Обучение методом обратного распространения ошибок. Алгоритм обратного распространения ошибки

21.09.2019

Алгоритм обратного распространения ошибки является одним из методов обучения многослойных нейронных сетей прямого распространения, называемых также многослойными персептронами. Многослойные персептроны успешно применяются для решения многих сложных задач.

Обучение алгоритмом обратного распространения ошибки предполагает два прохода по всем слоям сети: прямого и обратного. При прямом проходе входной вектор подается на входной слой нейронной сети, после чего распространяется по сети от слоя к слою. В результате генерируется набор выходных сигналов, который и является фактической реакцией сети на данный входной образ. Во время прямого прохода все синаптические веса сети фиксированы. Во время обратного прохода все синаптические веса настраиваются в соответствии с правилом коррекции ошибок, а именно: фактический выход сети вычитается из желаемого, в результате чего формируется сигнал ошибки. Этот сигнал впоследствии распространяется по сети в направлении, обратном направлению синаптических связей. Отсюда и название – алгоритм обратного распространения ошибки . Синаптические веса настраиваются с целью максимального приближения выходного сигнала сети к желаемому.

Рассмотрим работу алгоритма подробней. Допустим необходимо обучить следующую нейронную сеть, применив алгоритм обратного распространения ошибки:

На приведенном рисунке использованы следующие условные обозначения:

В качестве активационной функции в многослойных персептронах, как правило, используется сигмоидальная активационная функция, в частности логистическая:

где – параметр наклона сигмоидальной функции. Изменяя этот параметр, можно построить функции с различной крутизной. Оговоримся, что для всех последующих рассуждений будет использоваться именно логистическая функция активации, представленная только, что формулой выше.

Сигмоид сужает диапазон изменения так, что значение лежит между нулем и единицей. Многослойные нейронные сети обладают большей представляющей мощностью, чем однослойные, только в случае присутствия нелинейности. Сжимающая функция обеспечивает требуемую нелинейность. В действительности имеется множество функций, которые могли бы быть использованы. Для алгоритма обратного распространения ошибки требуется лишь, чтобы функция была всюду дифференцируема. Сигмоид удовлетворяет этому требованию. Его дополнительное преимущество состоит в автоматическом контроле усиления. Для слабых сигналов (т.е. когда близко к нулю) кривая вход-выход имеет сильный наклон, дающий большое усиление. Когда величина сигнала становится больше, усиление падает. Таким образом, большие сигналы воспринимаются сетью без насыщения, а слабые сигналы проходят по сети без чрезмерного ослабления.

Целью обучения сети алгоритмом обратного распространения ошибки является такая подстройка ее весов, чтобы приложение некоторого множества входов приводило к требуемому множеству выходов. Для краткости эти множества входов и выходов будут называться векторами. При обучении предполагается, что для каждого входного вектора существует парный ему целевой вектор, задающий требуемый выход. Вместе они называются обучающей парой. Сеть обучается на многих парах.

Следующий:

  1. Инициализировать синаптические веса маленькими случайными значениями.
  2. Выбрать очередную обучающую пару из обучающего множества; подать входной вектор на вход сети.
  3. Вычислить выход сети.
  4. Вычислить разность между выходом сети и требуемым выходом (целевым вектором обучающей пары).
  5. Подкорректировать веса сети для минимизации ошибки (как см. ниже).
  6. Повторять шаги с 2 по 5 для каждого вектора обучающего множества до тех пор, пока ошибка на всем множестве не достигнет приемлемого уровня.

Операции, выполняемые шагами 2 и 3, сходны с теми, которые выполняются при функционировании уже обученной сети, т.е. подается входной вектор и вычисляется получающийся выход. Вычисления выполняются послойно. На рис. 1 сначала вычисляются выходы нейронов слоя (слой входной, а значит никаких вычислений в нем не происходит), затем они используются в качестве входов слоя , вычисляются выходы нейронов слоя , которые и образуют выходной вектор сети . Шаги 2 и 3 образуют так называемый «проход вперед», так как сигнал распространяется по сети от входа к выходу.

Шаги 4 и 5 составляют «обратный проход», здесь вычисляемый сигнал ошибки распространяется обратно по сети и используется для подстройки весов.

Рассмотрим подробней 5 шаг – корректировка весов сети. Здесь следует выделить два нижеописанных случая.

Случай 1. Корректировка синаптических весов выходного слоя

Например, для модели нейронной сети на рис. 1, это будут веса имеющие следующие обозначения: и . Определимся, что индексом будем обозначать нейрон, из которого выходит синаптический вес, а – нейрон в который входит:

Введем величину , которая равна разности между требуемым и реальным выходами, умноженной на производную логистической функции активации (формулу логистической функции активации см. выше):

Тогда, веса выходного слоя после коррекции будут равны:

Приведем пример вычислений для синаптического веса :

Случай 2. Корректировка синаптических весов скрытого слоя

Для модели нейронной сети на рис. 1, это будут веса соответствующие слоям и . Определимся, что индексом будем обозначать нейрон из которого выходит синаптический вес, а – нейрон в который входит (обратите внимание на появление новой переменной ).

Многослойная искусственная нейронная сеть (рис. 6) может содержать произвольное количество слоев (K ), каждый слой состоит из нескольких нейронов, число которых также может быть произвольно (Н k – количество нейронов в слое), количество входов n , количество выходов H=H k – числу нейронов в выходном (последнем) слое.

Рис. 6. Многослойная нейронная сеть прямого распространения

Слои между первым и последним называются промежуточными или скрытыми. Веса в такой сети имеют три индекса i -номер нейрона следующего слоя, для которого связь входная, j -номер входа или нейрона текущего слоя, для которого связь выходная, k -номер текущего слоя в нейронной сети (для входов, вектора X, k=0 ).

Многослойные нейронные сети прямого распространения обучаются методом обратного распространения ошибки.

Алгоритм обучения методом обратного распространения ошибки:

1 шаг: инициализация матриц весов случайным образом (в циклах).

2 шаг: предъявление нейронной сети образа (на вход подаются значения из обучающей выборки – вектор Х ) и берется соответствующий выход (вектор D ).

3 шаг (прямой проход): вычисление в циклах выходов всех слоев и получение выходных значений нейронной сети (вектор Y ).

где – выход i -нейрона k -слоя, f – функция активации, – синаптическая связь между j -нейроном слоя k-1 и i-нейроном слоя k , – входное значение.

4 шаг (обратный проход): изменение весов в циклах по формулам:

– для последнего (выходного) слоя,

– для промежуточных слоев,

где t – номер текущей итерации цикла обучения (номер эпохи), – коэффициент обучения задается от 0 до 1, – выход i -го нейрона k -го слоя,

– синаптическая связь между j- нейроном слоя k- 1 и i -нейроном слоя k , d i – желаемое выходное значение на i -нейроне, y i – реальное значение на i -нейроне выходного слоя.

5 шаг: проверка условия продолжения обучения (вычисление значения ошибки и/или проверка заданного количества итераций). Если обучение не завершено, то 2 шаг, иначе заканчиваем обучение. Среднеквадратичная ошибка вычисляется следующим образом:

где Q – общее число примеров, H - количество нейронов в выходном слое, d i – желаемое выходное значение на i-нейроне, y i - реальное значение на i -нейроне выходного слоя.

Пример решения задачи

Задача . Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной бинарной неоднородной нейронной сети, состоящей из 2 слоёв, причем в первом слое находится 2 нейрона и используется сигмоидальная функция активации (k=0,9), а во втором – 1, линейная (l=0,7) функция. В качестве обучающей выборки использовать таблицу истинности для операции «штрих Шеффера»



Описание процесса решения. Для обучения нейронной сети методом обратного распространения ошибки необходимо:

1) Графически отобразить структуру нейронной сети. Определить размерность и количество матриц синаптических весов (для каждого слоя своя матрица).

2) Определить обучающую выборку, представив ее в табличном виде.

3) Выбрать входные данные, на которых будет рассматриваться итерация цикла обучения.

4) Следуя алгоритмы обучения методом обратного обучения ошибки просчитать одну итерацию цикла и представить новые синаптические веса в матричном виде.

Решение.

1) По заданию нейронная сеть состоит из трех нейронов, два входных, один выходной, значит синаптических весов 6. Первый слой нейронов имеет сигмоидальную функцию активации, второй – линейная.

2) По заданию нейронная сеть бинарная, поэтому на ее входы могут подаваться только нули и единицы, так как входа 2, то возможных комбинаций входных значений будет 4 (обучающая выборка будет состоять из 4 векторов). Выход нейронной сети согласно заданию соответствует оператору «штрих Шеффера». Поэтому таблица с обучающей выборкой будет выглядеть следующим образом:

0.3 0.8

2 шаг: вектор X={0,1}, D ={1}.

3 шаг (прямой проход): вычисление в циклах выходов всех слоев и получение выходных значений нейронной сети (вектор Y).



4 шаг (обратный проход): изменение весов:


0.7
0.5 0.2
0.3 0.8

5 шаг:

Так как мы рассматриваем одну итерацию цикла обучения, в любом случае выходим из цикла.

Задачи

1. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной бинарной однородной нейронной сети, состоящей из 2 слоёв, причем в первом слое находится 2 нейрона, а во втором – 1. Функция активации нейронов сети – пороговая (T=0,6) функция. В качестве обучающей выборки использовать таблицу истинности для операции «исключающее или» (не использовать первую строчку таблицы).

Синаптические веса задать случайным образом.

2. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной бинарной однородной нейронной сети, состоящей из 2 слоёв, причем в первом слое находится 2 нейрона, а во втором – 1. Функция активации нейронов сети – сигмоидальная (k=1) функция. В качестве обучающей выборки использовать таблицу истинности для операции импликации (не использовать первую строчку таблицы).

Синаптические веса задать случайным образом.

3. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной бинарной однородной нейронной сети, состоящей из 2 слоёв, причем в первом слое находится 2 нейрона, а во втором – 1. Функция активации нейронов сети – линейная (k=0,6) функция. В качестве обучающей выборки использовать таблицу истинности для операции «штрих Шеффера» (не использовать первую строчку таблицы).

Синаптические веса задать случайным образом.

4. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной бинарной однородной нейронной сети, состоящей из 2 слоёв, причем в первом слое находится 2 нейрона, а во втором – 1. Функция активации нейронов сети – гиперболический тангенс (k=1). В качестве обучающей выборки использовать таблицу истинности для операции «стрелка Пирса» (не использовать первую строчку таблицы).

Синаптические веса задать случайным образом.

5. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной бинарной неоднородной нейронной сети, состоящей из 2 слоёв, причем в первом слое находится 2 нейрона и используется сигмоидальная функция активации (k=0,9), а во втором – 1, пороговая (T=0,7). В качестве обучающей выборки использовать таблицу истинности для операции «исключающее или» (не использовать первую строчку таблицы).

Синаптические веса задать случайным образом.

6. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной бинарной неоднородной нейронной сети, состоящей из 2 слоёв, причем в первом слое находится 2 нейрона и используется линейная функция активации (k=0,5), а во втором – 1, сигмоидальная (k=0,7) функция. В качестве обучающей выборки использовать таблицу истинности для операции импликации (не использовать первую строчку таблицы).

Синаптические веса задать случайным образом.

7. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной бинарной неоднородной нейронной сети, состоящей из 2 слоёв, причем в первом слое находится 2 нейрона и используется пороговая функция активации (T=0,4), а во втором – 1, линейная (k=0,6) функция. В качестве обучающей выборки использовать таблицу истинности для операции «штрих Шеффера» (не использовать первую строчку таблицы).

Синаптические веса задать случайным образом.

8. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной бинарной неоднородной нейронной сети, состоящей из 2 слоёв, причем в первом слое находится 2 нейрона и используется пороговая функция активации (T=0,6), а во втором –1, гиперболический тангенс (k =2). В качестве обучающей выборки использовать таблицу истинности для операции «стрелка Пирса» (не использовать первую строчку таблицы).

Синаптические веса задать случайным образом.

9. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной аналоговой неоднородной нейронной сети, состоящей из 2 слоёв, причем в первом слое находится 3 нейрона, а во втором – 2. Функция активации нейронов сети – линейная (k=0,6) функция.

10. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной аналоговой неоднородной нейронной сети, состоящей из 2 слоёв, причем в первом слое находится 3 нейрона, а во втором – 2. Функция активации нейронов сети – сигмоидальная (k=1) функция.

Синаптические веса и обучающую выборку задать случайным образом (не нули).

11. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной аналоговой неоднородной нейронной сети, состоящей из 2 слоёв, причем в первом слое находится 3 нейрона, а во втором – 2. Функция активации нейронов сети – пороговая (T=0,65) функция.

Синаптические веса и обучающую выборку задать случайным образом (не нули).

12. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной аналоговой неоднородной нейронной сети, состоящей из 2 слоёв, причем в первом слое находится 3 нейрона, а во втором – 2. Функция активации нейронов сети – гиперболический тангенс (k=3) функция.

Синаптические веса и обучающую выборку задать случайным образом (не нули).

13. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной аналоговой неоднородной нейронной сети, состоящей из 2 слоёв, причем в первом слое находится 2 нейрона и используется сигмоидальная функция активации (k=0,9), во втором – 2, пороговая (T=0,7).

Синаптические веса и обучающую выборку задать случайным образом (не нули).

14. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной аналоговой неоднородной нейронной сети, состоящей из 2 слоёв, причем в первом слое находится 2 нейрона и используется линейная функция активации (k=0,5), во втором – 2, сигмоидальная (k=0,7) функция.

Синаптические веса и обучающую выборку задать случайным образом (не нули).

15. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной аналоговой неоднородной нейронной сети, состоящей из 2 слоёв, причем в первом слое находится 2 нейрона и используется пороговая функция активации (T=0,4), во втором – 2, линейная (k=0,6) функция.

Синаптические веса и обучающую выборку задать случайным образом (не нули).

16. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной аналоговой неоднородной нейронной сети, состоящей из 2 слоёв, причем в первом слое находится 2 нейрона и используется пороговая функция активации (T=0,6), во втором – 1, гиперболический тангенс (k=2).

Синаптические веса и обучающую выборку задать случайным образом (не нули).

17. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной бинарной однородной нейронной сети, состоящей из 3 слоёв, использующей пороговую функцию активации (T=0,5), в первом слое 2 нейрона, во втором – 2, в третьем - 1.

Синаптические веса и обучающую выборку задать случайным образом (не нули).

18. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной бинарной однородной нейронной сети, состоящей из 2 слоёв, использующей пороговую функцию активации (T=0,5), в первом слое 3 нейрона, во втором – 1. В качестве обучающей выборки использовать таблицу истинности для (не использовать первую строчку таблицы).

Синаптические веса задать случайным образом.

19. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной бинарной однородной нейронной сети, состоящей из 2 слоёв, использующей сигмоидальную функцию активации (k=0,5), в первом слое 3 нейрона, во втором –1. В качестве обучающей выборки использовать таблицу истинности для (не использовать первую строчку таблицы).

Синаптические веса задать случайным образом.

20. Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной аналоговой неоднородной нейронной сети, состоящей из 3 слоёв, причем в первом слое находится 2 нейрона и используется пороговая функция активации (T=0,6), во втором –2, гиперболический тангенс (k=2), в третьем 1, линейная (k=0,7).

Синаптические веса и обучающую выборку задать случайным образом (не нули).

Лабораторная работа № 6
Генетический алгоритм

Генетический алгоритм (англ. genetic algorithm) – это эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования, основанный на концепциях естественного отбора и генетики.

Для моделирования эволюционных процессов в генетическом алгоритме используются операторы (таблица 10) и стратегии отбора (таблица 11).

Таблица 10.

Основные виды операторов генетических алгоритмов.

Оператор Описание Пример
Операторы скрещивания
Одноточечный кроссовер выбирается одна точка разрыва и родительские хромосомы обмениваются одной из получившихся частей Родитель 1:1001011|01001 Родитель 2:0100011|00111 Потомок 1:1001011|00111 Потомок 2:0100011 |01001
Двухточечный кроссовер выбираются две точки разрыва и родительские хромосомы обмениваются сегментом, который находится между двумя этими точками Родитель 1:100|101101|001 Родитель 2:010|001100|111 Потомок 1:100 |001100|001 Потомок 2:010|101101|111
Равномерный кроссовер каждый бит первого потомка случайным образом наследуется от одного из родителей, второму потомку достается бит другого родителя Родитель 1:100101101001 Родитель 2:010001100111 Вероятность: 90 % Случайные числа (100): 2, 24, 8, 93, 55, 13, 67, 43, 99, 61, 5, 89 Потомок 1:100|0011000|01 Потомок 2:0101 01101 111
Операторы мутации
Одноточечная мутация произвольный бит хромосомы с определенной вероятностью изменяется на противоположный до:1001011 00111 после:1001010 00111
Транслокация перенос какого-либо участка хромосомы в другой сегмент этой же хромосомы до:10011110 0111 после:11100011 0111
Инверсия перестановка генов в обратном порядке внутри произвольно выбранного участка хромосомы до:100111100 111 после:100100111 111

Таблица 11.

Виды отбора особей в генетических алгоритмах.

Вид отбора Описание
Пропорциональный каждой особи назначает вероятность , равную отношению ее приспособленности к суммарной приспособленности популяции, осуществляется отбор (с замещением) всех n (устанавливается заранее) особей для дальнейшей генетической обработки, согласно величине
Рулетка вид пропорционального отбора, когда особи отбираются с помощью n «запусков» рулетки (колесо рулетки содержит по одному сектору для каждого члена популяции, размер i -ого сектора пропорционален соответствующей величине )
Турнирный из популяции, содержащей m особей, выбирается случайным образом t особей и выбирается наиболее приспособленная (между выбранными особями проводится турнир), эта операция повторяется m раз
Отбор усечением из отсортированной в порядке убывания степени приспособленности популяции с учетом порога приспособленности (ниже порога особи в отборе не участвуют) случайным образом m/2 раз выбираются родительские пары
Ранговый для каждой особи ее вероятность попасть в промежуточную популяцию пропорциональна ее порядковому номеру в отсортированной по возрастанию приспособленности популяции
Элитный добавляет к любому другому виду отбора принцип элитизма – сохранения в новой популяции одной или нескольких наиболее приспособленных особей

Перед запуском генетического алгоритма на выполнение необходимо закодировать признаки (параметры, по которым ведется отбор), сформировать из них фенотип, определить фитнесс-функцию (критерий приспособленности).

Существует различные виды генетического алгоритма, они отличаются используемыми операторами, видами отбора, а также различают последовательные и параллельные алгоритмы, по все они в той или иной форме содержат следующую последовательность шагов:

1 шаг . Формирование начальной популяции.

2 шаг . Оценка особей популяции (используется фитнесс-функция).

3 шаг . Отбор (используется один из методов отбора).

4 шаг . Скрещивание (используется оператор кроссовера).

5 шаг . Мутация (используется один или несколько операторов мутации).

6 шаг . Формирование новой популяции.

7 шаг . Если популяция не сошлась, то 2, иначе – останов (прекращение функционирования генетического алгоритма).

Пример решения задачи

Задача. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма:

фитнесс-функция – сумма всех бит, деленная на среднее значение суммы бит особей популяции; метод отбора – рулетка с принципом элитизма; оператор скрещивания – двухточечный кроссовер; оператор мутации – одиночная мутация.

Описание процесса решения .

Для использования генетического алгоритма необходимо:

1) Определить набор признаков, характеризующие решения задачи оптимизации или моделирования. Определить фенотип, закодировать признаки (можно использовать код Грея).

2) Использовать последовательность шагов генетического алгоритма с соответствующими операторами.

Решение.

1) Фенотип (задаем десятичные значения случайным образом):

Признак Двоичное значение признака Десятичное значение признака Код Грея
Признак 1
Признак 2
Признак 3
Признак 4
Признак 5

2) 1 шаг. Формирование начальной популяции.

Определено пять признаков, пусть особь содержит любые 2 из них (два первых – значения первого критерия, три последних второго), случайным образом сгенерируем 10 особей, каждая особь длиной 8 бит:

Особь 1: 00111110 Особь 6: 00111110

Особь 2: 11001110 Особь 7: 11000111

Особь 3: 00111001 Особь 8: 00110111

Особь 4: 11001001 Особь 9: 10101010

Особь 5: 00110111 Особь 10: 01010101

2 шаг. Оценка особей популяции (используется фитнесс-функция равная сумме бит в особи).

Среднее значение суммы бит в популяции = 3,6.

3 шаг. Отбор (используется метод отбора – рулетка с принципом элитизма).

Строим рулетку (сектора пропорциональны приспособленности, рис.

7) и запускаем ее 8 раз (выбираем 4 пары, рис. 9):

Рис. 7. Рулетка для задачи генетического алгоритма

Запуски рулетки (случайным образом):

Рис. 8. Запуски рулетка для задачи генетического алгоритма

Таким образом, образовались следующие пары: 1 и 5, 7 и 5, 10 и 2, 8 и 6.

4 шаг. Скрещивание (используется оператор – двухточечный кроссовер).

Выбираем две точки разрыва (случайным образом, но числа должны различаться хотя бы на 2 и не быть равными 1 или длине особи): 2 и 5 и применяем оператор к выбранным парам особей:

Особь 1: 00|111|110 Особь 2.1: 00|110|110

Особь 5: 00|110|111 Особь 2.2: 00|111|111

Особь 7: 11|000|111 Особь 2.3: 11|110|111

Особь 5: 00|110|111 Особь 2.4: 00|000|111

Особь 10: 01|010|101 Особь 2.5: 01|001|101

Особь 2: 11|001|110 Особь 2.6: 11|010|110

Особь 6: 00|111|110 Особь 2.7: 00|110|110

Особь 8: 00|110|111 Особь 2.8: 00|111|111

5 шаг. Мутация (используется оператор – одноточечная мутация).

Определим вероятность мутации 30 % и бит – третий, подвергающийся мутации.

1-8 – наследники, 9-11 – матировавшие особи, 12 - сохраняем одну особь с максимальной приспособленностью – принцип элитизма.

7 шаг. Популяция достаточно разнообразна – нет признаков сходимости. Так как рассматривается лишь одна эпоха генетического алгоритма – выход из алгоритма.

Задачи

1. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – сумма всех бит, деленная на максимум суммы всех бит среди особей популяции; метод отбора – рулетка; оператор скрещивания – одноточечный кроссовер; оператор мутации – одиночная мутация.

2. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – сумма всех бит, деленная на минимум суммы всех бит среди особей популяции; метод отбора – турнирный отбор; оператор скрещивания – двухточечный кроссовер; оператор мутации – транслокация.

3. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – единица, деленная на минимум суммы всех бит среди особей популяции; метод отбора – ранговый отбор; оператор скрещивания – равномерный кроссовер; оператор мутации – инверсия.

4. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – сумма всех бит, умноженная на минимум суммы всех бит среди особей популяции; метод отбора – отбор усечением; оператор скрещивания – равномерный кроссовер; оператор мутации – одноточечная мутация.

5. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – единица, деленная на максимум суммы всех бит в особи в популяции; метод отбора – пропорциональный отбор; оператор скрещивания – одноточечный кроссовер; оператор мутации – инверсия.

6. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – сумма всех бит, деленная на количество бит в особи; метод отбора – рулетка с использованием принципа элитизма; оператор скрещивания – равномерный кроссовер; оператор мутации – инверсия.

7. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – сумма всех бит особи, деленная на количество бит в особи; метод отбора – пропорциональный с использованием принципа элитизма; оператор скрещивания – одноточечный кроссовер; оператор мутации – одноточечная мутация.

8. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – сумма всех бит особи, деленная на количество особей в популяции; метод отбора – ранговый с использованием принципа элитизма; оператор скрещивания – одноточечный кроссовер; оператор мутации – одноточечная мутация.

9. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – сумма всех бит особи, деленная на количество особей в популяции; метод отбора – турнирный с использованием принципа элитизма; оператор скрещивания – равномерный кроссовер; оператор мутации – транслокация.

10. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – сумма всех бит особи, деленная на количество особей в популяции; метод отбора – отбор усечением с использованием принципа элитизма; оператор скрещивания – двухточечный кроссовер; оператор мутации – транслокация.

11. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – сумма всех бит, деленная на максимум суммы всех бит особи в популяции; метод отбора – рулетка; оператор скрещивания – двухточечный кроссовер; оператор мутации – одиночная мутация.

12. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – сумма всех бит особи, деленная на максимум суммы всех бит особи в популяции; метод отбора – турнирный отбор; оператор скрещивания – равномерный кроссовер; оператор мутации – инверсия.

13. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – единица, деленная на минимум суммы всех бит особи в популяции; метод отбора – ранговый отбор; оператор скрещивания – одноточечный кроссовер; оператор мутации – инверсия.

14. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – сумма всех бит, умноженная на минимум суммы всех бит особи в популяции; метод отбора – отбор усечением; оператор скрещивания – равномерный кроссовер; оператор мутации – транслокация.

15. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – единица, деленная на максимум суммы всех бит среди особей популяции; метод отбора – пропорциональный отбор; оператор скрещивания – одноточечный кроссовер; оператор мутации – транслокация.

16. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – сумма всех бит особи, деленная на количество бит в особи; метод отбора – рулетка с использованием принципа элитизма; оператор скрещивания – одноточечный кроссовер; оператор мутации – транслокация.

17. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – сумма всех бит особи, деленная на количество бит в особи; метод отбора – пропорциональный с использованием принципа элитизма; оператор скрещивания – двухточечный кроссовер; оператор мутации – инверсия.

18. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – сумма всех бит особи, деленная на количество особей в популяции; метод отбора – ранговый с использованием принципа элитизма; оператор скрещивания – равномерный кроссовер; оператор мутации – транслокация.

19. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – сумма всех бит особи, деленная на количество особей в популяции; метод отбора – турнирный с использованием принципа элитизма; оператор скрещивания – равномерный кроссовер; оператор мутации – одноточечная мутация.

20. Описать функционирование одной эпохи генетического алгоритма на примере произвольной задачи (не менее пяти признаков закодировать случайным образом, начальная популяция содержит не менее 10 особей). Использовать следующие параметры генетического алгоритма: фитнесс-функция – сумма всех бит особи, деленная на количество особей в популяции; метод отбора – отбор усечением с использованием принципа элитизма; оператор скрещивания – двухточечный кроссовер; оператор мутации – одноточечная мутация.

Лабораторная работа №7.
Разработка специальных моделей представления знаний
для БЗ и БД и правил для машины вывода

Порядок работ и их виды

Введение с указанием предметной области.

В разделе “I. Идентификация ” постановка (формулировка) проблемы, цели и задачи.

В разделе “II.. Концептуализация ” нужно представить следующие результаты разработки Содержательной и Концептуальной моделей.

Итак, сегодня мы продолжим обсуждать тему нейронных сетей на нашем сайте, и, как я и обещал в первой статье (), речь пойдет об обучении сетей . Тема эта очень важна, поскольку одним из основных свойств нейронных сетей является именно то, что она не только действует в соответствии с каким-то четко заданным алгоритмом, а еще и совершенствуется (обучается) на основе прошлого опыта. И в этой статье мы рассмотрим некоторые формы обучения, а также небольшой практический пример.

Давайте для начала разберемся, в чем же вообще состоит цель обучения. А все просто – в корректировке весовых коэффициентов связей сети. Одним из самых типичных способов является управляемое обучение . Для его проведения нам необходимо иметь набор входных данных, а также соответствующие им выходные данные. Устанавливаем весовые коэффициенты равными некоторым малым величинам. А дальше процесс протекает следующим образом…

Мы подаем на вход сети данные, после чего сеть вычисляет выходное значение. Мы сравниваем это значение с имеющимся у нас (напоминаю, что для обучения используется готовый набор входных данных, для которых выходной сигнал известен) и в соответствии с разностью между этими значениями корректируем весовые коэффициенты нейронной сети. И эта операция повторяется по кругу много раз. В итоге мы получаем обученную сеть с новыми значениями весовых коэффициентов.

Вроде бы все понятно, кроме того, как именно и по какому алгоритму необходимо изменять значение каждого конкретного весового коэффициента. И в сегодняшней статье для коррекции весов в качестве наглядного примера мы рассмотрим правило Видроу-Хоффа , которое также называют дельта-правилом .

Дельта правило (правило Видроу-Хоффа).

Определим ошибку :

Здесь у нас – это ожидаемый (истинный) вывод сети, а – это реальный вывод (активность) выходного элемента. Помимо выходного элемента ошибки можно определить и для всех элементов скрытого слоя нейронной сети, об этом мы поговорим чуть позже.

Дельта-правило заключается в следующем – изменение величины весового коэффициента должно быть равно:

Где – норма обучения. Это число мы сами задаем перед началом обучения. – это сигнал, приходящий к элементу k от элемента j . А – ошибка элемента k .

Таким образом, в процессе обучения на вход сети мы подаем образец за образцом, и в результате получаем новые значения весовых коэффициентов. Обычно обучение заканчивается когда для всех вводимых образцов величина ошибки станет меньше определенной величины. После этого сеть подвергается тестированию при помощи новых данных, которые не участвовали в обучении. И по результатам этого тестирования уже можно сделать выводы, хорошо или нет справляется сеть со своими задачами.

С корректировкой весов все понятно, осталось определить, каким именно образом и по какому алгоритму будут происходить расчеты при обучении сети. Давайте рассмотрим обучение по алгоритму обратного распространения ошибок.

Алгоритм обратного распространения ошибок.

Этот алгоритм определяет два “потока” в сети. Входные сигналы двигаются в прямом направлении, в результате чего мы получаем выходной сигнал, из которого мы получаем значение ошибки. Величина ошибки двигается в обратном направлении, в результате происходит корректировка весовых коэффициентов связей сети. В конце статьи мы рассмотрим пример, наглядно демонстрирующий эти процессы.

Итак, для корректировки весовых значений мы будем использовать дельта-правило, которое мы уже обсудили. Вот только необходимо определить универсальное правило для вычисления ошибки каждого элемента сети после, собственно, прохождения через элемент (при обратном распространении ошибок).

Я, пожалуй, не буду приводить математические выводы и расчеты (несмотря на мою любовь к математике 🙂), чтобы не перегружать статью, ограничимся только итоговыми результатами:

Функция – это функция активности элемента. Давайте использовать логистическую функцию, для нее:

Подставляем в предыдущую формулу и получаем величину ошибки:

В этой формуле:

Наверняка сейчас еще все это кажется не совсем понятным, но не переживайте, при рассмотрении практического примера все встанет на свои места 😉

Собственно, давайте к нему и перейдем.

Перед обучением сети необходимо задать начальные значения весов – обычно они инициализируются небольшими по величине случайными значениями, к примеру из интервала (-0.5, 0.5). Но для нашего примера возьмем для удобства целые числа.

Рассмотрим нейронную сеть и вручную проведем расчеты для прямого и обратного “потоков” в сети.

На вход мы должны подать образец, пусть это будет (0.2, 0.5) . Ожидаемый выход сети – 0.4 . Норма обучения пусть будет равна 0.85 . Давайте проведем все расчеты поэтапно. Кстати, совсем забыл, в качестве функции активности мы будем использовать логистическую функцию:

Итак, приступаем…

Вычислим комбинированный ввод элементов 2 , 3 и 4 :

Активность этих элементов равна:

Комбинированный ввод пятого элемента:

Активность пятого элемента и в то же время вывод нейронной сети равен:

С прямым “потоком” разобрались, теперь перейдем к обратному “потоку”. Все расчеты будем производить в соответствии с формулами, которые мы уже обсудили. Итак, вычислим ошибку выходного элемента:

Тогда ошибки для элементов 2 , 3 и 4 равны соответственно:

Здесь значения -0.014, -0.028 и -0.056 получаются в результате прохода ошибки выходного элемента –0.014 по взвешенным связям в направлении к элементам 2 , 3 и 4 соответственно.

И, наконец-то, рассчитываем величину, на которую необходимо изменить значения весовых коэффициентов. Например, величина корректировки для связи между элементами 0 и 2 равна произведению величины сигнала, приходящего в элементу 2 от элемента 0 , ошибки элемента 2 и нормы обучения (все по дельта-правилу, которое мы обсудили в начале статьи):

Аналогичным образом производим расчеты и для остальных элементов:

Теперь новые весовые коэффициенты будут равны сумме предыдущего значения и величины поправки.

На этом обратный проход по сети закончен, цель достигнута 😉 Именно так и протекает процесс обучения по алгоритму обратного распространения ошибок. Мы рассмотрели этот процесс для одного набора данных, а чтобы получить полностью обученную сеть таких наборов должно быть, конечно же, намного больше, но алгоритм при этом остается неизменным, просто повторяется по кругу много раз для разных данных)

По просьбе читателей блога я решил добавить краткий пример обучения сети с двумя скрытыми слоями:

Итак, добавляем в нашу сеть два новых элемента (X и Y), которые теперь будут выполнять роль входных. На вход также подаем образец (0.2, 0.5) . Рассмотрим алгоритм в данном случае:

1. Прямой проход сети. Здесь все точно также как и для сети с одним скрытым слоем. Результатом будет значение .

2. Вычисляем ошибку выходного элемента:

3. Теперь нам нужно вычислить ошибки элементов 2, 3 и 4.

Прудников Иван Алексеевич
МИРЭА(МТУ)

Тема нейронных сетей была уже ни раз освещена во многих журналах, однако сегодня я бы хотел познакомить читателей с алгоритмом обучения многослойной нейронной сети методом обратного распространения ошибки и привести реализацию данного метода.

Сразу хочу оговориться, что не являюсь экспертом в области нейронных сетей, поэтому жду от читателей конструктивной критики, замечаний и дополнений.

Теоретическая часть

Данный материал предполагает знакомство с основами нейронных сетей, однако я считаю возможным ввести читателя в курс темы без излишних мытарств по теории нейронных сетей. Итак, для тех, кто впервые слышит словосочетание «нейронная сеть», предлагаю воспринимать нейронную сеть в качестве взвешенного направленного графа, узлы (нейроны) которого расположены слоями. Кроме того, узел одного слоя имеет связи со всеми узлами предыдущего слоя. В нашем случае у такого графа будут иметься входной и выходной слои, узлы которых выполняют роль входов и выходов соответственно. Каждый узел (нейрон) обладает активационной функцией - функцией, ответственной за вычисление сигнала на выходе узла (нейрона). Также существует понятие смещения, представляющего из себя узел, на выходе которого всегда появляется единица. В данной статье мы будем рассматривать процесс обучения нейронной сети, предполагающий наличие «учителя», то есть процесс обучения, при котором обучение происходит путем предоставления сети последовательности обучающих примеров с правильными откликами.
Как и в случае с большинством нейронных сетей, наша цель состоит в обучении сети таким образом, чтобы достичь баланса между способностью сети давать верный отклик на входные данные, использовавшиеся в процессе обучения (запоминания), и способностью выдавать правильные результаты в ответ на входные данные, схожие, но неидентичные тем, что были использованы при обучении (принцип обобщения). Обучение сети методом обратного распространения ошибки включает в себя три этапа: подачу на вход данных, с последующим распространением данных в направлении выходов, вычисление и обратное распространение соответствующей ошибки и корректировку весов. После обучения предполагается лишь подача на вход сети данных и распространение их в направлении выходов. При этом, если обучение сети может являться довольно длительным процессом, то непосредственное вычисление результатов обученной сетью происходит очень быстро. Кроме того, существуют многочисленные вариации метода обратного распространения ошибки, разработанные с целью увеличения скорости протекания процесса обучения.
Также стоит отметить, что однослойная нейронная сеть существенно ограничена в том, обучению каким шаблонам входных данных она подлежит, в то время, как многослойная сеть (с одним или более скрытым слоем) не имеет такого недостатка. Далее будет дано описание стандартной нейронной сети с обратным распространением ошибки.

Архитектура

На рисунке 1 показана многослойная нейронная сеть с одним слоем скрытых нейронов (элементы Z).

Нейроны, представляющие собой выходы сети (обозначены Y), и скрытые нейроны могут иметь смещение(как показано на изображении). Смещение, соответствующий выходу Y k обозначен w ok , скрытому элементу Z j - V oj . Эти смещения служат в качестве весов на связях, исходящих от нейронов, на выходе которых всегда появляется 1 (на рисунке 1 они показаны, но обычно явно не отображаются, подразумеваясь). Кроме того, на рисунке 1 стрелками показано перемещение информации в ходе фазы распространения данных от входов к выходам. В процессе обучения сигналы распространяются в обратном направлении.

Описание алгоритма

Алгоритм, представленный далее, применим к нейронной сети с одним скрытым слоем, что является допустимой и адекватной ситуацией для большинства приложений. Как уже было сказано ранее, обучение сети включает в себя три стадии: подача на входы сети обучающих данных, обратное распространение ошибки и корректировка весов. В ходе первого этапа каждый входной нейрон X i получает сигнал и широковещательно транслирует его каждому из скрытых нейронов Z 1 ,Z 2 ...,Z p . Каждый скрытый нейрон затем вычисляет результат его активационной функции (сетевой функции) и рассылает свой сигнал Z j всем выходным нейронам. Каждый выходной нейрон Y k , в свою очередь, вычисляет результат своей активационной функции Y k , который представляет собой ничто иное, как выходной сигнал данного нейрона для соответствующих входных данных. В процессе обучения, каждый нейрон на выходе сети сравнивает вычисленное значение Y k с предоставленным учителем t k (целевым значением), определяя соответствующее значение ошибки для данного входного шаблона. На основании этой ошибки вычисляется σ k (k = 1,2,...m). σ k используется при распространении ошибки от Y k до всех элементов сети предыдущего слоя (скрытых нейронов, связанных с Y k), а также позже при изменении весов связей между выходными нейронами и скрытыми. Аналогичным образом вычисляется σj (j = 1,2,...p) для каждого скрытого нейрона Z j . Несмотря на то, что распространять ошибку до входного слоя необходимости нет, σj используется для изменения весов связей между нейронами скрытого слоя и входными нейронами. После того как все σ были определены, происходит одновременная корректировка весов всех связей.

Обозначения:

В алгоритме обучения сети используются следующие обозначения:

X Входной вектор обучающих данных X = (X 1 , X 2 ,...,X i ,...,X n).
t Вектор целевых выходных значений, предоставляемых учителем t = (t 1 , t 2 ,...,t k ,...,t m)
σ k Составляющая корректировки весов связей w jk , соответствующая ошибке выходного нейрона Y k ; также, информация об ошибке нейрона Y k , которая распространяется тем нейронам скрытого слоя, которые связаны с Y k .
σ j Составляющая корректировки весов связей v ij , соответствующая распространяемой от выходного слоя к скрытому нейрону Z j информации об ошибке.
a Скорость обучения.
X i Нейрон на входе с индексом i. Для входных нейронов входной и выходной сигналы одинаковы - X i .
v oj Смещение скрытого нейрона j.
Z j Скрытый нейрон j; Суммарное значение подаваемое на вход скрытого элемента Z j обозначается Z_in j: Z_in j = v oj +∑x i *v ij
Сигнал на выходе Z j (результат применения к Z_in j активационной функции) обозначается Z j: Z j = f (Z_in j)
w ok Смещение нейрона на выходе.
Y k Нейрон на выходе под индексом k; Суммарное значение подаваемое на вход выходного элемента Y k обозначается Y_in k: Y_in k = w ok + ∑ Z j *w jk . Сигнал на выходе Y k (результат применения к Y_in k активационной функции) обозначается Y k:

Функция активации

Функция активация в алгоритме обратного распространения ошибки должна обладать несколькими важными характеристиками: непрерывностью, дифференцируемостью и являться монотонно неубывающей. Более того, ради эффективности вычислений, желательно, чтобы ее производная легко находилась. Зачастую, активационная функция также является функцией с насыщением. Одной из наиболее часто используемых активационных функций является бинарная сигмоидальная функция с областью значений в (0, 1) и определенная как:

Другой широко распространенной активационной функцией является биполярный сигмоид с областью значений (-1, 1) и определенный как:


Алгоритм обучения

Алгоритм обучения выглядит следующим образом:

Инициализация весов (веса всех связей инициализируются случайными небольшими значениями).

До тех пор пока условие прекращения работы алгоритма неверно, выполняются шаги 2 - 9.

Для каждой пары { данные, целевое значение } выполняются шаги 3 - 8.

Распространение данных от входов к выходам:

Шаг 3.
Каждый входной нейрон (X i , i = 1,2,...,n) отправляет полученный сигнал X i всем нейронам в следующем слое (скрытом).

Каждый скрытый нейрон (Z j , j = 1,2,...,p) суммирует взвешенные входящие сигналы: z_in j = v oj + ∑ x i *v ij и применяет активационную функцию: z j = f (z_in j) После чего посылает результат всем элементам следующего слоя (выходного).

Каждый выходной нейрон (Y k , k = 1,2,...m) суммирует взвешенные входящие сигналы: Y_in k = w ok + ∑ Z j *w jk и применяет активационную функцию, вычисляя выходной сигнал: Y k = f (Y_in k).

Обратное распространение ошибки:

Каждый выходной нейрон (Y k , k = 1,2,...m) получает целевое значение - то выходное значение, которое является правильным для данного входного сигнала, и вычисляет ошибку: σ k = (t k - y k)*f " (y_in k), так же вычисляет величину, на которую изменится вес связи w jk: Δw jk = a * σ k * z j . Помимо этого, вычисляет величину корректировки смещения: Δw ok = a*σ k и посылает σ k нейронам в предыдущем слое.

Каждый скрытый нейрон (z j , j = 1,2,...p) суммирует входящие ошибки (от нейронов в последующем слое) σ_in j = ∑ σ k * w jk и вычисляет величину ошибки, умножая полученное значение на производную активационной функции: σ j = σ_in j * f " (z_in j), так же вычисляет величину, на которую изменится вес связи vij: Δv ij = a * σ j * x i . Помимо этого, вычисляет величину корректировки смещения: v oj = a * σ j

Шаг 8. Изменение весов.

Каждый выходной нейрон (y k , k = 1,2,...,m) изменяет веса своих связей с элементом смещения и скрытыми нейронами: w jk (new) = w jk (old) + Δw jk
Каждый скрытый нейрон (z j , j = 1,2,...p) изменяет веса своих связей с элементом смещения и выходными нейронами: v ij (new) = v ij (old) + Δv ij

Проверка условия прекращения работы алгоритма.
Условием прекращения работы алгоритма может быть как достижение суммарной квадратичной ошибкой результата на выходе сети предустановленного заранее минимума в ходе процесса обучения, так и выполнения определенного количества итераций алгоритма. В основе алгоритма лежит метод под названием градиентный спуск. В зависимости от знака, градиент функции (в данном случае значение функции - это ошибка, а параметры - это веса связей в сети) дает направление, в котором значения функции возрастают (или убывают) наиболее стремительно.

Целью обучения сети является такая подстройка ее весов, чтобы приложение некоторого множества входов приводило к требуемому множеству выходов . Для краткости эти множества входов и выходов будут называться векторами. При обучении предполагается, что для каждого входного вектора существует парный ему целевой вектор, задающий требуемый выход. Вместе они называются обучающей парой. Как правило, сеть обучается на многих парах.

Перед началом обучения всем весам должны быть присвоены небольшие начальные значения, выбранные случайным образом. Это гарантирует, что в сети не произойдет насыщения большими значениями весов, и предотвращает ряд других патологических случаев. Например, если всем весам придать одинаковые начальные значения, а для требуемого функционирования нужны неравные значения, то сеть не сможет обучиться.

Обучение сети обратного распространения требует

выполнения следующих операций:

1. Выбрать очередную обучающую пару из обучающего множества, подать входной вектор на вход сети.

2. Вычислить выход сети.

3. Вычислить разность между выходом сети и требуемым выходом (целевым вектором обучающей пары)

4. Подкорректировать веса сети так, чтобы минимизировать ошибку.

5. Повторять шаги с 1 по 4 для каждого вектора обучающего множества до тех пор, пока ошибка на всем множестве не достигнет приемлемого уровня.

Операции, выполняемые шагами 1 и 2, сходны с теми, которые выполняются при функционировании уже обученной сети, т.е. подается входной вектор и вычисляется получающийся выход. Вычисления выполняются послойно. На рис.3 сначала вычисляются выходы нейронов слоя j затем они используются в качестве входов слоя k , вычисляются выходы нейронов слоя k, которые и образуют выходной вектор сети.

На шаге 3 каждый из выходов сети, которые на рис.3 обозначены OUT, вычитается из соответствующей компоненты целевого вектора, чтобы получить ошибку. Эта ошибка используется на шаге 4 для коррекции весов сети, причем знак и величина изменений весов определяются алгоритмом обучения (см. ниже).

После достаточного числа повторений этих четырех шагов разность между действительными выходами и целевыми выходами должна уменьшиться до приемлемой величины, при этом говорят, что сеть обучилась. Теперь сеть используется для распознавания и веса не изменяются.

На шаги 1 и 2 можно смотреть как на «проход вперед», так как сигнал распространяется по сети от входа к выходу. Шаги 3, 4 составляют «обратный проход», здесь вычисляемый сигнал ошибки распространяется обратно по сети и используется для подстройки весов. Эти два прохода теперь будут детализированы и выражены в более математической форме.

Проход вперед. Шаги 1 и 2 могут быть выражены в векторной форме следующим образом: подается входной вектор X и на выходе получается вектор Y . Векторная пара вход-цель X и T берется из обучающего множества. Вычисления проводятся над вектором X , чтобы получить выходной векторY .

Как мы видели, вычисления в многослойных сетях выполняются слой за слоем, начиная с ближайшего к входу слоя. Величина NET каждого нейрона первого слоя вычисляется как взвешенная сумма входов нейрона. Затем активационная функция F «сжимает» NET и дает величину OUT для каждого нейрона в этом слое. Когда множество выходов слоя получено, оно является входным множеством для следующего слоя. Процесс повторяется слой за слоем, пока не будет получено заключительное множество выходов сети.

Этот процесс может быть выражен в сжатой форме с помощью векторной нотации. Веса между нейронами могут рассматриваться как матрица W . Например, вес от нейрона 8 в слое 2 к нейрону 5 слоя 3 обозначается w 8,5 . Тогда NET-вектор слоя N может быть выражен не как сумма произведений, а как произведение X и W . В векторном обозначении N = XW . Покомпонентным применением функции F к NET-вектору N получается выходной вектор О . Таким образом, для данного слоя вычислительный процесс описывается следующим выражением:

O =F(XW ) (3)

Выходной вектор одного слоя является входным вектором для следующего.

Обратный проход . Подстройка весов выходного слоя. Так как для каждого нейрона выходного слоя задано целевое значение, то подстройка весов легко осуществляется с использованием модифицированного дельта-правила. Внутренние слои называют «скрытыми слоями», для их выходов не имеется целевых значений для сравнения. Поэтому обучение усложняется.

Обучение последнего слоя Рис. 2.4

На рис. 2.4 показан процесс обучения для одного веса от нейрона р. в скрытом слое j к нейрону q в выходном слое k. Выход нейрона слоя k, вычитаясь из целевого значения (Target), дает сигнал ошибки. Он умножается на производную сжимающей функции , вычисленную для этого нейрона слоя 6, давая, таким образом, величину d.

d = OUT(1 - OUT)(Target - OUT). (2.4)

Затем d умножается на величину OUT нейрона j, из которого выходит рассматриваемый вес. Это произведение в свою очередь умножается на коэффициент скорости обучения h (обычно от 0,01 до 1,0), и результат прибавляется к весу. Такая же процедура выполняется каждого веса от нейрона скрытого слоя к нейрону в выходном слое.

Следующие уравнения иллюстрируют это вычисление:

Dw pq, k = hd q, k OUT p, j (2.5)

w pq,k (n+1) = w pq, k (n) + Dw pq, k (2.6)

где w pq, k (n) - величина веса от нейрона h в скрытом слое к нейрону q в выходном слое на шаге n (до коррекции), отметим, что индекс k относится к слою, в котором заканчивается данный вес, т.е., согласно принятому в этой книге соглашению, с которым он объединен; w pq, k (n+1) - величина веса на шаге n+1 (после коррекции), d q, k - величина d для нейрона в выходном слое k, OUT p, j - величина OUT для нейрона р в скрытом слое j.

Подстройка весов скрытого слоя . Рассмотрим один нейрон в скрытом слое, предшествующем выходному слою. При проходе вперед этот нейрон передает свой выходной сигнал нейронам в выходном слое через соединяющие их веса. Во время обучения эти веса функционируют в обратном порядке, пропуская величину d от выходного слоя назад к скрытому слою. Каждый из этих весов умножается на величину d нейрона, к которому он присоединен в выходном слое. Величина d, необходимая для нейрона скрытого слоя, получается суммированием всех таких произведений и умножением на производную сжимающей функции:

(см. рис.5)Когда значение d получено, веса, питающие первый скрытый уровень, могут быть подкорректированы с помощью уравнений (5) и (6), где индексы модифицируются в соответствии со слоем.

Обучение внутреннего слоя Рис. 2.5

Для каждого нейрона в данном скрытом слое должно вычислено d и подстроены все веса, ассоциированные с этим слоем. Этот процесс повторяется слой за слоем по направлению к входу, пока все веса не будут подкорректированы.

С помощью векторных обозначений операция обратного распространения ошибки может быть, записана значительно компактнее. Обозначим множество величин d выходного слоя через D k и множество весов выходного слоя как массив W k . Чтобы получить D j , d-вектор выходного слоя, достаточно следующих двух операций:

1. Умножить d-вектор выходного слоя D k на транспонированную матрицу весов W k , соединяющую скрытый уровень с выходным уровнем.

2. Умножить каждую компоненту полученного произведения на производную сжимающей функции соответствующего нейрона в скрытом слое.

В символьной записи:

,

где оператор $ обозначает покомпонентное произведение векторов. О j - выходной вектор слоя j и I - вектор, все компоненты которого равны 1.

Паралич сети. В процессе обучения сети значения весов могут в результате коррекции стать очень большими величинами. Это может привести к тому, что все или большинство нейронов будут функционировать при очень больших значениях OUT, в области, где производная сжимающей функции очень мала. Так как посылаемая обратно в процессе обучения ошибка пропорциональна этой производной, то процесс обучения может практически замереть. В теоретическом отношении эта проблема плохо изучена. Обычно этого избегают уменьшением размера шага n, но это увеличивает время обучения. Различные эвристики использовались для предохранения от паралича или для восстановления после него, но пока что они могут рассматриваться лишь как экспериментальные.

Локальные минимумы. Обратное распространение использует разновидность градиентного спуска, т.е. осуществляет спуск вниз по поверхности ошибки, непрерывно подстраивая веса в направлении к минимуму. Поверхность ошибки сложной сети сильно изрезана и состоит из холмов, долин, складок и оврагов в пространстве высокой размерности. Сеть может попасть в локальный минимум (неглубокую долину), когда рядом имеется гораздо более глубокий минимум. В точке локального минимума все направления ведут вверх, и сеть неспособна из него выбраться. Статистические методы обучения могут помочь избежать этой ловушки, но они медленны. В предложен метод, объединяющий статистические методы машины Каши с градиентным спуском обратного распространения и приводящий к системе, которая находит глобальный минимум, сохраняя высокую скорость обратного распространения. Это обсуждается в гл. 5.

Размер шага. Внимательный разбор доказательства сходимости показывает, что коррекции весов предполагаются бесконечно малыми. Ясно, что это неосуществимо на практике, так как ведет к бесконечному времени обучения. Размер шага должен браться конечным, и в этом вопросе приходится опираться только на опыт. Если размер шага очень мал, то сходимость слишком медленная, если же очень велик, то может возникнуть паралич или постоянная неустойчивость.

Временная неустойчивость. Если сеть учится распознавать буквы, то нет смысла учить Б, если при этом забывается А. Процесс обучения должен быть таким, чтобы сеть обучалась на всем обучающем множестве без пропусков того, что уже выучено. В доказательстве сходимости это условие выполнено, но требуется также, чтобы сети предъявлялись все векторы обучающего множества прежде, чем выполняется коррекция весов. Необходимые изменения весов должны вычисляться на всем множестве, а это требует дополнительной памяти; после ряда таких обучающих циклов веса сойдутся к минимальной ошибке. Этот метод может оказаться бесполезным, если сеть находится в постоянно меняющейся внешней среде, так что второй раз один и тот же вектор может уже не повториться. В этом случае процесс обучения может никогда не сойтись, бесцельно блуждая или сильно осциллируя. В этом смысле обратное распространение не похоже на биологические системы.



© dagexpo.ru, 2024
Стоматологический сайт