Получение пищевого белка. Получение дрожжевого белка

21.09.2019

Белки - природные полипептиды с огромной молекулярной массой. Они входят в состав всех живых организмов и выполняют различные биологические функции.

Строение белка.

У белков существует 4 уровня строения:

  • первичная структура белка - линейная последовательность аминокислот в полипептидной цепи, свернутых в пространстве:
  • вторичная структура белка - конформация полипептидной цепи, т.к. скручивание в пространстве за счет водородных связей между NH и СО группами. Есть 2 способа укладки: α -спираль и β - структура.
  • третичная структура белка - это трехмерное представление закрученной α -спираль или β -структуры в пространстве:

Эта структура образуется за счет дисульфидных мостиков -S-S- между цистеиновыми остатками. В образовании такой структуры участвуют противоположно заряженные ионы.

  • четвертичная структура белка образуется за счет взаимодействия между разными полипептидными цепями:

Синтез белка.

В основе синтеза лежит твердофазный метод, в котором первая аминокислота закрепляется на полимерном носителе, а к ней последовательно подшиваются новые аминокислоты. После полимер отделяют от полипептидной цепи.

Физические свойства белка.

Физические свойства белка определяются строением, поэтому белки делят на глобулярные (растворимые в воде) и фибриллярные (нерастворимые в воде).

Химические свойства белков.

1. Денатурация белка (разрушение вторичной и третичной структуры с сохранением первичной). Пример денатурации - свертывание яичных белков при варке яиц.

2. Гидролиз белков - необратимое разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот. Так можно установить количественный состав белков.

3. Качественные реакции:

Биуретовая реакция - взаимодействие пептидной связи и солей меди (II) в щелочном растворе. По окончанию реакции раствор окрашивается в фиолетовый цвет.

Ксантопротеиновая реакция - при реакции с азотной кислотой наблюдается желтое окрашивание.

Биологическое значение белка.

1. Белки - строительный материал, из него построены мышцы, кости, ткани.

2. Белки - рецепторы. Передают и воспринимают сигнал, поступающих от соседних клеток из окружающей среды.

3. Белки играют важную роль в иммунной системе организма.

4. Белки выполняют транспортные функции и переносят молекулы или ионы в место синтеза или накопления. (Гемоглобин переносит кислород к тканям.)

5. Белки - катализаторы - ферменты. Это очень мощные селективные катализаторы, которые ускоряют реакции в миллионы раз.

Есть ряд аминокислот, которые не могут синтезироваться в организме - незаменимые , их получают только с пищей: тизин, фенилаланин, метинин, валин, лейцин, триптофан, изолейцин, треонин.

Лекция № 15

Раздел: “Сельскохозяйственная биотехнология”

1. История использования микроорганизмов для получения белка

2. Технологический процесс выращивания микроорганизмов (на примере кормовых дрожжей)

3. Основные виды сырья и используемые микроорганизмы

4. Перспективы производства белка с использованием микроорганизмов

Структура питания человечества в целом, в том числе и населения нашей страны, далеко не идеальна, причем наиболее дефицитным компонентом пищи является белок, особенно белок высокой питательной ценности. Традиционные источники белка – продукты животноводства и растениеводства, не покрывают все возрастающую потребность в белковой пище, особенно, увеличившуюся в связи с интенсивным приростом населения. Альтернативным источником белка могут служить различные микроорганизмы – дрожжи, высшие съедобные грибы, некоторые микроводоросли и т.д.

Микробиологическое производства белка налажено относительно недавно, однако, оно обладает рядом преимуществ, по сравнению с традиционными способами получения белковой пищи (животноводством и растениеводством). А именно, микробиологическое производство не требует посевных площадей, не зависит от климатических и погодных условий, поддается точному планированию и высокому уровню автоматизации, позволяет получать продукцию стандартного качества. Продукты микробиологического синтеза можно назвать новыми видами кормов и пищи. Разнообразие микроорганизмов и типов их питания позволяют легко маневрировать в использовании различных видов сырья для биосинтеза.

1. История использования микроорганизмов для получения белка

Более века назад, экспериментируя с дрожжами, Л.Пастер открыл микробиологический синтез белка из аммиака и органических соединений не содержащих азота. Заводы по выращиванию дрожжей, созданные вскоре после исследования Пастера, выпускали дрожжевые закваски. С течением времени совершенствовалась технология производства дрожжей и в 1876 г. в США начали применять в хлебопечении прессованные дрожжи.

Идею использования микроорганизмов как белковых компонентов в питании в 1890-х гг. начал пропагандировать Дельбрюк, рекомендовавший применять для этой цели пивные дрожжи.

Первые заводы по выращиванию пищевых дрожжей на мелассе были открыть в Германии в первую мировую войну. После первой мировой войны в различных странах приступили к производству кормовых дрожжей. К середине 30-х гг. началось производство дрожжей из гидролизатов отходов сельского хозяйства и деревообрабатывающей промышленности, из сульфитных щелоков, барды гидролизно-спиртовых заводов. В 1935 г у нас в стране был пущен первый опытный завод по производству кормовых дрожжей на основе использования соломы, кукурузных кочерыжек и древесных опилок, предварительно гидролизованных серной кислотой. В это время горячим поборником использования дрожжей в питании выступал Гивартовский, рассматривавший дрожжи как ценный источник витаминов группы В. Во время второй мировой войны во многих странах развернулось широкое производство пищевых дрожжей: в Германии - на основе сульфитных щелоков и гидролизатов древесины, в СССР, на Ямайке (тогда колонии Великобритании).



После войны в ряде стран стали возникать производства кормовых дрожжей на различных отходах, в первую очередь на сульфитных щелоках, а также на гидролизатах растительного сырья. В 60-е гг внимание исследователей привлекла возможность использования углеводородов нефти как сырья для получения кормовых дрожжей. С начала 70-х гг в СССР развернулось строительство по производству кормовых дрожжей на основе использования очищенных н-алканов нефти.

Однако в настоящее время большинство крупнотоннажных заводов нашей страны бездействуют, что связано как с экономическим кризисом и как следствие с падением производства в последнее десятилетие, так и с нефтяным кризисом, поскольку запасы нефти постепенно истощаются и, следовательно, уменьшается количество сырья. В настоящее время как у нас в стране, так и за рубежом наблюдается возрождение интереса к получению микробного белка как пищевого так и кормового назначения с использованием в качестве сырья различных отходов сельского хозяйства и перерабатывающей промышленности, а также получение белка с помощью автотрофных микроорганизмов.

2. Технологический процесс выращивания микроорганизмов (на примере кормовых дрожжей)

Современное промышленное использование микроорганизмов для производства белка осуществляется в ферментерах, рабо­тающих по принципу хемостата. Объемы ферментеров достигают нескольких сот кубических метров. В среду с размножающимися микроорганизмами непрерывно подаются водный раствор мине­ральных солей и применяемый в конкретном процессе органи­ческий субстрат. Культура подвергается перемешиванию, аэрированию и охлаждению. Рациональный процесс выращивания осуществляют при ли­митировании роста микроорганизмов кислородом или близко к такому лимитированию. Принципиальная технологическая схема производства кормо­вых дрожжей приведена на рис. 1.


Выращенные клетки дрожжей отделяют от водной среды сепарированием, или фильт­рованием, если используют мицелиальные грибы. Разработаны и другие методы отделения биомассы, например флотация для концентрирования мелких бактериальных клеток. Их обычно промывают, концентрируют, после чего подвергают термической обработке при 80-90°С, приводящей к отмиранию клеток. Полу­ченную в результате такой обработки сметанообразную массу высушивают, используя, как правило, распылительные сушилки. После высушивания получают порошкообразный или хлопьевидный продукт, который можно подвергнуть гранулированию. Продукт упаковывают и направляют на комбикормовые заводы и другим потребителям. Такие белоксодержащие добавки мик­робного происхождения имеют то или иное коммерческое назва­ние в зависимости от применяемого органического сырья, штам­ма микроорганизма и особенностей технологии, используемой на различных фирмах или предприятиях.

3. Основные виды сырья и используемые микроорганизмы

В производстве белка пищевого и кормового назначения используется самое разнообразное сырье и микроорганизмы. К такому сырью относятся – лигноцеллюлозные отходы и их гидролизаты, парафины нефти, газ, этанол и т.д.

Производство кормовых дрожжей на гидролизатах раститель­ного сырья, существует несколько десяти­летий. Для этой цели используются гидролизаты древесины, под­солнечной и рисовой лузги, кукурузных кочерыжек, стеблей хлопчатника, багассы (жом, оставшийся после извлечения саха­ра из сахарного тростника) и других целлюлозосодержащих ма­териалов. Сырье ежегодно возобновляется и, как правило, явля­ется отходами.

К недостаткам гидролизно-дрожжевого производства относит­ся сложность сбора и транспортировки сырья на крупные пред­приятия. Процесс выращивания дрожжей на гидролизатах осуществля­ется в неасептических условиях, а развитие контаминантных бактерий ограничивается поддержанием в ферментационной сре­де определенного значения рН (около 4,0). В гидролизатах со­держатся компоненты (например, фурфурол), оказывающие токсическое действие на рост дрожжей. Селекционированные в лаборатории штаммы имеют высокий выход биомассы в расчете на потребленные сахара. Но в производственных условиях эти штаммы зачастую вытесняются дикими штаммами, отличающи­мися большей устойчивостью к токсичным компонентам среды, меньшей потребностью в витаминах и высокими скоростями роста. Практически на каждом заводе происходит автоселекция штаммов или ассоциации дрожжей, приспособленной к местным условиям.

Список штаммов, используемых для производства кормовых дрожжей из гидролизатов растительного сырья, весьма обширен, он включает виды рода Candida и других родов (Trichosporon, Hansenula, Zygofabospora).

Перспективно получение биомассы микроорганизмов на фер­ментативных гидролизатах целлюлозосодержащего сырья. За­труднением для промышленной реализации такого процесса яв­ляется то, что в целлюлозосодержащем сырье имеется лигнин, препятствующий контакту целлюлаз с субстратом. Кроме того, сырье нуждается в обработке, позволяющей понизить содержа­ние в нем кристаллической формы целлюлозы и перевести ее в аморфное состояние, после чего ферментативный гидролиз значительно ускоряется.

Возможность выращивания микроорганизмов, относящихся к различным таксономическим группам, на средах с углеводорода­ми исследована достаточно широко. Способности к утилизации углеводородов часто встречаются у представителей дрожжей, из которых в первую очередь следует назвать род Candida, у представителей мицелиальных грибов, в частности Aspergillus и Fusarium, у многих видов грибов семейства Mucoraceae и раз­ных бактерий.

Сравнительная оценка твердых и жидких углеводородов как сырья для биосинтеза показала несомненное преимущество соединений, температура плавления которых значительно ниже температуры культивирования микроорганизмов.

Все классы углеводородов могут служить субстратами для микроорганизмов, однако, как правило, процесс роста наиболее интенсивно происходит на среде, содержащей н-алканы с различ­ной длиной цепи. Дрожжами с наибольшей скоростью обычно потребляются н-алканы С 11 - С 14 , среднее положение занимают н-алкайы С 15 - С 18 и медленнее других усваиваются н-алканы С 23 - С 24 . Алканы С 6 - С 9 не только плохо используются дрож­жами, но часто токсичны для них.

Наиболее перспективными новыми видами сырья для микробного биосинтеза кормового белка на ближайшие годы являются спирты - метиловый и этиловый.

Повышение внимания к низшим спиртам объясняется рядом обстоятельств, среди которых следует отметить разработку новых эффективных способов крупнотоннажного производства метанола и этанола, высокую степень чистоты получаемых спиртов, хоро­шую растворимость их в воде.

Многие бактерии могут расти за счет использования мета­нола. Выходы биомассы при росте на метаноле составляют 50% и более от массы использованного спирта. Энергетические выходы роста бактерий на метаноле (доля химической энергии органи­ческого субстрата, сохраняющаяся как химическая энергия в выросшей биомассе) достаточно велики (более 50%), но ниже, чем при росте микроорганизмов на углеводах (до 65%). При росте микроорганизмов на углеводородах энергетический выход роста ниже и составляет около 40 %. С этим связано более эффективное использование дорогостоящего растворенного кислорода и повышение производительности ферментеров при ис­пользовании метанола по сравнению с культивированием микро­организмов на н-алканах.

Процесс выращивания метанолиспользующих бактерий уже доведен до реализации, например, западногерманская фирма Хёхст, исполь­зующая0 в качестве продуцента Methylomonas clara и английская кампания ICI, организовавшая промышленное производство на основе использования метанола бактериальной массы кормового назначения. В последние годы найден и интенсивно изучается ряд штаммов дрожжей, способных расти, используя метанол. Метанолассимилирующие дрожжи часто встречаются среди ро­дов Hansenula и Pichia. К метанолассимилирующим дрожжам относится Candida boidinii. В Англии организовано производство пищевого белка из гриба Fusarium. Продукт, названный микопротеином, исполь­зуется как добавка к различным продуктам. В США производится торутин - продукт высушенной биомассы С. utilis, полученной на синтетическом этаноле. Торутин ис­пользуется для добавления в продукты питания человека с целью улучшения их органолептических свойств (вид, вкус, запах и др.), снижения себестоимости и повышения белковой ценности.

В нашей стране разработан способ производства на этаноле био­массы Sacch. cerevisiae. Используется штамм, применяемый в хлебопечении. Безвредность постоянного применения неболь­ших количеств пекарских дрожжей в питании проверена опытом человечества на протяжении тысячелетий. Выход сахаромице­тов при росте на этаноле несколько ниже, чем при выращивании С. utilis. Однако в белках сахаромицетов, выращенных на этаноле, содержание лизина очень высоко (около 10% по мас­се). Добавление биомассы саха­ромицетов в пшеничный хлеб позволяет не только повысить содержание в нем белка, но и улучшить аминокислотный состав белков. При добавлении 5 % (от массы муки) биомассы сахаро­мицетов белковая ценность получаемого пшеничного хлеба повы­шается в 1,5 раза.

4. Перспективы производства белка с использованием микроорганизмов

В последние годы основные направления исследований по микробиологическому получению белковых веществ несколько изменились. Прежде всего следует отметить повышение внимания к изысканию новых видов сырья для производства белковых веществ. В этой связи изучают фототрофные микроорганизмы, которые растут в автотрофных условиях, ассимилируя углекис­лоту.

Культивирование водорослей с целью получения белковых веществ исследуется уже несколько десятилетий. В настоящее время наиболее эффективный способ использования биомассы хлореллы и других водорослей заключается в применении их в качестве биостимуляторов. Обнадеживающие данные имеются по выращиванию цианобактерии спирулины. Жители района оз. Чад издавна используют спирулину в питании.

Может оказаться перспективным применение в качестве про­дуцентов белковых веществ водородных бактерий, относящихся к хемолитоавтотрофам.

Другой перспективный продуцент белка пищевого и кормового назначения – высшие базидиальные грибы. Согласно современным данным, около 2000 видов базидиальных грибов из 30 родов считается съедобными, из них только 20 видов выращивают в коммерческих целях, но всего 5-6 видов культивируют в промышленных масштабах, причем основными являются Agaricus bisporus, Lentinus edodes, а в нашей стране - Pleurotus ostreatus.

Народнохозяйственное значение дереворазрушающих базидиальных грибов определяется рядом особенностей, что дает им определенное преимущество. Эти особенности следующие: биомасса базидиальных грибов обладает приятным грибным запахом (в результате биосинтеза ароматических метаболитов); кроме того, биомасса мицелия Basidiomycetes, например Pleurotus ostreatus, содержит до 26% белка. Аминокислотный состав белка базидиальных грибов не уступает и даже выше ряда растительных (сои, риса, пшеницы) белков и близок к животному. Сумма аминокислот составляет до 24-25% от сухой биомассы. Также в грибной биомассе содержание нуклеиновых кислот очень низко (2%), что делает их безвредными. Мицелий вешенки очень богат витаминами группы В: тиамином, рибофлавином, ниацином, пиридоксином, биотином. Кроме того, биомасса мицелия содержит ряд необходимых человеку металлов: железа, цинка, меди, кальция, магния.

В настоящее время мицелий съедобных грибов в виде сухого грибного порошка (ГП) используют во многих странах как ценную пищевую добавку к супам и соусам, а также вводят ГП в овощные и мясные концентраты. Так как мицелий представляет собой нити, состоящие из фрагментов различной величины, его очень удобно добавлять в сыры, консервированные овощи и хлебные изделия, а в последние годы также в колбасные изделия и мясные полуфабрикаты. В Японии на основе вытяжки из ГП готовят специальные напитки.

В нашей стране был разработан ряд препаратов для использования в пищевой промышленности. Это пантигрин на основе мицелия Panus tigrinus ИБК-131 и даедалин,где продуцентом является Daedalea confragosa Г-115, у которого 1 кг препарата содержит столько же белка, сколько 1 кг мяса. В самые последние годы ГП Pleurotus ostreatus рекомендован в виде добавок к крупяным и овощным изделиям.

Кроме ГП все шире начинают использовать в кулинарии плодовые тела базидиальных грибов. На Востоке для этих целей популярен L.edodes (шиитаке).

В основе интенсивного культивирования грибов (например, вешенки) находится использование целлюлозосодержащих отходов сельского хозяйства и промышленности. Традиционным субстратом является солома различных злаковых культур, лесосечные отходы: щепки, опилки, кора., листья (хвойных или лиственных пород деревьев).

После сбора урожая грибов, первой и второй волн, остается неиспользованный блок субстрата, богатый разросшимся мицелием (белком), который используют как белковый концентрат в животноводстве.

Важный резерв пополнения ресурсов кормового и пищевого белка - производство его за счет глубинного выращивания грибного мицелия. Для такого производства белка характерна высокая скорость производства, способность грибов усваивать различные отходы - углеводы, органические кислоты, крахмал, целлюлозу и т.д. Выращивание грибного мицелия в глубинных условиях является регулируемым и управляемым процессом получения белка и других метаболитов.

Аминокислотами называются карбоновые кислоты, в углеводородном радикале которых один или несколько атомов водорода замещены аминогруппами. В зависимости от взаимного расположения карбоксильной и аминогрупп различают a -, b -, g - и т.д. аминокислоты. Например ,

Чаще всего термин "аминокислота" применяют для обозначения карбоновых кислот, аминогруппа которых находится в a - положении, т.е. для a - аминокислот. Общую формулу a - аминокислот можно представить следующим образом :

H 2 N–

CH–COOH
I
R

В зависимости от природы радикала (R ) – аминокислоты делятся на алифатические, ароматические и гетероциклические.

В таблице представлены важнейшие - аминокислоты, входящие в состав белков.

Таблица. Важнейшие a - аминокислоты

Аминокислота

Сокращенное (трехбуквенное) название
аминокислотного остатка в
макромолекулах пептидов и белков.

Строение R

Алифатические

Глицин

H –

Аланин

CH 3 –

Валин*

(CH 3) 2 CH–

Лейцин*

(CH 3) 2 CH–CH 2 –

Изолейцин*

CH 3 –CH 2 –CH–
I
CH 3

Серин

HO–CH 2 –

Треонин*

CH 3 –CH(OH)–

Аспарагиновая

HOOC – CH 2 –

Глутаминовая

HOOC – CH 2 – CH 2 –

Аспарагин

NH 2 CO – CH 2 –

Глутамин

NH 2 CO–CH 2 –CH 2 –

Лизин*

NH 2 –(CH 2) 3 –CH 2 –

Аргинин

NH 2 –C–NH–(CH 2) 2 –CH 2 –
II
NH

Цистеин

HS – CH 2 –

Метионин*

CH 3 –S–CH 2 –CH 2 –

Ароматические

Фенилаланин*

Тирозин

Гетероциклические

Триптофан*

Гистидин

Иминокислота

Пролин

*Незаменимые a - аминокислоты

Изомерия

Наряду с изомерией, обусловленной строением углеродного скелета и положением функциональных групп, для a - аминокислот характерна оптическая (зеркальная) изомерия. Все a - аминокислоты, кроме глицина, оптически активны. Например , аланин имеет один асимметрический атом углерода (отмечен звездочкой),



H 2 N –

H
I
C*–COOH
I
CH 3

а значит, существует в виде оптически активных энантиомеров:

L - аланин

Все природные a - аминокислоты относятся к L – ряду.

Получение

1)Важнейший источник аминокислот – природные белки, при гидролизе которых образуются смеси a - аминокислот. Разделение этой смеси – довольно сложная задача, однако по обыкновению одна или две аминокислоты образуются в значительно больших количествах, чем все другие, и их удается выделить достаточно просто.

2)Синтез аминокислот из галогенозамещенных кислот действием аммиака

3)Микробиологический синтез. Известны микроорганизмы, которые в процессе жизнедеятельности продуцируют a - аминокислоты белков.

Физические свойства

Аминокислоты представляют собой кристаллические вещества с высокими (выше 250° С) температурами плавления, которые мало отличаются у индивидуальных аминокислот и поэтому нехарактерны. Плавление сопровождается разложением вещества. Аминокислоты хорошо растворимы в воде и нерастворимы в органических растворителях, чем они похожи на неорганические соединения. Многие аминокислоты обладают сладким вкусом.

Химические свойства

1)Некоторые свойства аминокислот, в частности высокая температура плавления, объясняется своеобразным их строением. Кислотная (– COOH ) и основная (– NH 2 ) группы в молекуле аминокислоты взаимодействуют друг с другом, образуя внутренние соли (биполярные ионы). Например , для глицина

2)Вследствие наличия в молекулах аминокислот функциональных групп кислотного и основного характера a - аминокислоты являются амфотерными соединениями, т.е. они образуют соли как с кислотами, так и со щелочами.

3)В реакции со спиртами образуются сложные эфиры.


Этиловый эфир аланина

4)a - Аминокислоты можно ацилировать, в частности, ацетилировать, действуя уксусным ангидридом или хлористым ацетилом. В результате образуются N - ацильные производные a - аминокислот (символ " N " означает, что ацил связан с атомом азота).


N – ацетил аланин

5)a - Аминокислоты вступают друг с другом в реакцию поликонденсации, приводя к амидам кислот. Продукты такой конденсации называются пептидами. При взаимодействии двух аминокислот образуется дипептид:

При конденсации трех аминокислот образуется трипептид и т.д.



Связь –

O
II
C – NH – называется пептидной связью.

Пептиды. Белки

Пептиды и белки представляют собой высокомолекулярные органические соединения, построенные из остатков a - аминокислот, соединенных между собой пептидными связями.

Ни один из известных нам живых организмов не обходится без белков. Белки служат питательными веществами, они регулируют обмен веществ, исполняя роль ферментов – катализаторов обмена веществ, способствуют переносу кислорода по всему организму и его поглощению, играют важную роль в функционировании нервной системы, являются механической основой мышечного сокращения, участвуют в передаче генетической информации и т.д. Как видно, функции белков в природе универсальны. Белки входят в состав мозга, внутренних органов, костей, кожи, волосяного покрова и т.д. Основным источником a - аминокислот для живого организма служат пищевые белки, которые в результате ферментативного гидролиза в желудочно-кишечном тракте дают a - аминокислоты. Многие a - аминокислоты синтезируются в организме, а некоторыенеобходимые для синтеза белков a - аминокислоты не синтезируются в организме и должны поступать извне. Такие аминокислоты называются незаменимыми. К ним относятся валин, лейцин, треонин, метионин, триптофан и др. (см.таблицу). При некоторых заболеваниях человека перечень незаменимых аминокислот расширяется.

Пептиды и белки различают в зависимости от величины молекулярной массы. Условно считают, что пептиды содержат в молекуле до 100 (соответствует молекулярной массе до 10000), а белки - свыше 100 аминокислотных остатков (молекулярная масса от 10000 до нескольких миллионов). При этом в пептидах различают олигопептиды, содержащие в цепи не более 10 аминокислотных остатков, и полипептиды, содержащие до 100 аминокислотных остатков.

Конструкция полипептидной цепи одинакова для всего многообразия пептидов и белков. Эта цепь имеет неразветвленное строение и состоит из чередующихся метиновых (CH ) и пептидных (CONH ) групп. Различия такой цепи заключаются в боковых радикалах, связанных с метиновой группой, и характеризующих ту или иную аминокислоту. Один конец цепи со свободной аминогруппой называется N – концом, другой, на котором находится аминокислота со свободной карбоксильной группой, называется C – концом. Пептидные и белковые цепи записываются с N – конца. Иногда пользуются специальными обозначениями: на N – конце пишется NH – группа или только атом водорода – H , а на C – конце - либо карбоксильная COOH – группа, либо только гидроксильная OH – группа.

Для полипептидов и белков характерны четыре уровня пространственной организации, которые принято называть первичной, вторичной, третичной и четвертичной структурами.

Первичная структура белка - специфическая аминокислотная последовательность, т.е. порядок чередования a - аминокислотных остатков в полипептидной цепи.

Вторичная структура белка - конформация полипептидной цепи, т.е. способ скручивания цепи в пространстве за счет водородных связей между группами NH и CO . Одна из моделей вторичной структуры – a - спираль.

Третичная структура белка - трехмерная конфигурация закрученной спирали в пространстве, образованная за счет дисульфидных мостиков – S – S – между цистеиновыми остатками и ионных взаимодействий.

Четвертичная структура белка - структура, образующаяся за счет взаимодействия между разными полипептидными цепями. Четвертичная структура характерна лишь для некоторых белков, например гемоглобина.

Химические свойства

1)Денатурация. Утрата белком природной (нативной) конформации, сопровождающаяся обычно потерей его биологической функции, называется денатурацией . С точки зрения структуры белка – это разрушение вторичной и третичной структур белка, обусловленное воздействием кислот, щелочей, нагревания, радиации и т.д. Первичная структура белка при денатурации сохраняется. Денатурация может быть обратимой (так называемая, ренатурация) и необратимой. Пример необратимой денатурации при тепловом воздействии – свертывание яичного альбумина при варке яиц.

2)Гидролиз белков – разрушение первичной структуры белка под действием кислот, щелочей или ферментов, приводящее к образованию a - аминокислот, из которых он был составлен.

3)Качественные реакции на белки:

a)Биуретовая реакция – фиолетовое окрашивание при действии солей меди (II ) в щелочном растворе. Такую реакцию дают все соединения, содержащие пептидную связь.

b)Ксантопротеиновая реакция – появление желтого окрашивания при действии концентрированной азотной кислоты на белки, содержащие остатки ароматических аминокислот (фенилаланина, тирозина).

КОНЕЦ РАЗДЕЛА

Получение дрожжевого белка

С технологической точки зрения наилучшими продуцентами кормового и пищевого белка являются дроожжи. Их преимущество заключается прежде всего в «технологичности»: дрожжи легко выращивать в условиях производства. Клетки дрожжей крупнее, чем бактерий, и легче отделяются от жидкости при центрифугировании. Они характеризуются высокой скоростью роста, устойчивостью к посторонней микрофлоре, способны усваивать любые источники питания, легко отделяются, не загрязняют воздух спорами. Клетки дрожжей содержат до 25 % сухих веществ. Наиболее ценный компонент дрожжевой биомассы – белок, который по составу аминокислот превосходит белок зерна злаковых культур и лишь немного уступает белкам молока и рыбной муки. Биологическая ценность дрожжевого белка определяется наличием значительного количества незаменимых аминокислот. По содержанию витаминов дрожжи превосходят все белковые корма, в том числе и рыбную муку. Кроме того, дрожжевые клетки содержат микроэлементы и значительное количество жира, в котором преобладают ненасыщенные жирные кислоты. При скармливании кормовых дрожжей коровам повышаются удои и содержание жира в молоке, а у пушных зверей улучшается качество меха.

Культивирование дрожжевой биомассы на углеводном сырье. Исторически одним из первых субстратов, используемых для получения кормовой биомассы, были гидролизаты растительных отходов, предгидрализаты и сульфитный щелок – отходы целлюлозно-бумажной промышленности.

В связи с тем, что гидролизаты представляют собой сложный субстрат, состоящий из смеси гексоз и пентоз, среди промышленных штаммов-продуцентов получили распространение виды дрожжей C. utilis, C. scottii и C. tropicalis , способные наряду с гексозами усваивать пентозы, а также переносить наличие фурфурола в среде.В гидролизатах и сульфитных щелоках имеются в небольшом количестве практически все необходимые для роста дрожжей микроэлементы. Недостающие количества азота, фосфора и калия вводятся в виде общего раствора солей аммофоса, хлорида калия и сульфата аммония.Процесс культивирования дрожжей осуществляется в непрерывном режиме при рН 4,2 – 4,6. Оптимальная температура от 30 до 40 о С.Кормовые дрожжи, полученные при культивировании на гидролизатах растительного сырья и сульфитных щелоках, имеют следующий состав (%): белок 43 – 58; липиды 2,3 – 3,0; углеводы 11 – 23; зола – до 11.Культивирование дрожжевой биомассы на низших спиртах. Культивирование на метаноле. Основное преимущество этого субстрата – высокая чистота и отсутствие канцерогенных примесей, хорошая растворимость в воде, высокая летучесть позволяющая легко удалять его остатки из готового продукта. Биомасса, полученная на метаноле, не содержит нежелательных примесей, что дает возможность исключить из технологической схемы стадии очистки. Однако, необходимо учитывать при проведении процесса и такие особенности метанола, как горючесть и возможность образования взрывоопасных смесей с воздухом.В качестве продуцентов, использующих метанол в конструктивном обмене, были изучены как дрожжевые, так и бактериальные штаммы. У дрожжей были рекомендованы в производство Candid boidinii, Hansenula polymorpha и Piehia pastoris , оптимальные условия для которых (Т 34 – 37 о C, рН 4,2 – 4,6) позволяют проводить процесс с экономическим коэффициентом усвоения субстрата до 0,40 при скорости протока в интервале 0,12 – 0,16 ч. На стадии выделения для всех видов продуцентов предусмотрено отделение грануляции с целью получения готового продукта в гранулах.Культивирование на этаноле. Кроме метанола, в качестве высококачественного сырья используют этанол, который имеет малую токсичность, хорошую растворимость в воде, небольшое количество примесей.В качестве микроорганизмов – продуцентов белка на этиловом спирте как единственном источнике углерода могут использоваться дрожжи Candida utilis, Sacharomyces lambica, Hansenula anomala .Кормовые дрожжи, полученные на спиртах, имеют следующий процентный состав: сырой протеин 56 – 62; липиды 5 – 6; зола 7 – 11.

Культивирование дрожжевой биомассы на углеводородном сырье. Дрожжевые клетки в качестве источника углерода для роста способны использовать неразветвленные углеводороды с числом от 10 до 30 углеродных атомов в молекуле. В основном они представлены жидкими фракциями углеводородов нефти с температурой кипения 200 – 320 °С (нормальные парафины и дистилляты нефти, природный газ, спирты, растительные гидролизаты и отходы промышленных предприятий).

При выращивании дрожжей на парафинах нефти в приготовленную из них питательную среду добавляют макро- и микроэлементы, необходимые витамины и аминокислоты. Выход биомассы может достигать при их использовании до 100 % от массы субстрата. Качество продукта зависит от степени чистоты парафинов. Дрожжи, выращенные на недостаточно очищенных парафинах, содержат неметаболизированные компоненты. При использовании парафинов достаточной степени очистки, полученная дрожжевая масса может успешно применяться в качестве дополнительного источника белка в рационах животных.

Высушенная дрожжевая масса гранулируется и используется как белково-витаминный концентрат (БВК), содержащий до 50 – 60 % белковых веществ, для кормления сельскохозяйственных животных.

Оптимальная норма добавления дрожжевой массы в корм сельскохозяйственных животных обычно составляет не более 5 -10 % от сухого вещества.

Наряду с технологией использования дрожжевых белков в качестве кормовой добавки в рационы сельскохозяйственных животных разработаны технологии получения из них пищевых белков. В некоторых странах пивные и пищевые дрожжи (Saccharomyces cerevisiae, Candida arborea, C. utilis) широко используют в качестве белковых добавок к различным пищевым продуктам. Так, разработана рецептура приготовления сосисок из мяса индейки с добавлением 25 % белка. В результате ферментации дрожжевыми клетками глюкозы, получаемой из кукурузного крахмала, синтезирован белковый продукт мукопротеин, используемый при производстве колбас в качестве замены основного сырья (Великобритания).

Получение автолизата дрожжей. Ценные компоненты биомассы дрожжей – аминокислоты белков, витамины, и др. – могут бытьиспользованы для приготовления натуральных и полусинтетических сред, применяемых как в лабораториях, так и для нужд промышленного микробиологического синтеза. Однако большинство ценных компонентов клетки находится в виде различных белковых комплексов, поэтому добавление к среде нативных дрожжей не дает эффекта.

Гидролиз белков можно провести ферментативно или используя кислоты и щелочи. При щелочном гидролизе белков возможно разрушение некоторых аминокислот или их изомеризация в. D-формы, которые в биологических системах используются не полностью. Надо отметить, что в щелочной среде инактивируются некоторые витамины. При кислотном гидролизе белков разрушаются незаменимая аминокислота – триптофан и некоторые витамины группы В. Гидролиз белков можно осуществить, используя препараты протеолитических ферментов. Кроме того, в самих клетках дрожжей есть активные протеолитические ферменты, которые при определенных условиях в среде могут разрушать клеточные белки (автолиз).

Для приготовления дрожжевого автолизата сначала получают дрожжевую пасту влажностью 65 – 76 %. В реакторе из дрожжевой пасты и воды (50 °С) в соотношении 1:1 готовят суспензию, которую выдерживают 1 – 2 сут при температуре 45 °С. В это время идет автолиз клеток. Активировать процесс автолиза можно добавлением фосфатов или добавляя к суспензии дрожжей в воде 2,5 % хлорида натрия (на сухую массу дрожжей).

Полученную жидкую массу подкисляют, добавляя на каждые 100 л автолизата 0,25 л концентрированной серной кислоты, которую предварительно разбавляют в 4 раза. После этого автолизат кипятят 15 – 20 мин. После охлаждения он готов к употреблению.

После автолиза 10 – 12 % (по сухой массе) суспензии дрожжей в течение 24 ч при 45 °С в жидкой фракции автолизата содержится до 5 % сухих веществ. Из общего количества азота фильтрата 50% приходится на аминный азот аминокислот тирозина, триптофана, метионина, цистеина, аргинина, гистидина и др. Кроме того, в фильтрат переходят витамины группы В.

Выпаривая в вакууме и затем лиофилизируя или высушивая в распылительной сушилке жидкий дрожжевой автолизат, можно получить сухой препарат, который удобно хранить. Особо обработанный автолизат можно использовать в медицине при парентеральном питании как источник аминокислот и витаминов.

    высаливание : осаждение солями щелочных, щелочноземельных металлов (хлорид натрия, сульфат магния), сульфатом аммония; при этом не нарушается первичная структура белка;

    осаждение : использование водоотнимающих веществ: спирт или ацетон при низких температурах (около –20 С).

При использовании этих методов белки лишаются гидратной оболочки и выпадают в осадок в растворе.

Денатурация - нарушение пространственной структуры белков (первичная структура молекулы сохраняется). Может быть обратимая (структура белка восстанавливается после устранения денатурирующего агента) или необратимая (пространственная структура молекулы не восстанавливается, например, при осаждении белков минеральными концентрированными кислотами, солями тяжелых металлов).

Методы разделения белков Отделение белков от низкомолекулярных примесей

Диализ

Используют специальную полимерную мембрану, которая имеет поры определенной величины. Малые молекулы (низкомолекулярные примеси) проходят через поры в мембране, а крупные (белки) задерживаются. Таким образом, белки отмывают от примесей.

Разделение белков по молекулярной массе

Гель-хроматография

Хроматографическую колонку заполняют гранулами геля (сефадекс), который имеет поры определенной величины. В колонку вносят смесь белков. Белки, размер которых меньше, чем размер пор сефадекса, задерживаются в колонке, так как «застревают» в порах, а остальные свободно выходят из колонки (рис. 2.1). Размер белка зависит от его молекулярной массы.

Рис. 2.1. Разделение белков методом гель-фильтрации

Ультрацентрифугирование

Этот метод основан на различной скорости седиментации (осаждения) белковых молекул в растворах с различным градиентом плотности (сахарозный буфер или хлорид цезия) (рис. 2.2).

Рис. 2.2. Разделение белков методом ультрацентрифугирования

Электрофорез

Данный метод основан на различной скорости миграции белков и пептидов в электрическом поле в зависимости от заряда.

Носителями для электрофореза могут служить гели, ацетатцеллюлоза, агар. Разделяемые молекулы движутся в геле в зависимости от размера: те из них, которые имеют бóльшие размеры, будут задерживаться при прохождении через поры геля. Меньшие молекулы будут встречать меньшее сопротивление и, соответственно, двигаться быстрее. В результате, после проведения электрофореза, бóльшие молекулы будут находиться ближе к старту, чем меньшие (рис. 2.3).

Рис. 2.3 . Разделение белков методом электрофореза в геле

Методом электрофореза можно разделить белки и по молекулярной массе. Для этого используют электрофорез в ПААГ в присутствии додецилсульфата натрия (ДДS-Na) .

Выделение индивидуальных белков

Аффинная хроматография

Метод основан на способности белков прочно связываться с различными молекулами нековалентными связями. Используется для выделения и очистки ферментов, иммуноглобулинов, рецепторных белков.

Молекулы веществ (лиганды), с которыми специфически связываются определенные белки, ковалентно соединяют с частицами инертного вещества. Смесь белков вносят в колонку, и искомый белок прочно присоединяется к лиганду. Остальные белки свободно выходят из колонки. Задержанный белок затем можно вымыть из колонки с помощью буферного раствора, содержащего в свободном состоянии лиганд. Этот высокочувствительный метод позволяет выделить в чистом виде очень малые количества белка из клеточного экстракта, содержащего сотни других белков.

Изоэлектрофокусирование

Метод основан на различной величине ИЭТ белков. Белки разделяют методом электрофореза на пластине с амфолином (это вещество, у которого заранее сформирован градиент pH в диапазоне от 3 до 10). При электрофорезе белки разделяются в соответствии со значением их ИЭТ (в ИЭТ заряд белка будет равен нулю, и он не будет передвигаться в электрическом поле).

Двухмерный электрофорез

Представляет собой сочетание изоэлектрофокусирования и электрофореза с ДДС-Na. Проводят сначала электрофорез в горизонтальном направлении на пластине с амфолином. Белки разделяются в зависимости от заряда (ИЭТ). Затем обрабатывают пластину раствором ДДС-Na и проводят электрофорез в вертикальном направлении. Белки разделяются в зависимости от молекулярной массы.

Иммуноэлектрофорез (Вестерн-блот)

Аналитический метод, используемый для определения специфичных белков в образце (рис 2.4).

    Выделение белков из биологического материала.

    Разделение белков по молекулярной массе методом электрофореза в ПААГ с ДДС-Na.

    Перенос белков с геля на полимерную пластину с целью облегчения дальнейших работ.

    Обработка пластины раствором неспецифического белка для заполнения оставшихся пор.

Таким образом, после этого этапа получена пластинка, в порах которой содержатся разделенные белки, а пространство между ними заполнено неспецифическим белком. Теперь надо выявить, есть ли среди белков искомый, ответственный за какое-то заболевание. Для выявления используют обработку антителами. Под первичными антителами понимают антитела к искомому белку. Под вторичными антителами понимают антитела к первичным антителам. В состав вторичных антител вводят дополнительно специальную метку (т.н. молекулярный зонд), чтобы потом можно было визуализировать результаты. В качестве метки используются радиоактивный фосфат или фермент, прочно связанные с вторичным антителом. Связывание сначала с первичными, а затем с вторичными антителами преследует две цели: стандартизация метода и улучшение результатов.

    Обработка раствором первичных антител  связывание происходит в том месте пластины, где есть антиген (искомый белок).

    Удаление несвязавшихся антител (промывка).

    Обработка раствором меченых вторичных антител для последующей проявки.

    Удаление несвязавшихся вторичных антител (промывка).

Рис. 2.4 . Иммуноэлектрофорез (Вестерн-блот)

В случае присутствия искомого белка в биологическом материале – на пластинке появляется полоса, свидетельствующая о связывании этого белка с соответствующими антителами.



© dagexpo.ru, 2024
Стоматологический сайт