Перемещении при прямолинейном равноускоренном движении. Определение кинематических характеристик движения с помощью графиков

21.09.2019

Для построения этого графика на оси абсцисс откладывают время движения, а на оси ординат - скорость (проекцию скорости) тела. В равноускоренном движении скорость тела с течением времени изменяется. Если тело движется вдоль оси О х, зависимость его скорости от времени выражается формулами
v x =v 0x +a x t и v x =at (при v 0x = 0).

Из этих формул видно, что зависимость v х от t линейная, следовательно, графиком скорости является прямая линия. Если тело движется с некоторой начальной скоростью, эта прямая пересекает ось ординат в точке v 0x . Если же начальная скорость тела равна нулю, график скорости проходит через начало координат.

Графики скорости прямолинейного равноускоренного движения изображены на рис. 9. На этом рисунке графики 1 и 2 соответствуют движению с положительной проекцией ускорения на ось О х (скорость увеличивается), а график 3 соответствует движению с отрицательной проекцией ускорения (скорость уменьшается). График 2 соответствует движению без начальной скорости, а графики 1 и 3 - движению с начальной скоростью v ox . Угол наклона a графика к оси абсцисс зависит от ускорения движения тела. Как видно из рис. 10 и формулы (1.10),

tg=(v x -v 0x)/t=a x .

По графикам скорости можно определить путь, пройденный телом за промежуток времени t. Для этого определим площадь трапеции и треугольника, закрашенных на рис. 11.

В выбранном масштабе одно основание трапеции численно равно модулю проекции начальной скорости v 0x тела, а другое ее основание - модулю прокции его скорости v х в момент времени t. Высота трапеции численно равна длительности промежутка времени t. Площадь трапеции

S=(v 0x +v x)/2t.

Использовав формулу (1.11), после преобразований находим, что площадь трапеции

S=v 0x t+at 2 /2.

путь, пройденный в прямолинейном равноускоренном движении с начальной скоростью, численно равен площади трапеции, ограниченной графиком скорости, осями координат и ординатой, соответствующей значению скорости тела в момент времени t.

В выбранном масштабе высота треугольника (рис. 11,б) численно равна модулю проекции скорости v х тела в момент времени t, а основание треугольника численно равно длительности промежутка времени t. Площадь треугольника S=v x t/2.

Использовав формулу 1.12, после преобразований находим, что площадь треугольника

Правая часть последнего равенства представляет собой выражение, определяющее путь, пройденный телом. Следовательно, путь, пройденный в прямолинейном равноускоренном движении без начальной скорости, численно равен площади треугольника, ограниченного графиком скорости, осью абсцисс и ординатой, соответствующей скорости тела в момент времени t.

Графическое представление
равномерного прямолинейного движения

График скорости показывает, как изменяется скорость тела с течением времени. В прямолинейном равномерном движении скорость с течением времени не изменяется. Поэтому график скорости такого движения представляет собой прямую, параллельную оси абсцисс (оси времени). На рис. 6 изображены графики скорости двух тел. График 1 относится к случаю, когда тело движется в положительном направлении оси О х (проекция скорости тела положительна), график 2 - к случаю, когда тело движется против положительного направления оси О х (проекция скорости отрицательна). По графику скорости можно определить пройденный телом (Если тело не меняет направления своего движения, длина пути равна модулю его перемещения).

2. График зависимости координаты тела от времени который иначе называют графиком движения

На рис. изображены графики движения двух тел. Тело, графиком которого является прямая 1, движется в положительном направлении оси О х, а тело, график движения которого - прямая 2, движется противоположно положительному направлению оси О х.

3. График пути

Графиком является прямая линия. Эта прямая проходит через начало координат (рис.). Угол наклона этой прямой к оси абсцисс тем больше, чем больше скорость тела. На рис. изображены графики 1 и 2 пути двух тел. Из этого рисунка видно, что за одно и то же время t тело 1, имеющее большую скорость, чем тело 2, проходит больший путь (s 1 >s 2).

Прямолинейное равноускоренное движение – самый простой вид неравномерного движения, при котором тело движется вдоль прямой линии, а его скорость за любые равные промежутки времени меняется одинаково.

Равноускоренное движение – это движение с постоянным ускорением.

Ускорение тела при его равноускоренном движении – это величина, равная отношению изменения скорости к промежутку времени, за которое это изменение произошло:

→ →
→ v – v 0
a = ---
t

Вычислить ускорение тела, движущегося прямолинейно и равноускоренно, можно с помощью уравнения, в которое входят проекции векторов ускорения и скорости:

v x – v 0x
a x = ---
t

Единица ускорения в СИ: 1 м/с 2 .

Скорость прямолинейного равноускоренного движения.

v x = v 0x + a x t

где v 0x – проекция начальной скорости, a x – проекция ускорения, t – время.


Если в начальный момент тело покоилось, то v 0 = 0. Для этого случая формула принимает следующий вид:

Перемещение при равнопеременном прямолинейном движении S x =V 0 x t + a x t^2/2

Координата при РУПД x=x 0 + V 0 x t + a x t^2/2

Графическое представление
равноускоренного прямолинейного движения

    График скорости

Графиком скорости является прямая линия. Если тело движется с некоторой начальной скоростью, эта прямая пересекает ось ординат в точке v 0x . Если же начальная скорость тела равна нулю, график скорости проходит через начало координат. Графики скорости прямолинейного равноускоренного движения изображены на рис. . На этом рисунке графики 1 и 2 соответствуют движению с положительной проекцией ускорения на ось О х (скорость увеличивается), а график 3 соответствует движению с отрицательной проекцией ускорения (скорость уменьшается). График 2 соответствует движению без начальной скорости, а графики 1 и 3 - движению с начальной скоростью v ox . Угол наклона a графика к оси абсцисс зависит от ускорения движения тела. По графикам скорости можно определить путь, пройденный телом за промежуток времени t.

Путь, пройденный в прямолинейном равноускоренном движении с начальной скоростью, численно равен площади трапеции, ограниченной графиком скорости, осями координат и ординатой, соответствующей значению скорости тела в момент времени t.

    График зависимости координаты от времени (график движения)

Пусть тело движется равноускоренно в положительном направлении О х выбранной системы координат. Тогда уравнение движения тела имеет вид:

x=x 0 +v 0x ·t+a x t 2 /2. (1)

Выражению (1)соответствует известная из курса математики функциональная зависимость у=ах 2 +bх+с (квадратный трехчлен). В рассматриваемом нами случае
a=|a x |/2, b=|v 0x |, c=|x 0 |.

    График пути

В равноускоренном прямолинейном движении зависимость пути от времени выражается формулами

s=v 0 t+at 2 /2, s= at 2 /2 (при v 0 =0).

Как видно из данных формул, эта зависимость квадратичная. Из обеих формул следует также, что s = 0 при t = 0. Следовательно, графиком пути прямолинейного равноускоренного движения является ветвь параболы. На рис. показан график пути при v 0 =0.

    График ускорения

График ускорения – зависимость проекции ускорения от времени:

прямолинейного равномерного движения . Графическое представление равномерного прямолинейного движения . 4. Мгновенная скорость. Сложение...

  • Урок Тема: "Материальная точка. Система отсчета" Цели: дать представление о кинематике

    Урок

    Определение равномерному прямолинейному движению . - Что называется скоростью равномерного движения ? - Назовите единицу скорости движения в... проекции вектора скорости от времени движения У (О. 2. Графическое представление движения . - В точке С...

  • 3.1. Равнопеременное движение по прямой.

    3.1.1. Равнопеременное движение по прямой - движение по прямой с постоянным по модулю и направлению ускорением:

    3.1.2. Ускорение () - физическая векторная величина, показывающая, на сколько изменится скорость за 1 с.

    В векторном виде:

    где - начальная скорость тела, - скорость тела в момент времени t .

    В проекции на ось Ox :

    где - проекция начальной скорости на ось Ox , - проекция скорости тела на ось Ox в момент времени t .

    Знаки проекций зависят от направления векторов и оси Ox .

    3.1.3. График проекции ускорения от времени.

    При равнопеременном движении ускорение постоянно, поэтому будет представлять собой прямые линии, параллельные оси времени (см. рис.):

    3.1.4. Скорость при равнопеременном движении.

    В векторном виде:

    В проекции на ось Ox :

    Для равноускоренного движения:

    Для равнозамедленного движения:

    3.1.5. График проекции скорости в зависимости от времени.

    График проекции скорости от времени - прямая линия.

    Направление движения: если график (или часть его) находятся над осью времени, то тело движется в положительном направлении оси Ox .

    Значение ускорения: чем больше тангенс угла наклона (чем круче поднимается вверх или опускает вниз), тем больше модуль ускорения; где - изменение скорости за время

    Пересечение с осью времени: если график пересекает ось времени, то до точки пересечения тело тормозило (равнозамедленное движение), а после точки пересечения начало разгоняться в противоположную сторону (равноускоренное движение).

    3.1.6. Геометрический смысл площади под графиком в осях

    Площадь под графиком, когда на оси Oy отложена скорость, а на оси Ox - время - это путь, пройденный телом.

    На рис. 3.5 нарисован случай равноускоренного движения. Путь в данном случае будет равен площади трапеции: (3.9)

    3.1.7. Формулы для расчета пути

    Равноускоренное движение Равнозамедленное движение
    (3.10) (3.12)
    (3.11) (3.13)
    (3.14)

    Все формулы, представленные в таблице, работают только при сохранении направления движения, то есть до пересечения прямой с осью времени на графике зависимости проекции скорости от времени.

    Если же пересечение произошло, то движение проще разбить на два этапа:

    до пересечения (торможение):

    После пересечения (разгон, движение в обратную сторону)

    В формулах выше - время от начала движения до пересечения с осью времени (время до остановки), - путь, который прошло тело от начала движения до пересечения с осью времени, - время, прошедшее с момента пересечения оси времени до данного момента t , - путь, который прошло тело в обратном направлении за время, прошедшее с момента пересечения оси времени до данного момента t , - модуль вектора перемещения за все время движения, L - путь, пройденный телом за все время движения.

    3.1.8. Перемещение за -ую секунду.

    За время тело пройдет путь:

    За время тело пройдет путь:

    Тогда за -ый промежуток тело пройдет путь:

    За промежуток можно принимать любой отрезок времени. Чаще всего с.

    Тогда за 1-ую секунду тело проходит путь:

    За 2-ую секунду:

    За 3-ю секунду:

    Если внимательно посмотрим, то увидим, что и т. д.

    Таким образом, приходим к формуле:

    Словами: пути, проходимые телом за последовательные промежутки времени соотносятся между собой как ряд нечетных чисел, и это не зависит от того, с каким ускорением движется тело. Подчеркнем, что это соотношение справедливо при

    3.1.9. Уравнение координаты тела при равнопеременном движении

    Уравнение координаты

    Знаки проекций начальной скорости и ускорения зависят от взаимного расположения соответствующих векторов и оси Ox .

    Для решения задач к уравнению необходимо добавлять уравнение изменения проекции скорости на ось:

    3.2. Графики кинематических величин при прямолинейном движении

    3.3. Свободное падение тела

    Под свободным падением подразумевается следующая физическая модель:

    1) Падение происходит под действием силы тяжести:

    2) Сопротивление воздуха отсутствует (в задачах иногда пишут «сопротивлением воздуха пренебречь»);

    3) Все тела, независимо от массы падают с одинаковым ускорением (иногда добавляют - «независимо от формы тела», но мы рассматриваем движение только материальной точки, поэтому форма тела уже не учитывается);

    4) Ускорение свободного падения направлено строго вниз и на поверхности Земли равно (в задачах часто принимаем для удобства подсчетов);

    3.3.1. Уравнения движения в проекции на ось Oy

    В отличии от движения по горизонтальной прямой, когда далеко не всех задач происходит смена направления движения, при свободном падении лучше всего сразу пользоваться уравнениями, записанными в проекциях на ось Oy .

    Уравнение координаты тела:

    Уравнение проекции скорости:

    Как правило, в задачах удобно выбрать ось Oy следующим образом:

    Ось Oy направлена вертикально вверх;

    Начало координат совпадает с уровнем Земли или самой нижней точкой траектории.

    При таком выборе уравнения и перепишутся в следующем виде:

    3.4. Движение в плоскости Oxy .

    Мы рассмотрели движение тела с ускорением вдоль прямой. Однако этим равнопеременное движение не ограничивается. Например, тело, брошенное под углом к горизонту. В таких задачах необходимо учитывать движение сразу по двум осям:

    Или в векторном виде:

    И изменение проекции скорости на обе оси:

    3.5. Применение понятия производной и интеграла

    Мы не будем приводить здесь подробное определение производной и интеграла. Для решения задач нам понадобятся лишь небольшой набор формул.

    Производная:

    где A , B и то есть постоянные величины.

    Интеграл:

    Теперь посмотрим, как понятие производной и интеграла применимо к физическим величинам. В математике производная обозначается «"», в физике производная по времени обозначается «∙» над функцией.

    Скорость:

    то есть скорость является производной от радиус-вектора.

    Для проекции скорости:

    Ускорение:

    то есть ускорение является производной от скорости.

    Для проекции ускорения:

    Таким образом, если известен закон движения то легко можем найти и скорость и ускорение тела.

    Теперь воспользуемся понятием интеграла.

    Скорость:

    то есть, скорость можно найти как интеграл по времени от ускорения.

    Радиус-вектор:

    то есть, радиус-вектор можно найти, взяв интеграл от функции скорости.

    Таким образом, если известна функция то легко можем найти и скорость, и закон движения тела.

    Константы в формулах определяются из начальных условий - значения и в момент времени

    3.6. Треугольник скоростей и треугольник перемещений

    3.6.1. Треугольник скоростей

    В векторном виде при постоянном ускорении закон изменения скорости имеет вид (3.5):

    Эта формула означает, что вектор равен векторной сумме векторов и Векторную сумму всегда можно изобразить на рисунке (см. рис.).

    В каждой задаче, в зависимости от условий, треугольник скоростей будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.

    3.6.2. Треугольник перемещений

    В векторном виде закон движения при постоянном ускорении имеет вид:

    При решении задачи можно выбирать систему отсчета наиболее удобным образом, поэтому не теряя общности, можем выбрать систему отсчета так, что то есть начало системы координат помещаем в точку, где в начальный момент находится тело. Тогда

    то есть вектор равен векторной сумме векторов и Изобразим на рисунке (см. рис.).

    Как и в предыдущем случае в зависимости от условий треугольник перемещений будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.


    «Физика - 10 класс»

    Чем отличается равномерное движение от равноускоренного?
    Чем отличается график пути при равноускоренном движении от графика пути при равномерном движении?
    Что называется проекцией вектора на какую-либо ось?

    В случае равномерного прямолинейного движения можно определить скорость по графику зависимости координаты от времени.

    Проекция скорости численно равна тангенсу угла наклона прямой x(t) к оси абсцисс. При этом, чем больше скорость, тем больше угол наклона.


    Прямолинейное равноускоренное движение.


    На рисунке 1.33 изображены графики зависимости проекции ускорения от времени для трёх разных значений ускорения при прямолинейном равноускоренном движении точки. Они представляют собой прямые линии, параллельные оси абсцисс: а х = const. Графики 1 и 2 соответствуют движению, когда вектор ускорения направлен вдоль оси ОХ, график 3 - когда вектор ускорения направлен в противоположную оси ОХ сторону.

    При равноускоренном движении проекция скорости зависит от времени линейно: υ x = υ 0x + a x t. На рисунке 1.34 представлены графики этой зависимости для указанных трёх случаев. При этом начальная скорость точки одинакова. Проанализируем этот график.

    Проекция ускорения Из графика видно, что, чем больше ускорение точки, тем больше угол наклона прямой к оси t и соответственно больше тангенс угла наклона, который определяет значение ускорения.

    За один и тот же промежуток времени при разных ускорениях скорость изменяется на разные значения.

    При положительном значении проекции ускорения за один и тот же промежуток времени проекция скорости в случае 2 увеличивается в 2 раза быстрее, чем в случае 1. При отрицательном значении проекции ускорения на ось ОХ проекция скорости по модулю изменяется на то же значение, что и в случае 1, но скорость уменьшается.

    Для случаев 1 и 3 графики зависимости модуля скорости от времени будут совпадать (рис. 1.35).


    Используя график зависимости скорости от времени (рис 1.36), найдём изменение координаты точки. Это изменение численно равно площади заштрихованной трапеции, в данном случае изменение координаты за 4 с Δx = 16 м.

    Мы нашли изменение координаты. Если необходимо найти координату точки, то к найденному числу нужно прибавить её начальное значение. Пусть в начальный момент времени х 0 = 2 м, тогда значение координаты точки в заданный момент времени, равный 4 с, равно 18 м. В данном случае модуль перемещения равен пути, пройденному точкой, или изменению её координаты, т. е. 16 м.

    Если движение равнозамедленное, то точка в течение выбранного интервала времени может остановиться и начать двигаться в направлении, противоположном начальному. На рисунке 1.37 показана зависимость проекции скорости от времени для такого движения. Мы видим, что в момент времени, равный 2 с, направление скорости изменяется. Изменение координаты будет численно равно алгебраической сумме площадей заштрихованных треугольников.

    Вычисляя эти площади, мы видим, что изменение координаты равно -6 м, это означает, что в направлении, противоположном оси ОХ, точка прошла большее расстояние, чем по направлению этой оси.

    Площадь над осью t берём со знаком «плюс», а площадь под осью t, где проекция скорости отрицательна, - со знаком «минус».

    Если в начальный момент времени скорость некоторой точки была равна 2 м/с, то координата её в момент времени, равный 6 с, равна -4 м. Модуль перемещения точки в данном случае также равен 6 м - модулю изменения координаты. Однако путь, пройденный этой точкой, равен 10 м - сумме площадей заштрихованных треугольников, показанных на рисунке 1.38.

    Изобразим на графике зависимость координаты х точки от времени. Согласно одной из формул (1.14) кривая зависимости координаты от времени - x(t) - парабола.

    Если движение точки происходит со скоростью, график зависимости которой от времени изображён на рисунке 1.36, то ветви параболы направлены вверх, так как а х > 0 (рис. 1.39). По этому графику мы можем определить координату точки, а также скорость в любой момент времени. Так, в момент времени, равный 4 с, координата точки равна 18 м.



    Для начального момента времени, проводя касательную к кривой в точке А, определяем тангенс угла наклона α 1 , который численно равен начальной скорости, т. е. 2 м/с.

    Для определения скорости в точке В проведём касательную к параболе в этой точке и определим тангенс угла α 2 . Он равен 6, следовательно, скорость равна 6 м/с.

    График зависимости пути от времени - такая же парабола, но проведённая из начала координат (рис. 1.40). Мы видим, что путь непрерывно увеличивается со временем, движение происходит в одну сторону.

    Если движение точки происходит со скоростью, график зависимости проекции которой от времени изображён на рисунке 1.37, то ветви параболы направлены вниз, так как а x < 0 (рис. 1.41). При этом моменту времени, равному 2 с, соответствует вершина параболы. Касательная в точке В параллельна оси t, угол наклона касательной к этой оси равен нулю, и скорость также равна нулю. До этого момента времени тангенс угла наклона касательной уменьшался, но был положителен, движение точки происходило в направлении оси ОХ.

    Начиная с момента времени t = 2 с, тангенс угла наклона становится отрицательным, а его модуль увеличивается, это означает, что движение точки происходит в направлении, противоположном начальному, при этом модуль скорости движения увеличивается.

    Модуль перемещения равен модулю разности координат точки в конечный и начальный моменты времени и равен 6 м.

    График зависимости пройденного точкой пути от времени, показанный на рисунке 1.42 отличается от графика зависимости перемещения от времени (см. рис. 1.41).

    Как бы ни была направлена скорость, путь, пройденный точкой, непрерывно увеличивается.

    Выведем зависимость координаты точки от проекции скорости. Скорость υx = υ 0x + a x t, отсюда

    В случае x 0 = 0 а х > 0 и υ x > υ 0x график зависимости координаты от скорости представляет собой параболу (рис. 1.43).


    При этом, чем больше ускорение, тем ветвь параболы будет менее крутой. Это легко объяснить, так как, чем больше ускорение, тем меньше расстояние, которое должна пройти точка, чтобы скорость увеличилась на то же значение, что и при движении с меньшим ускорением.

    В случае а х < 0 и υ 0x > 0 проекция скорости будет уменьшаться. Перепишем уравнение (1.17) в виде где а = |а x |. График этой зависимостимости - парабола с ветвями, направленными вниз (рис. 1.44).


    Ускоренное движение.


    По графикам зависимости проекции скорости от времени можно определить координату и проекцию ускорения точки в любой момент времени при любом типе движения.

    Пусть проекция скорости точки зависит от времени так, как показано на рисунке 1.45. Очевидно, что в промежутке времени от 0 до t 3 движение точки вдоль оси X происходило с переменным ускорением. Начиная с момента времени, равного t 3 , движение равномерное с постоянной скоростью υ Dx . По графику мы видим, что ускорение, с которым двигалась точка, непрерывно уменьшалось (сравните угол наклона касательной в точках В и С).

    Изменение координаты х точки за время t 1 численно равно площади криволинейной трапеции OABt 1 , за время t 2 - площади OACt 2 и т. д. Как видим по графику зависимости проекции скорости от времени можно определить изменение координаты тела за любой промежуток времени.

    По графику зависимости координаты от времени можно определить значение скорости в любой момент времени, вычисляя тангенс угла наклона касательной к кривой в точке, соответствующей данному моменту времени. Из рисунка 1.46 следует, что в момент времени t 1 проекция скорости положительна. В промежутке времени от t 2 до t 3 скорость равна нулю, тело неподвижно. В момент времени t 4 скорость также равна нулю (касательная к кривой в точке D параллельна оси абсцисс). Затем проекция скорости становится отрицательной, направление движения точки изменяется на противоположное.

    Если известен график зависимости проекции скорости от времени, можно определить ускорение точки, а также, зная начальное положение, определить координату тела в любой момент времени, т. е. решить основную задачу кинематики. По графику зависимости координаты от времени можно определить одну из самых важных кинематических характеристик движения - скорость. Кроме этого, по указанным графикам можно определить тип движения вдоль выбранной оси: равномерное, с постоянным ускорением или движение с переменным ускорением.

    Урок на тему : «Скорость прямолинейного равноускоренного

    движения. Графики скорости».

    Обучающая цель : ввести формулу для определения мгновенной скорости тела в любой момент времени, продолжить формирование умения строить графики зависимости проекции скорости от времени,рассчитывать мгновенную скорость тела в любой момент времени, совершенствовать умения учащихся решать задачи аналитическим и графическим способами.

    Развивающая цель : развитие у школьников теоретического, творческого мышления, формирование операционного мышления, направленного на выбор оптимальных решений

    Мотивационная цель : пробуждение интереса к изучению физики и информатики

    Ход урока.

    1.Организационный момент .

    Учитель:- Здравствуйте,ребята.Сегодня на уроке мы изучим тему «Скорость»,повторим тему «Ускорение», на уроке мы с вами выучим формулу для определения мгновенной скорости тела в любой момент времени, продолжим формирование умения строить графики зависимости проекции скорости от времени,рассчитывать мгновенную скорость тела в любой момент времени, будем совершенствовать умения решать задачи аналитическим и графическим способами.Я рада видеть Вас на уроке здоровыми. Не удивляйтесь,что я с этого начала наш урок: здоровье каждого из вас -самое главное для меня и других учителей. Как вы думаете,что общего может быть между нашим здоровьем и темой «Скорость»?(слайд)

    Учащиеся высказывают мнение по данному вопросу.

    Учитель:- Знание по данной теме может помочь предугадывать возникновение ситуаций, опасных для жизни человека, например, возникающих при дорожном движении и др.

    2.Актуализация знаний.

    Повторение темы «Ускорение» проводится в виде ответов обучающихся на такие вопросы:

    1.что такое ускорение (слайд);

    2.формула и единицы измерения ускорения(слайд);

    3.равнопеременное движение(слайд);

    4.графики ускорения (слайд);

    5. составьте задачу с использованием изученного материала.

    6.Законы или определения, приведенные ниже,имеют ряд неточностей.Дайте правильные формулировки.

    Перемещением тела называют отрезок ,соединяющий начальное и конечное положение тела.

    Скорость равномерного прямолинейного движения- это путь , пройденный телом за единицу времени.

    Механическим движением тела называется изменение его положения в пространстве.

    Прямолинейным равномерным движением называют движение, при котором тело за равные промежутки времени проходит одинаковые пути.

    Ускорение- это величина, численно равная отношению скорости ко времени.

    Тело,у которого малые размеры,называется материальной точкой.

    Основная задача механики состоит в том, чтобы знать положение тела

    Кратковременная самостоятельная работа по карточкам-7 минут.

    Красная карточка-оценка «5»;синяя карточка- оценка «4»;зеленая карточка- оценка «3»

    1

    1.какое движение называется равноускоренным?

    2.Запишите формулу для определения проекции вектора ускорения.

    3. Ускорение тела равно 5 м\с 2 , что это означает?

    4. Скорость спуска парашютиста после раскрытия парашюта уменьшилась от 60 м\с до 5 м\с за 1,1 с. Найдите ускорение парашютиста.

    1.Что называется ускорением?

    3. Ускорение тела равно 3 м\с 2 . Что это означает?

    4. С каким ускорением движется автомобиль, если за 10с его скорость увеличилась от 5 м\с до 10 м\с

    1.Что называется ускорением?

    2. Назовите единицы измерения ускорения?

    3.Запишите формулу для определения проекции вектора ускорения.

    4. 3. Ускорение тела равно 2 м\с 2 , что это означает?

    3.Изучение нового материала .

    1.Вывод формулы скорости из формулы ускорения. У доски под руководством учителя ученик пишет вывод формулы



    2.Графическое представление движения.

    На слайде презентации рассматривают графики скорости

    .

    4.Решение задач на данную тему по материалам ГИ А

    Слайды презентации.

    1. Используя график зависимости скорости движения тела от времени, определите скорость тела в конце 5-ой секунды, считая, что характер движения тела не изменяется.

      9 м/ с

      10 м/ с

      12 м/ с

      14 м/ с

    2.По графику зависимости скорости движения тела от времени. Найдите скорость тела в момент времени t = 4 с.

    3.На рисунке изображен график зависимости скорости движения материальной точки от времени. Определите скорость тела в момент времени t = 12 с , считая, что характер движения тела не изменяется.

    4.На рисунке приведен график скорости некоторого тела. Определите скорость тела в момент времени t = 2 с.

    5.На рисунке представлен график зависимости проекции скорости грузовика на ось х от вре ме ни. Проекция ускорения грузовика на эту ось в момент t =3 с равна

    6.Тело начинает прямолинейное движение из состояния покоя, и его ускорение меняется со временем так, как показано на графике. Через 6 с после начала движения модуль скорости тела будет равен

    7.Мотоциклист и велосипедист одновременно начинают равноускоренное движение. Ускорение мотоциклиста в 3 раза больше, чем у велосипедиста. В один и тот же момент времени скорость мотоциклиста больше скорости велосипедиста

    1) в 1,5 раза

    2) в √3 раза

    3) в 3 раза

    5.Итоги урока.(Рефлексия по данной теме.)

    Что особенно запомнилось и поразило из учебного материала.

    6.Домашнее задание .

    7. Оценки за урок.



  • © dagexpo.ru, 2024
    Стоматологический сайт