Одномерное волновое уравнение и его общее решение. Решения волнового уравнения

21.09.2019

Посмотрим теперь, действительно ли волновое уравнение описывает основные свойства звуковых волн в среде. Прежде всего мы хотим вывести, что звуковое колебание, или возмущение, движется с постоянной скоростью. Кроме того, нам нужно доказать, что два различных колебания могут свободно проходить друг через друга, т. е. принцип суперпозиции. Мы хотим еще доказать, что звук может распространяться и вправо и влево. Все эти свойства должны содержаться в нашем одном уравнении.

Раньше мы отмечали, что любое возмущение, имеющее вид плоской волны и движущееся с постоянной скоростью, записывается в виде f(x vt ). Посмотрим теперь, является ли f (x v t ) решением волнового уравнения. Вычисляя дχ /дх, получаем производную функции dχ / d x = f `(x vt ). Дифференцируя еще раз, находим

Дифференцируя эту же функцию χ по t , получаем значение — v , умноженное на производную, или dχ / d t = v f `(x vt ); вторая производная по времени дает

Очевидно, что f vt ) удовлетворяет волновому уравнению, если v равно c s .
Таким образом, из законов механики мы получаем, что любое звуковое возмущение распространяется со скоростью c s и, кроме того,

тем самым мы связали скорость звуковых волн со свойствами среды.

Легко увидеть, что звуковая волна может распространяться и в направлении отрицательных х, т. е. звуковое возмущение вида χ(х, t)=g(x+vt) также удовлетворяет волновому уравнению. Единственное отличие этой волны от той, которая распространялась слева направо, заключается в знаке v, но знак d 2 χ / d t 2 не зависит от выбора x+ vt или х v t, потому что в эту производную входит только v 2 . Отсюда следует, что решение уравнения описывает волны, бегущие в любом направлении со скоростью c s .


Особый интерес представляет вопрос о суперпозиции решений. Допустим, мы нашли одно решение, скажем χ 1 . Это значит, что вторая производная χ 1 . по х равна второй производной χ 1 по t, умноженной на 1/с 2 s . И пусть есть второе решение χ 2 обладающее тем же свойством. Сложим эти два решения, тогда получается

Теперь мы хотим удостовериться, что χ(х, t) тоже представляет некую волну, т. е. χ тоже удовлетворяет волновому уравнению. Это очень просто доказать, так как

Отсюда следует, что d 2 χ/ d x 2 = (1/ c 2 s) d 2 χ l d t 2 , так что справедливость принципа суперпозиции проверена. Само существование принципа суперпозиции связано с тем, что волновое уравнение линейно по χ .


Теперь естественно было бы ожидать, что плоская световая волна, распространяющаяся вдоль оси х и поляризованная так, что электрическое поле направлено по оси у , тоже удовлетворяет волновому уравнению

где с — скорость света. Волновое уравнение для световой волны есть одно из следствий уравнений Максвелла. Уравнения электродинамики приводят к волновому уравнению для света точно так же, как уравнения механики приводят к волновому уравнению для звука.

Продольные волны могут распространяться как в твердых телах, так и в жидкостях или газах. Пример продольных волн - звуковые волны в жидкостях и газах. Они представляют собой колебания давления, распространяющиеся в этих средах.

Волновой процесс. Понятие волнового фронта.

МЕХАНИЧЕСКИЕ ВОЛНЫ В УПРУГОЙ СРЕДЕ

ЛЕКЦИЯ 9

Тело, колеблющееся в упругой среде, периодически воздействует на прилегающие к нему частицы среды, выводя их из положений равно­весия и заставляя совершать вынужденные колебания, возмущающие частицы среды. .

Механические возмущения (деформации), распространяющиеся в упругой среде, называются упругими волнами .

Геометрическое место точек среды, в которых фаза колебаний частиц одинакова, называется волновым фронтом или волновой поверхностью . Например, существуют сферические волны, исходящие от точечного источника колебаний, волновая поверхность которых представляет собой сферу.

Упругая волна называется продольной , если колебания частиц среды происходят в направлении распространения волны. Если же частицы среды колеблются в плоскостях, перпендикулярных направлению распространения волны, то такая волна называется поперечной .

Поперечные волны могут возникать только в такой среде, которая обладает упругостью формы, т. е. способна сопротивляться деформации сдвига. Поэтому поперечные волны могут существовать лишь в твердых телах. Таковы, например, волны, распространяющиеся вдоль струн музыкальных инструментов.

В отличие от других видов механического движения среды (например, ее течения) распространение упругих волн в среде не связано с переносом вещества.

Частицы, отстоящие друг от друга на расстоянии uT (u ‑ скорость распространения, T – период колебаний), колеблются в одинаковой фазе. Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны l.

l = uT или u =λν,

где n ‑ частота колебаний.

Рассмотрим распространение продольной волны в тонком упругом стержне, которая создается источником колебаний, расположенном в некоторой точке пространства (x = 0). Выделим объем стержня длиной Δx (рис.9.1).. Под действием упругих сил, возникающих в точках x и x x, рассматриваемыйобъембудет испытывать деформации растяжения и сжатия.

Пусть s - упругое смещение границ выделенного объема от положений равновесия . Применение к данному объему закона движения центра масс приводит к дифференциальному уравнению

где t –время, ρ –плотность материала стержня, E – модуль Юнга.


Уравнение (9.1) называется дифференциальным волновым уравнением, котороезаписано в одномерном виде.

Решение уравнения (9.1) для волны, распространяющейся в направлении оси x , имеет вид:

, (9.2)

где A – амплитуда колебаний частиц среды (амплитуда волны); w – циклическая частота колебаний источника, которая равна частоте колебаний частиц среды, вызванных волной.

Можно показать, что данное уравнение имеет общий характер,. В трехмерном виде волновое уравнение имеет следующий вид:

, (9.3)

где Ñ 2 ‑ оператор Лапласа:

.

Решением этого уравнения является смещение s частиц среды от положений равновесия, как функция координат и времени. s = s (x,y,z , t ).

Определим смысл величины u в уравнениях (9.2) и (9.3), имеющей размерность скорости. Зафиксируем какое-либо значение фазы, в уравнении (9.2), положив

. (9.4)

Выражение (9.4) описывает распространение волнового фронта. Продифференцировав (9.4), получим

Скорость распространения волны u в приведенных выше уравнениях есть скорость перемещения фазы, поэтому эту скорость называют фазовой скоростью .

Из уравнения (9.1) следует

.

Т.е.фазовая скорость продольных волн в твердых телах зависит от модуля Юнга E и плотности среды r.

Можно показать, что скорость поперечных волн определяется модулем сдвига:

Скорость волн в идеальном газе для адиабатического процесса распространения зависит от абсолютной температуры :

,

где γ – показатель адиабаты (отношение изобарной и изохорной теплоемкостей газа, γ=с p /с V ), R – универсальная газовая постоянная, T - абсолютная температура, μ – молярная масса газа.

Функция (9.2) описывает плоскую волну, так как волновой фронт представляет собой плоскость.

Уравнение плоской волны можно представить в симметричном виде относительно t и х . Для этого вводится понятие волнового числа k :

Используя (9.7), получим выражение для скорости u:

Тогда уравнение волны описывается соотношением

s = A cos(wt kx ). (9.8)

Если волну рассматривать на расстоянии значительно большем, чем размеры источника, то источник можно считать точечным. В этом случае в изотропной среде волна будет сферической . Такую волну описывает решение дифференциального уравнения (9.3), представленное в сферических координатах. Уравнение сферической волны имеет вид:

. (9.9)

Из (9.9) видно, что амплитуда сферической волны изменяется обратно пропорционально расстоянию от волнового фронта до источника.

Зависимость амплитуды волны от расстояния обусловлено тем, что по мере удаления фронта волны от источника за равные промежутки времени в колебательное движение вовлекаются все возрастающие объемы среды .

Волновой процесс может иметь самую разнообразную природу: в виде волн распространяются свет и звуковое поле, волновую природу имеют колебания вероятности и механические движения таких объектов, как струна. Электромагнитные волны используются в быту (сотовая связь, радиотехника, СВЧ-печи), в медицине (рентгеновские аппараты), в промышленности и науке (электромагнитные системы управления, лазеры и даже гамма-телескопы).

Волновой процесс отличается от колебательного тем, что изменяющаяся величина перемещается, «оторвавшись» от своего источника. Обычно при волновом движении переносится только энергия, однако в отдельных случаях (излучение газа в вакуум, процессы горения) имеет место и перенос массы.

Волновое дифференциальное уравнение

Описывать волны сложно: для них не всегда можно выделить даже общие свойства. Движение волны описывается с помощью волнового дифференциального уравнения:

В этом уравнении u – величина, которая изменяется, v – скорость волны, x, y, z и t – пространственная и временная координата.Решение волнового уравнения

Решение этого уравнение может оказаться весьма сложным. Поэтому на практике часто используют его частное решение – уравнение плоской волны. Это волна с фронтом в виде бесконечной плоскости, движущаяся перпендикулярно своему фронту.

В природе плоских волн не существует, однако эту модель удобно использовать для расчётов. А излучение лазера или зеркальной антенны с достаточной точностью можно считать плоским.

Уравнение плоской волны гармоническое и выглядит вот так:

Здесь А – изменяющаяся величина, А 0 – ее амплитуда, – начальная фаза колебаний. Волновое число k можно рассчитать, зная длину волны :

Циклическая частота связана со скоростью фронта :

А скорость фронта волны, в свою очередь, связана с частотой:

Чтобы математически описать распространение звука, работу антенны или лампы накаливания, удобно использовать уравнение сферической волны:

Здесь r – радиус (симметричная координата), а - амплитуда сферической волны.

Примеры решения задач

ПРИМЕР 1

Задание Плоская волна распространяется с периодом 1,2 с и скоростью 15 м/с. Амплитуда колебаний равна 2 см. Когда от начала колебаний прошло 4 с, оказалось, что точка, находящаяся на 45 м от источника, сместилась на некоторое значение Чему равно
Решение В уравнение плоской волны выразим циклическую частоту через период (при этом начальная фаза равна нулю):

Определение 1

В том случае если волна распространяется в однородной среде, то ее движение в общем случае описывают волновым уравнением (дифференциальным уравнением в частных производных):

\[\frac{{\partial }^2\overrightarrow{s}}{\partial t^2}=v^2\left(\frac{{\partial }^2\overrightarrow{s}}{\partial x^2}+\frac{{\partial }^2\overrightarrow{s}}{\partial y^2}+\frac{{\partial }^2\overrightarrow{s}}{\partial z^2}\right)\left(1\right)\]

\[\triangle \overrightarrow{s}=\frac{1}{v^2}\frac{{\partial }^2\overrightarrow{s}}{\partial t^2}\left(2\right),\]

где $v$ -- фазовая скорость волны $\triangle =\frac{{\partial }^2}{\partial x^2}+\frac{{\partial }^2}{\partial y^2}+\frac{{\partial }^2}{\partial z^2}$ -- оператор Лапласа. Решением уравнения (1,2) служит уравнение любой волны, данные уравнения удовлетворяют, например, и плоская и сферическая волны.

Если плоская волна распространяется вдоль оси $X$, то уравнение (1) представляется как:

Примечание 1

Если физическая величина распространяется как волна, то она обязательно удовлетворяет волновому уравнению. Справедливо обратное утверждение: если какая -- либо величина подчиняется волновому уравнению, то она распространяется как волна. Скорость распространения волны будет равна квадратному корню из коэффициента, который стоит при сумме пространственных производных (в данном виде записи).

Волновое уравнение играет очень большую роль в физике.

Решение волнового уравнения для плоской волны

Запишем общее решение уравнения (2), для световой волны, распространяющейся в вакууме в случае, если s скалярная функция зависит только от одной из декартовых переменных, например $z$, то есть $s=s(z,t)$, что означает, функция $s$ имеет постоянное значение в точках плоскости, которая перпендикулярна $оси Z$. Волновое уравнение (1) в этом случае примет вид:

где скорость распространения света в вакууме равна $c$.

Общим решением уравнения (4) при заданных условиях будет выражение:

где $s_1\left(z+ct\right)$- функция описывающая волну произвольной формы, которая перемещается со скоростью $c$ в отрицательном направлении по отношению к направлению $оси Z$, $s_2\left(z-ct\right)$ - функция описывающая волну произвольной формы, которая перемещается со скоростью $c$ в положительном направлении по отношению к направлению $оси Z$. Надо отметить, что в процессе движения значения $s_1$ и $s_2$ в любой точке волны и ее форма волны неизменны.

Получается, что волна, которую описывает суперпозиция двух волн (в соответствии с формулой (5)). Причем эти составляющие волны движутся в противоположных направлениях. В этом случае уже нельзя говорить о скорости или направлении волны. В самом простом случае получается стоячая волна. В общем случае необходимо рассматривать сложное электромагнитное поле.

Волновое уравнение и система уравнений Максвелла

Волновые уравнения для колебаний векторов напряженности электрического поля и вектора магнитной индукции магнитного поля легко получить из системы уравнений Максвелла в дифференциальной форме. Запишем систему уравнений Максвелла для вещества, в котором нет свободных зарядов и токов проводимости:

Применим операцию $rot$ к уравнению (7):

В выражении (10) можно изменить порядок дифференцирования в правой части выражения, так как пространственные координаты и время -- независимые переменные, следовательно, имеем:

Примем во внимание то, уравнение (6), заменим $rot\overrightarrow{B}$ в выражении (11) на правую часть формулы (6), имеем:

Зная, что $rotrot\overrightarrow{E}=graddiv\overrightarrow{E}-{\nabla }^2\overrightarrow{E}$, и используя $div\overrightarrow{E}=0$, получаем:

Аналогично можно получить волновое уравнение для вектора магнитной индукции . Оно имеет вид:

В выражениях (13) и (14) фазовая скорость распространения волны $(v)$ равна:

Пример 1

Задание: Получите общее решение волнового уравнения $\frac{{\partial }^2s}{\partial z^2}-\frac{1}{c^2}\frac{{\partial }^2s}{\partial t^2}=0(1.1)$ плоской световой волны.

Решение:

Введем независимые переменные вида для функции $s$:

\[\xi =z-ct,\ \eta =z+ct\left(1.2\right).\]

В таком случае частная производная $\frac{\partial s}{\partial z}$ равна:

\[\frac{\partial s}{\partial z}=\frac{\partial s}{\partial \xi}\frac{\partial \xi}{\partial z}+\frac{\partial s}{\partial \eta }\frac{\partial \eta }{\partial z}=\frac{\partial s}{\partial \xi}+\frac{\partial s}{\partial \eta }\left(1.3\right).\]

Частная производная $\frac{\partial s}{\partial t}$ равна:

\[\frac{\partial s}{\partial t}=\frac{\partial s}{\partial \xi}\frac{\partial \xi}{\partial t}+\frac{\partial s}{\partial \eta}\frac{\partial \eta}{\partial t}=-c\frac{\partial s}{\partial \xi}+c\frac{\partial s}{\partial \eta}\to \frac{1}{c}\frac{\partial s}{\partial t}=-\frac{\partial s}{\partial \xi}+\frac{\partial s}{\partial \eta}\left(1.4\right).\]

Вычтем почленно выражение (1.4) из выражения (1.3), имеем:

\[\frac{\partial s}{\partial z}-\frac{1}{c}\frac{\partial s}{\partial t}=2\frac{\partial s}{\partial \xi}\left(1.5\right).\]

Почленное сложение выражений (1.4) и (1.3) дает:

\[\frac{\partial s}{\partial z}-\frac{1}{c}\frac{\partial s}{\partial t}=2\frac{\partial s}{\partial \eta }\left(1.6\right).\]

Найдем произведение левых частей выражений (1.5) и (1.6) и учтем результаты, записанные в правых частях этих выражений:

\[\left(\frac{\partial s}{\partial z}-\frac{1}{c}\frac{\partial s}{\partial t}\right)\left(\frac{\partial s}{\partial z}-\frac{1}{c}\frac{\partial s}{\partial t}\right)=\frac{{\partial }^2s}{\partial z^2}-\frac{1}{с^2}\frac{{\partial }^2s}{\partial t^2}=4\frac{\partial }{\partial \xi }\frac{\partial s}{\partial \eta }=0\left(1.7\right).\]

Если проинтегрировать выражение (1.7) по $\xi $, то получим функцию, которая не зависит от этой переменной, и может зависеть только от $\eta $, что значит, что она является произвольной функцией $\Psi(\eta)$. В этом случае уравнение (1.7) примет вид:

\[\frac{\partial s}{\partial \eta }=\Psi \left(\eta \right)\left(1.8\right).\]

Проведем интегрирование (1.8) по $\eta $ имеем:

где $s_1\left(з\right)$ -- первообразная, $s_2\left(\xi \right)$- постоянная интегрирования. Причем, функции $s_1$ и $s_2$ -- произвольные. Учитывая выражения (1.2), общее решение уравнения (1.1) можно записать как:

Ответ: $s\left(z,t\right)=s_1\left(z+ct\right)+s_2\left(z-ct\right).$

Пример 2

Задание: Определите из волнового уравнения, чему равна фазовая скорость распространения плоской световой волны.

Решение:

Сравнивая волновое уравнение, например, для вектора напряженности, полученное из уравнений Максвелла:

\[{\nabla }^2\overrightarrow{E}-\varepsilon {\varepsilon }_0\mu {\mu }_0\frac{{\partial }^2\overrightarrow{E}}{\partial t^2}=0(2.1)\]

с волновым уравнением:

\[\triangle \overrightarrow{s}=\frac{1}{v^2}\frac{{\partial }^2\overrightarrow{s}}{\partial t^2}(2.2)\]

позволяет сделать вывод о том, что скорость распространения волны $(v)$ равна:

Но здесь требуется отметить, что понятие скорости электромагнитной волны имеет определенный смысл только с волнами простой конфигурации, под такие волны подходит, например категория плоских волн. Так $v$ не будет являться скоростью распространения волны в случае производного решения волнового уравнения, в состав которых входят, например, стоячие волны.

Ответ: $v=\frac{с}{\sqrt{\mu \varepsilon }}.$

Одним из наиболее распространенных в инженерной практике уравнений с частными производными второго порядка является волновое уравнение, описывающее различные виды колебаний. Поскольку колебания - процесс нестационарный, то одной из независимых переменных является время t . Кроме того, независимыми переменными в уравнении являются также пространственные координаты х, у, z . В зависимости от их количества различают одномерное, двумерное и трехмерное волновые уравнения.

Одномерное волновое уравнение – уравнение, описывающее продольные колебания стержня, сечения которого совершают плоскопараллельные колебательные движения, а также поперечные колебания тонкого стержня (струны) и другие задачи. Двумерное волновое уравнение используют для исследования колебаний тонкой пластины (мембраны). Трехмерное волновое уравнение описывает распространение волн в пространстве (например, звуковых волн в жидкости, упругих волн в сплошной среде и т.п.).

Рассмотрим одномерное волновое уравнение, которое можно записать в виде

Для поперечных колебаний струны искомая функция U (x , t ) описывает положение струны в момент t . В этом случае а 2 = Т/ρ, где Т - натяжение струны, ρ - ее линейная (погонная) плотность. Колебания предполагаются малыми, т.е. амплитуда мала по сравнению с длиной струны. Кроме того, уравнение (2.63) записано для случая свободных колебаний. В случае вынужденных колебаний в правой части уравнения добавляют некоторую функцию f (x , t ), характеризующую внешние воздействия, при этом сопротивление среды колебательному процессу не учитывается.

Простейшей задачей для уравнения (2.63) является задача Коши: в начальный момент времени задаются два условия (количество условий равно порядку входящей в уравнение производной по t ):

Эти условия описывают начальную форму струны и скорость ее точек .

На практике чаще приходится решать не задачу Коши для бесконечной струны, а смешанную задачу для ограниченной струны некоторой длины l . В этом случае задают граничные условия на ее концах. В частности, при закрепленных концах их смещения равны нулю, и граничные условия имеют вид

Рассмотрим некоторые разностные схемы для решения задачи (2.63)-(2.65). Простейшей является явная трехслойная схема типа крест (шаблон показан на рис. 2.21). Заменим в уравнении (2.63) вторые производные искомой функции U по t и х их конечно-разностными соотношениями с помощью значений сеточной функции в узлах сетки :

Рис. 2.21. Шаблон явной схемы

Отсюда можно найти явное выражение для значения сеточной функции на (j + 1)-ом слое:

Здесь, как обычно в трехслойных схемах, для определения неизвестных значений на (j + 1)-ом слое нужно знать решения на j -ом и (j - 1)-ом слоях. Поэтому начать счет по формулам (2.66) можно лишь для второго слоя, а решения на нулевом и первом слоях должны быть известны. Их находят с помощью начальных условий (2.64). На нулевом слое имеем

Для получения решения на первом слое воспользуемся вторым начальным условием (2.64). Производную заменим конечно-разностной аппроксимацией. В простейшем случае полагают

(2.68)

Из этого соотношения можно найти значения сеточной функции на первом временном слое:

Отметим, что аппроксимация начального условия в виде (2.68) ухудшает аппроксимацию исходной дифференциальной задачи: погрешность аппроксимации становится порядка , т.е. первого порядка по τ, хотя сама схема (2.66) имеет второй порядок аппроксимации по h и τ. Положение можно исправить, если вместо (2.69) взять более точное представление:

(2.70)

Вместо нужно взять . А выражение для второй производной можно найти с использованием исходного уравнения (2.63) и первого начального условия (2.64). Получим

Тогда (2.70) примет вид:

Разностная схема (2.66) с учетом (2.71) обладает погрешностью аппроксимации порядка

При решении смешанной задачи с граничными условиями вида (2.65), т.е. когда на концах рассматриваемого отрезка заданы значения самой функции, второй порядок аппроксимации сохраняется. В этом случае для удобства крайние узлы сетки располагают в граничных точках (х0 =0, xI = l ). Однако граничные условия могут задаваться и для производной.

Например, в случае свободных продольных колебаний стержня на его незакрепленном конце задается условие

Если это условие записать в разностном виде с первым порядком аппроксимации, то погрешность аппроксимации схемы станет порядка . Поэтому для сохранения второго порядка данной схемы по h необходимо граничное условие (2.72) аппроксимировать со вторым порядком.

Рассмотренная разностная схема (2.66) решения задачи (2.63) - (2.65) условно устойчива. Необходимое и достаточное условие устойчивости:

Следовательно, при выполнении этого условия и с учетом аппроксимации схема (2.66) сходится к исходной задаче со скоростью O (h 2 + τ 2 ). Данная схема часто используется в практи-ческих расчетах. Она обеспечивает приемлемую точность получения решения U (x , t ), которое имеет непрерывные производные четвертого порядка.

Рис. 2.22. Алгоритм решения волнового уравнения

Алгоритм решения задачи (2.63)-(2.65) с помощью данной явной разностной схемы приведен на рис. 2.22. Здесь представлен простейший вариант, когда все значения сеточной функции, образующие двумерный массив, по мере вычисления хранятся в памяти компьютера, а после решения задачи выводятся результаты. Можно было бы предусмотреть хранение решения лишь на трех слоях, что сэкономило бы память. Результаты в таком случае можно выводить в процессе счета (см. рис. 2.13).

Существуют и другие разностные схемы решения волнового уравнения. В частности, иногда удобнее использовать неявные схемы, чтобы избавиться от ограничений на величину шага, налагаемых условием (2.73). Эти схемы обычно абсолютно устойчивы, однако алгоритм решения задачи и программа для компьютера усложняются.

Построим простейшую неявную схему. Вторую производную по t в уравнении (2.63) аппроксимируем, как и ранее, по трехточечному шаблону с помощью значений сеточной функции на слоях j - 1, j , j + 1. Производную до х заменяем полусуммой ее аппроксимации на (j + 1)-ом и (j - 1)-ом слоях (рис. 2.23):

Рис. 2.23. Шаблон неявной схемы

Из этого соотношения можно получить систему уравнений относительно неизвестных значений сеточной функции на (j + 1)-ом слое:

Полученная неявная схема устойчива и сходится со скоростью . Систему линейных алгебраических уравнений (2.74) можно, в частности, решать методом прогонки. К этой системе следует добавить разностные начальные и граничные условия. Так, выражения (2.67), (2.69) или (2.71) могут быть использованы для вычисления значений сеточной функции на нулевом и первом слоях по времени.

При двух или трех независимых пространственных переменных волновые уравнения принимают вид

Для них также могут быть построены разностные схемы по аналогии с одномерным волновым уравнением. Разница состоит в том, что нужно аппроксимировать производные по двум или трем пространственным переменным, что, естественно, усложняет алгоритм и требует значительно больших объемов памяти и времени счета. Подробнее двумерные задачи будут рассмотрены ниже для уравнения теплопроводности.



© dagexpo.ru, 2024
Стоматологический сайт