Здесь мы воспользовались формулой Поток вектора через замкнутую поверхность. Теорема Гаусса-Остроградского Теорема 4. Если в некоторой области G пространства R3 координаты вектора непрерывны и имеют непрерывные частные производные, то поток вектора а через любую замкнутую кусочно-гладкую поверхность S, лежащую в области G, равен тройному интегралу от дх ду dz по области V, ограниченной поверхностью S: Здесь - орт внешней нормали к поверхности, а символ означает поток через замкнутую поверхность 5. Эта формула называется формулой Гаусса-Остроградского. Рассмотрим сначала векгор а, имеющий только одну компоненту а = R(x, у, z)k, и предположим, что гладкая поверхность 5 пересекается каждой прямой, параллельной оси Oz, не более чем в двух точках. Тогда поверхность 5 разбивается на две части 5| и 52, однозначно проектирующиеся на некоторую область D плоскости хОу (рис.21). Внешняя нормаль к поверхности 52 образует острый угол 7 с осью Oz, а внешняя нормаль к поверхности 51 образует тупой угол с осью Oz. Поэтому cos так что на 52 имеем 7. В силу аддитивности потока имеем Пусть da - элемент площади на поверхности S. Тогда ~ элемент площади области D. Сведем интегралы по поверхности к двойным интегралам по области D плоскости хОу, на которую проектируются поверхности Si и S2. Пусть S2 описывается уравнением - уравнением z = z\(x}y). Тогда Так как приращение непрерывно дифференцируемой фунмции можно представить как интеграл от ее производной то для функции R(x, у, z) будем иметь Пользуясь этим, получаем из формулы (3) Поток вектора через незамкнутую поверхность метод проектирования на одну из координатных плоскостей Метод проектирования на все координатные плоскости Метод введения криволинейных координат на поверхности Поток вектора через замкнутую поверхность. Теорема Гаусса-Остроградского Если поверхность S содержит часть цилиндрической поверхности с образующими, параллельными оси Oz (рис. 22), то на этой части поверхности (Як, п°) = 0 и интеграл / da по ней равен нулю. Поэтому формула (4) остается справедливой и для поверхностей, содержащих указанные цилиндрические части. Формула (4) переносится и на случай, когда поверхность S пересекается вертикальной прямой более, чем в двух точках (рис. 23). Разрежем область V на части, поверхность каждой из которых пересекается вертикальной прямой не более чем в двух точках, и обозначим через Sp поверхность разреза. Пусть S\ и S2 - те части поверхности 5, на которые она разбивается разрезом 5Р, a V\ и Vj - соответствующие части области V, ограниченные поверхностями. Здесь Sp означает, что вектор нормали к разрезу Sp направлен вверх (образует с осью Oz острый угол), a Sp - что этот вектор нормали направлен вниз (образует с осью Oz тупой угол). Имеем: Складывая полученные равенства и пользуясь аддитивностью потока и тройною интеграла, получим (интегралы по разрезу взаимно уничтожаются). Рассмотрим, наконец, вектор Для каждой компоненты Лк мы можем написать формулу, аналогичную формуле (4) (все компоненты равноправны). Получим Складывая эти равенства и пользуясь линейностью потока и тройного интеграла, получаем формулу Гаусса-Остро градского Пример 1. Вычислить поток век-гора через замкнутую поверхность по определению, 2) по формуле Остроградского. 4 1) Поток вектора а равен сумме на поверхности Si), на поверхности S2 К так как Перейдем на цилиндре к криволинейным координатам Тогда 2) По формуле Гаусса-Остроградского имеем Пример 2. Вычислить поток радиус-вектора через сферу радиуса R с центром 8 начале координат: 1) по определению; 2) по формуле Остроградского. Так как для сферы и поэтому 2) Сначала находим Отсюда Пример 3. Вычислить поток вектора через замкнугую поверхность S, заданную условиями: 1) по определению; 2) по формуле Острогрздя ого (рис.25). Имеем Значит, Поэтому Итак, Имеем Поэтому Переходя к цилиндрическим координатам и замечая,на поверхности 5, имеем Замечание. При вычислении потока через незамкнутую поверхность часто бывает удобно подходящим образом дополнить седо замкнутой и воспользоваться формулой Гаусса-Ос гроградского. Пример 4. Вычислить поток вектора Заданная поверхность S есть конус с осыо Оу (рис.26). Замкнем этот конус куском £ плоскости у - I. Тогда, обозначая через П| искомый поток, а через Н2 поток по поверхности будем иметь где V - объем конуса, ограниченного поверхностями S Поток вектора через незамкнутую поверхность метод проектирования на одну из координатных плоскостей Метод проектирования на все координатные плоскости Метод введения криволинейных координат на поверхности Поток вектора через замкнутую поверхность. Теорема Гаусса-Остроградского Так как на поверхности Е выполняется равенство у = 1. Следовательно, ITj



© dagexpo.ru, 2024
Стоматологический сайт