Общая циркуляция атмосферы. Струйные течения. Пассаты. Муссоны. Что такое струйное течение

29.09.2019

Влияние ветра на параметры движения ВС наиболее существенно при больших скоростях ветра, особенно в области струйных течений (СТ).
СТ – это перенос воздуха в виде узкого течения с большими скоростями, обычно в верхней тропосфере нижней стратосфере с осью вблизи тропопаузы. Максимальная скорость ветра (30 м/с и >) наблюдается на оси СТ. Изменение скорости ветра в области СТ обычно составляет 5-10 м/с на 1 км высоты и 10 м/с и > на 100 км в гориз-м направлении.

СТ образуются в зонах наибольшего сближения тёплых и холодных воздушных масс, где создаются значительные горизонтальные градиенты давления и температуры. Поскольку наибольшие контрасты температуры в зонах атмосферных фронтов наблюдаются в хол. половину года, то в этот период СТ наиболее активны.

Навигационное значение струйных течений трудно переоценить. С одной стороны, в зоне СТ часто возникают перистые и перисто-кучевые облака и интенсивная турбулентность, а с другой – сильный ветер в зоне СТ значительно изменяет скорость ВС.

Интенсивная турбулентность отмечается в основном на холодной (циклонической) стороне СТ, где градиенты температуры и ветра больше. На оси СТ сильная турбул-ть бывает значительно реже.

Если полёт в зоне СТ происходит против ветра, то путевая скорость резко уменьшается, если по ветру – увеличивается. При полёте на большие расстояния можно использовать СТ для сокращения времени полёта и для увеличения дальности полёта. В настоящее время есть методы, позволяющие по данным о поле ветра предложить наивыгоднейший маршрут, по которому ВС прилетит в пункт назначения или с наименьшей затратой времени, или с наименьшим расходом топлива. Всё сказанное свидетельствует о большом навигационном значении СТ.

22. Классификация воздушных масс (а)географическая (арктический, умеренный и тропический воздух, каждая из ВМ бывает континентальной или морской в зависимости от условий образования ); б)по условиям для развития конвекции (устойчивая и неустойчивая).



а) В зависимости от положения очага формирования воздуха в одном из основных термических поясов земного шара и с учетом характера подстилающей поверхности (океан или материк) выделяют следующие типы воздушных масс:

Арктический или антарктический воздух (АВ) - морской (мАВ) и континентальный (кАВ) - находится в северных и южных полярных областях льда и снега;

Воздух умеренных широт (УВ) - морской (мУВ) и континентальный (кУВ) - находится в умеренных широтах;

Тропический воздух (ТВ) - морской (мТВ) и континентальный (кТВ) - находится в областях пассатов северного и южного полушарий;

Экваториальный воздух (ЭВ) - находится у экватора между северными и южными пассатами.

Морской воздух отличается большой влажностью. Она повсеместно составляет около 80%. Кроме того, наблюдаются различия и в температурном режиме. В летнее время в умеренных широтах он будет холоднее континентального, а зимой - теплее.

Арктический и антарктический воздух, из-за преобладания ледяных полей и суши в высоких широтах, редко бывает морским арктическим (мАВ). Не делят на морской и континентальный экваториальным воздух, так как над сушей и над морем он одинаково теплый и влажный из-за огромного количества осадков.

б) Устойчивой называется воздушная масса, в ко­торой нет условий для развития восходящих движений воздуха (конвекции). Вертикальные движения могут воз­никать лишь в виде динамической турбулентности при го­ризонтальном движении воздуха. К такой воздушной мас­се обычно относятся теплые массы.

Неустойчивой называется воздушная масса, в ко­торой есть условия для развития восходящих движений воздуха (конвекции). К неустойчивым обычно относятся холод­ные массы.

23. Ветер – направление и скорость, классификация: слабый, умеренный, сильный, шторм, меняющийся, порывистый, шквал.

Ветер – это горизонтальное (адвективное) перемещение воздуха относительно земной поверхности, характеризуется направлением и скоростью.

Направление задается углом (или румбом δ=22,5 0 ), отсчитываемым от северного направления по часовой стрелке

Величина скорости задается оперением на стрелке (малое перо – 2,5 м/с, большое перо – 5 м/с, зачерненный треугольник – 25 м/с)

По величине скорости ветер различают:

1) < 3 м/с – слабый

2) 4-7 м/с – умеренный

3) 8-14 м/с – сильный

4) 15-19 м/с – очень сильный

5) 20-24 м/с – шторм

6) 25-30 м/с – жестокий шторм, ураган.

7) Меняющийся ветер – за 2 мин направление изменяется более, чем на 1 румб.

8) Порывистый – за 2 минуты ветер меняется на 4 м/с и более.

9) Шквал – кратковременное резкое усиление ветра до 20 м/с и более со значительным изменением направления.

24. Местные ветры: фен, бора, бриз, внутримассовый шквал, тромбы, смерчи, торнадо. Условия для авиации.

Местные ветры - ветры, характерные для определенных районов, связанных с особенностями местной орографии, соседством суша-вода и др.

1.Бриз – это ветер у береговой линии морей и небольших озер, имеющие резкую суточную смену направлений (слой 1-2 км).

Ночной бриз : Дневной бриз :

2.Фён (гармсиль) – теплый, сухой порывистый ветер, дующий с гор в долину.

Особенности:

1. Значительно повышает температуру (на 30 0 за несколько часов) и понижает влажность (до 4-5%).

2. Продолжительность – от нескольких часов до нескольких суток.

3. Вызывает сильную болтанку ВС.

3.Бора – сильный (V> 20 м/с) холодный порывистый ветер, дующий с низких горных хребтов в сторону теплого моря.

4.Шквалы - резкие кратковременные усиления ветра (до 20 м/с). Бывают внутримассовыми (в конвективных Cb) и Фронтальными (в нескольких местах вдоль ХФ 2 рода– линия шквалов).

P.S. Ci - перистые, Cs - перисто-слоистые, Cb – кучево-дождевые, Cu – кучевые,

Ns – слоисто-дождевые, St – слоистые.

Шкваловый ворот (ХФ) - вихрь с горизонтальной осью, возникающий в передней части грозового облака.

5.Тромб (смерч, торнадо) – особые маломасштабные вихри (d=1-100 м, h=1 км, скорость перемещения – 20-30 км/ч, время жизни – 1-10 мин, давление в центре снижено на 10-100 гПа).

Особенности:

1. Возникает в передней части грозового облака и проникает сверху до самой Земли;

2. Наблюдаются в умерен-й и тропич-й широтах в теплой и влажной неустойчиво стратифицированной ВМ;

3. Вращение воздуха вокруг оси как в циклоне с v=70-100 м/с;

4. Предположительно – разновидность грозового шквала;

5. Энергия типичного смерча радиусом 1 км и средней скоростью 70 м/с равна энергии эталонной атомной бомбы в 20 килотонн тротила.

6.Горно-долинные ветры (до 10 м/c) – выражены в теплый сезон, заполняют все сечение долины, вертикальная мощность – средняя высота хребтов.

25. Циклоническая деятельность. Этапы развития циклонов. Образование антициклонов. Условия полетов в разных частях циклонов и антициклонов, в зоне атмосферных фронтов.

Циклон – область пониженного давления, ограниченная замкнутыми изобарами с минимальным давлением в центре.

Антициклон – область повышенного давления, ограниченного замкнутыми изобарами с максимальным давлением в центре.

Согласно барическому закону ветра:

1) В циклоне циркуляция осуществляется против часовой стрелки, в антициклоне – по часовой стрелке.

2) Скорость ветра в циклоне в среднем больше по величине, чем в антициклоне.

НУЖНО ДОДЕЛАТЬ

26. Минимумы погоды.

Минимум погоды – термин, обозначающий предельные погодные условия, при которых разрешается выполнять полеты подготовленному командиру ВС, эксплуатировать ВС и использовать аэродром для вылета и посадки.

Минимум погоды определяется:

Высота нижней границы облаков(высотой принятия решения)

Видимостью(видимостью на ВПП)

P.S. Видимость на ВПП – максимальное расстояние, в пределах которого пилот ВС, находящегося на осевой линии ВПП, может видеть маркировку ее покрытия или огни, ограничивающие ВПП или обозначающие ее осевую линию.

Высота принятия решения – установленная относительная высота, на которой должен быть начат маневр ухода на второй круг в случае, если до достижения этой высоты командиром ВС не был установлен визуальный контакт с ориентирами для продолжения захода на посадку, а также если положение ВС в пространстве или параметры его движения не обеспечивают безопасной посадки.

В минимум погоды входят минимумы:

Аэродрома

Воздушного судна

Командира ВС

Вида авиационных работ

Минимумы аэродрома зависят от географического положения аэродрома и его оборудования системами посадки.

Состоит из минимумов:

  1. для взлёта – это минимальные допустимы значения видимости на ВПП и высоты нижней границы облаков, при которых разрешается выполнять взлет на ВС данного типа.
  2. для посадки – минимально допустимые значения видимости на ВПП и высоты принятия решения, при которых разрешается выполнять посадку на ВС данного типа.
  3. тренировочного для взлета (1)
  4. тренировочного для посадки (те же характеристики как и для пункта (2) только для тренировочных полетов.

Минимум воздушного судна обусловлены наличием и качеством специальной навигационной аппаратуры, имеющейся на борту ВС.

Состоит из минимумов:

  1. для взлёта – минимально допустимые значения видимости на ВПП, позволяющие безопасно производить взлет на ВС данного типа.
  2. для посадки – минимально допустимые значения видимости на ВПП и высоты принятия решений, позволяющие безопасно производить посадку на ВС данного типа.

Минимум командира ВС обусловлены и определяются личной подготовкой летчика.

Состоит из минимумов:

  1. для взлёта – минимально допустимое значение видимости на ВПП, при котором командиру разрешается выполнять взлёт на ВС данного типа.
  2. для посадки – минимально допустимые значения видимости на ВПП и высоте принятия решений(Высоте нижней границы облаков), при котрых командиру разрешается выполнять посадку на ВС данного типа.
  3. для полета по правилам визуального полёта и особым правилам визуального полёта – минимально допустимые значения видимости и высоты нижней границы облаков, при которых командиру разрешается выполнять визуальные полёты на ВС данного типа.

Минимум вида авиационных работ – минимально допустимые значения видимости и высоты нижней границы облаков, при которых разрешается выполнение авиационных работ с применением правил полётов(визуальных или по приборам), установленных для данного вида работ.

  1. первая категория (60м) , видимость на ВПП (800м) .
  2. вторая категория – высота нижней границы облаков (менее 60м, но не менее 30м) , видимость на ВПП (менее 800м, но не менее 400м) .
  3. третья категория – высота нижней границы облаков (менее 30м) , а видимость на ВПП (менее 400м) .

Делится на:

III-A – видимость на ВПП (не менее 200м) .

III-B – видимость на ВПП (не менее 50м) .

III-C – видимость на ВПП (равна 0 метров) .

P.S. При взлёте и посадке учитываются 3 минимума погоды: аэродрома, воздушного судна и командира ВС, из этих трёх выбирается наибольший .

При минимуме аэродрома 100х1000, минимуме ВС 50х500, минимуме командира ВС 80х1500, то этот летчик на этом самолете может сесть на этот аэродром при погоде не хуже чем 100х1500 .

27. Влияние температуры и плотности воздуха на тягу двигателя, потребную скорость, потолок самолета.

Зависимость располагаемой тяги от метеорологических условий определяет их влияние и на другие важные летно-технические характеристики самолета - максимальную скорость полета, скороподъемность, потолок самолета, а также на расход топлива.

Одной из важнейших летно-технических характеристик самолета является его потолок - наибольшая высота, на которую может подняться самолет при определенном режиме полета.

Различают:

Теоретическим потолком называется высота, на которой избыток тяги, и вертикальная скорость равны нулю.

Практическим потолком называется высота, на которой максимальная вертикальная скорость для реактивных самолетов равна 5 м/с, а для поршневых - 0,5 м/с.

Статическим потолком называется наибольшая высота горизонтального полета с постоянной скоростью.

Динамическим потолком называется наибольшая высота, достигаемая за счет использования кинетической энергии самолета, т.е. за счет потери скорости.

На этих высотах уменьшается расход топлива, увеличивается дальность полета. Если потолок самолета позволяет летать выше тропопаузы, то это, кроме указанных выше преимуществ полета вблизи потолка, способствует преодолению зон грозовой деятельности, интенсивной турбулентности, обледенения и других неблагоприятных метеорологических условий, наблюдающихся в тропосфере. Однако, следует иметь в виду, что вблизи потолка ухудшаются аэродинамические качества самолета, так как здесь используются большие углы атаки, потере устойчивости и управляемости. Потолок самолета зависит от физического состояния атмосферы. Он для большинства современных самолетов превышает высоту тропопаузы.

28. Опасные для ГА явления погоды (указать, где формируются указанное явление, и в чем опасность для полетов): Атмосферная турбулентность (термическая, орографическая, динамическая) и болтанка ВС. Турбулентность ясного неба (где наблюдается?). Сдвиги ветра и их влияние на взлет и посадку ВС. При каком значении сдвига ветра взлет и посадка запрещены? Обледенение ВС, методы борьбы. При какой скорости нарастания льда на несущих поверхностях ВС обледенение считается сильным? Грозовая деятельность. Классификация гроз, шквал. Статическое электричество.

Турбулентность

· Возникает при грозах, на АФ, при вертикальном сдвиге ветра ∆v/∆h (при радиационных, адвективных и орографических инверсиях), в зонах СТ при ясном небе (ТЯН на циклонической периферии), в горной местности (орографическая болтанка), в кучевых облаках, в неустойчивых ВМ.

· Вызывает перегрузки (отношение подъемной силы к силе тяжести), ухудшает управляемость ВС

По условиям образования различают:

1) Термическая турбулентность (неуст ВМ)

2) Динамическая турбулентность:

На приземных АФ при горизонтальных градиентах Т более 2 С на 100 км, горизонтальных градиентах скорости ветра - более 20 км/ч на 100 км,

Облачность

Вблизи главных (климатологических) фронтов (ПВФЗ, СТ), чаще это ТЯН, cиноптические ситуации со значительной сходимостью или расходимостью изогипс

3) Механическая (орографическая) турбулентность:

· (в результате трения воздуха о подстилающую поверхность), на наветренной стороне часто – сдвиг ветра, на подветренной – «ротор»),

· При устойчивой стратификации и v>10 м/с, возрастающей с высотой – горные волны с длиной волны 5-50 км, h=(3-4) Hхр, при высокой влажности – чечевицеобразные облака.

Размеры и повторяемость зон турбулентности

85-90% случаев: Δz <1000 м,

(В умеренных широтах Δz <500 м, Δl ~40 км 80%

Т/о вероятность попадания в болтанку при смене эшелона выше, чем при горизонтальном полете.

В тропосфере: наибольшая повторяемость турбулентности в слое 0-2 км (термическая и механическая турбу-лентность) и в слое 8-12 км (динамическая).

Интенсивность болтанки

Слабая - Δn < + 0,5 g на эшелоне

и Δn < + 0,3 g на глиссаде снижения

Умеренная - Δn < (0,5-1) g на эшелоне

и Δn < ( 0,3-0,4) g на глиссаде снижения

Сильная - Δn > 1 g на эшелоне

и Δn > 0,4 g на глиссаде снижения

Электризация

Поражение ВС э/ст разрядами происходит в Cb, Ns, Sc, St – при Е>10 6 В/м

Часты в зоне ХФ 1 рода, в Cb, не достигших стадии грозового облака;

Слабая электризация в Сi, St (ТФ, ХФ).

Возникновение радиопомех

Рыскание стрелок радиокомпасов,

Отказы бортовых радиолокаторов, антенн,

Повреждение обшивки

Струйные течения – это сравнительно узкие зоны сильных ветров в верхней тропосфере и нижней стратосфере. Границей СТ обычно считается скорость ветра равная 30 м/с (100 км/час), вертикальный сдвиг скорости ветра от 5 до 10 м/с и более на 1 км высоты, горизонтальный сдвиг скорости ветра 10 м/с и более на 100 км. Струйное течение напоминает сильно сплюснутую трубу, высота которой 1-5 км, ширина 500-1000 км и длина – тысячи километров. Иногда СТ огибает весь земной шар.

Струйные течения образуются в зонах сближения теплых и холодных воздушных масс, гда создаются значительные градиенты давления и температуры, расположенных между высотными циклонами и антициклонами.

Максимальные скорости достигают 350км/час, над Японией до 700км/час. Интенсивность СТ имеет ярко выраженный характер. В холодное время струйные течения усиливаются, в летнее – ослабевают.

В зависимости от высоты расположения различают тропосферные и стратосферные струйные течения. Тропосферные СТ возникают когда поверхность главного атмосферного фронта простирается до тропопаузы, а разность температур воздушных масс, лежащих по обеим сторонам фронта, составляет 8-10° и более.

Тропосферные СТ по географическому признаку подразделяются на внетропические , субтропические и экваториальные .

Внетропическими являются струйные течения умеренных широт, связанные с полярным фронтом, а арктическое СТ связанное с арктическим фронтом. Их преобладающим направлением является западное, а интенсивность подвергается непрерывным изменениям. Ось внетропического СТ располагается в тёплом воздухе, обычно на 1-2км ниже тропопаузы. Она лежит впереди приземной линии тёплого фронта на расстоянии 400-500км и позади линии холодного фронта на расстоянии 100-300км. Перемещается СТ с атмосферным фронтом.



Левая сторона СТ (по направлению потока) более холодная, располагается вдоль высотной области пониженного давления и называется циклонической или холодной. Правая сторона относительно теплее левой, располагается вдоль высотной области повышенного давления и называется антициклонической или тёплой. На внешних границах СТ в связи с торможением воздушного потока более спокойным воздухом наблюдаются большие градиенты (перепады) скорости ветра. Резкие его изменения вызывает образование турбулентных зон. Такие зоны более опасны и интенсивны на левой циклонической стороне СТ (под действием двух задерживающих слоев – тропопаузы и фронтальной поверхности) На правой, антициклональной стороне, турбулентные зоны встречаются реже, здесь турбулентность бывает слабой или умеренной.

По отношению к атмосферным фронтам ось струйного течения не остаётся постоянной. В стадии волны ось СТ почти не искривлена и располагается левее линии фронта, в стадии молодого циклона на оси СТ отмечается изгиб, при этом ось СТ находится слева приземного центра циклона. В процессе окклюдирования циклона ось СТ испытывает ещё больший изгиб, при этом ось СТ пересекает фронты значительно правее приземного фронта.

Субтропическое СТ образуется на северной периферии субтропических антициклонов зимой между 25 и 35°с.ш., а летом между 35 и 45° с.ш. На участках большой протяженности (тысячи км) она имеет устойчивое западное направление. Зачастую в холодную половину года субтропическое СТ опоясывает весь земной шар. Ось СТ располагается над тропопаузой на высоте 12км. Тропопауза в зоне субтропического СТ претерпевает разрыв. На сравнительно небольшом расстоянии разница в её высоте при переходе их холодного в тёплый воздух может достигать 4-5км. Ширина субтропического СТ около 1500км, вертикальная протяженность 8-12км, по сравнению с внетропическим СТ является более устойчивым и интенсивным.

Экваториальные СТ образуются в экваториальных районах на южной периферии высоких субтропических антициклонов и имеют восточное направление.

Стратосферные СТ – оно образуется зимой на широте Полярного круга и имеют западное направление, ось находится на высоте около 50км, а нижняя часть охватывает всю среднюю и верхнюю атмосферу. Средняя скорость в этом СТ на высотах 20-25км составляет около 200км/час. Возникновение этого СТ объясняется наличием больших контрастов температуры в стратосфере на границе смены дня и ночи. В период полярной ночи (в январе высота ночи над Северным полюсом достигает 440км) Стратосферный воздух в Арктике выхолаживается и оказывается значительно холоднее стратосферного воздуха южнее Полярного круга. В связи с этим возникают большие горизонтальные градиенты температуры между умеренным и арктическим воздухом.

Турбулентность в зоне СТ.

На холодной стороне СТ горизонтальный сдвиг ветра составляет 12-14м/с на каждые 100км, на тёплой он равен 10м/с. Вертикальный сдвиг ветра в СТ составляет 5-10м/с на 1000м высоты, но может достигать и 25-30м/с. Наличие таких градиентов приводит к турбулентность в области СТ. Толщина возмущенных слоёв составляет 300-600мЮ иногда увеличиваясь до 1-3км, ширина обычно не превышает 100км, в длину – несколько сотен километров. Величина перегрузок при болтанке не превышает 0,5 – 1g, но иногда отмечаются случаи до 2g. В этих случаях сильная болтанка затрудняла управление самолётом или приводила к более тяжёлым последствиям.

Нередко болтанка в СТ наблюдается в области расположения Ci и Cc, образующихся на правой стороне СТ, несколько ниже его иси. Слева от оси облака образуются реже, вдоль оси облака отсутствуют. Ось СТ является границей между облачными системами по обе стороны СТ.

Турбулентные зоны зачастую бывают при ясном небе и называются ТЯН.

СТ может быть обнаружено по изменению угла сноса ВС и изменению температуры. При входе самолёта в левую сторону СТ происходит быстрый рост температуры (2-3° на 100км пути) и левый снос. При входе в СТ с правой стороны температура понижается (1-2° на 100км пути) и наблюдается правый снос. При полёте вдоль СТ температура воздуха не изменяется, а увеличивается путевая скорость (при попутном ветре) или уменьшается (при встречном ветре).

При попадании в зону болтанки, связанной с СТ, изменяют высоту полёта на 300-400м или уклоняются от маршрута на 50-70км. Высоту полёта рекомендуется изменять снижением, если полёт происходит на высотах более 8км, а на меньших – уходом вверх. Уклоняться от маршрута наиболее безопасно на правую (антициклональную) сторону струйного течения.

При предполётной консультации следует знакомиться с картой максимальных ветров, с картами барической топографии и вертикальными разрезами атмосферы.

Карты погоды и их анализ.

5.1 Карты погоды. Приземные и высотные. Использование международного метеорологического кода КН-01. Анализ приземных карт .

Изучение погодных процессов на большой территории наиболее эффективно проводить с помощью специальных карт, на которые условными знаками нанесены результаты одновременных метеороло­гических или аэрологических (высотных) наблюдений. Такие карты получили название синоптических (от греческого слова «синоптикос» - одновременно обозревающий).

Синоптическая карта, на которую нанесены данные наблюдений у поверхности земли, называется приземной картой погоды, а карта с нанесенными данными аэрологических наблюдений - высотной или аэрологической. Приземная карта погоды - это метеорологическая карта, которая отражает фактическое состояние погоды у поверхности земли в конкретный момент времени на определенной площади. Карты погоды бывают основные и кольцевые.

Основные карты составляются в 00, 06, 12 и 18 ч среднего гринвич­ского времени (UTC). Эти карты охваты­вают огромные территории и позволяют анализировать атмосферные процессы на расстояниях протяженностью в несколько тысяч километ­ров.

На АМСГ по основным картам прогнозируют крупномасштабные процессы, такие как образование и перемещение циклонов и антицик­лонов, перемещение атмосферных фронтов. По этим картам - составляют прогнозы погоды на срок 24...36 ч, а также прогнозы погоды по маршру­там большой протяженности.

Кольцевые карты (кольцовки) составляют через каждые 3 ч: в 00,03, 06,09,12,15, 18 и 21 ч по Гринвичу.

Это карты сравнительно небольших районов - от нескольких сотен
до тысячи километров, по этим картам уточняют прогнозы погоды на несколько часов, а также составляют предупреждения о возникновении опасных для авиации явлений погоды.

Сведения о погоде наносят на основные и кольцевые карты в виде цифр и условных знаков (символов) в строго определенном порядке вокруг кружка станции в соответствии с кодом КН-01.

На синоптические приземные карты погоды вокруг кружка (пункта) станции данные наносятся цифрами кода и условными знаками.

TTTtT- температура воздуха, целые (TT) и десятые доли(tT) градуса Цельсия;

TdTdtd- точка росы, целые (TdTd) и десятые доли(td) градуса Цельсия;

VV- горизонтальная видимость;

h(hh)- высота облаков нижнего яруса;

Nh- количество облаков нижнего яруса в октах;

PPP- давление воздуха приведенное к уровню моря, в гПа;

рр – величина барической тенденции за последние три часа;

а - характеристика барической тенденции;

N – общее количество облаков;

W – погода между сроками наблюдения;

CL – форма облаков нижнего яруса;

CM – форма облаков среднего яруса;

CH – форма облаков верхнего яруса;

dd – направление ветра у поверхности земли (откуда дует);

ff – скорость ветра обозначается оперением;

ww – атмосферные явления погоды с срок наблюдения или в течение последнего часа перед сроком наблюдения;

Sn – знак отрицательного значения температуры воздуха, точки росы, барической тенденции.

Характер погоды над какой-либо территорией определяется свойствами воздушных масс, положением атмосферных фронтов и видом барических систем. Задачей анализа является прослеживание движения воздушных масс, установление характера их стратификации, выявлению барических систем и определение траекторий их перемещения, а также уточнение положения и типа фронтальных разделов. Полное пространственное представление об атмосферных процессах можно получить, используя в анализе весь комплекс аэросиноптического материала, имеющегося на АМСГ.

Анализ погоды обычно начинается с анализа приземных синоптических карт – основных и кольцевых, затем карт барической топографии, аэрологических диаграмм, карт максимальных ветров, карт тропопаузы и авиационных карт АКП.

Анализ приземных карт погоды начинается с их «подъёма». На карте выделяются зоны обложных, моросящих и ливневых осадков, районы кучево-дождевых облаков и грозовой деятельности, районы занятые туманом, метелями, пыльными бурями и другими явлениями.

Затем проводятся линии равных значений барических тенденций. В центральной части области роста давления проставляется синим цветом буква Р и максимальная величина роста давления, в центральной части падения – буква П красным цветом и наблюдаемая величина падения давления. Линии равных значений барических тенденций называются изаллобарами или изотенденциями. Затем проводятся изобары – линии равных давлений, выявляются основные формы барического рельефа – циклоны, антициклоны, ложбины, гребни, седловины. Центры циклонов и антициклонов обозначаются буквами Н и В соответственно.

Все эти этапы являются подготовительными для анализа атмосферных фронтов.

Для анализа атмосферных фронтов сначала изучают их положение по приземным картам предшествующих сроков, а затем на основании анализа барического поля, полей ветра, температуры, влажности, распределения облачных систем, зон осадков и изаллобарических областей определяют положение фронта и его тип. При этом учитываются все факторы, которые могут привести и изменению погодных условий в зоне фронта в зависимости от времени года и суток, характера распределения давления, температуры и т.п.

Анализ фронтов не исчерпывается определением их положения на приземной карте, а используются карты барической топографии, аэрологические диаграммы и другие материалы, как спутниковая информация, бортовая погода.

Карты барической топографии используются в комплексе с приземными картами, что позволяет достаточно полно проанализировать процессы и явления погоды, которые наблюдаются не только у земли, но и на различных высотах.

Для анализа используют карты АТ850, АТ700, АТ500, АТ400, АТ300, АТ200 и АТ100Гпа поверхности. Для анализа температурного режима нижней тропосферы используются карты ОТ500/1000 . Изогипсы на этой карте в то же время являются изотермами средней температуры нижнего 5-километрового слоя тропосферы. Для уточнения положения атмосферных фронтов используется карта АТ850, на которой лучше чем на приземных картах обнаруживаются фронтальные поверхности по контрастам температур и другим элементам. Для выявления расположения и характеристики высотных фронтальных зон и связанных с ними струйных течений используются карты АТ300, АТ200, реже АТ500.

Высотную фронтальную зону по этим картам можно обнаружить по участкам с наибольшим сгущением изогипс и изотерм, на которых наблюдаются наиболее сильные ветры, иногда превышающие 100 км/час – струйное течение.

Обычно зоны интенсивной турбулентности располагаются в местах резкой расходимости воздушных потоков, особенно если эти зоны связаны со СТ, а передняя часть зоны расходимости располагается над холодным фронтом.

При анализе синоптических процессов используется аэрологическая диаграмма, по которой можно получить некоторые данные.

Для прогноза развития синоптических процессов учитывается суточный и годовой ход метеоэлементов (суточный ход температуры, ветра, зимой – отрицательных температур, летом – высоких). Учитывая изменения, обусловленные прохождением атмосферных фронтов, развитием циклонических и антициклонических образований. Одним из этапов является прогноз смещения барических образований:

1. Циклоны перемещаются в направлении изобар его тёплого сектора, оставляя тёплый воздух справа;

2. Центр циклона движется параллельно линии соединяющей центр падения давления с центром роста в сторону падения.

Если при этом отрицательные тенденции располагаются только в передней части циклона, не захватывая его центральную часть, а в тылу наблюдается рост той же интенсивности, то это указывает на быстрое смещение циклона.

Если отрицательные тенденции захватывают центр циклона и теплый сектор, это указывает на его углубление, вероятное обострение фронтов, увеличение мощности облаков и интенсивности осадков.

3. Если же циклоны или антициклоны имеют общую замкнутую изобару, то их центры совершают вращательное движение друг относительно друга у циклонов против часовой стрелки, у антициклонов – по часовой стрелке.

4. Ложбина перемещается вместе с циклоном, с которым она связана, и вращается вокруг циклона против часовой стрелки.

5. Гребни перемещаются вместе с антициклоном и вращаются вокруг антициклона по часовой стрелке.

При использовании карт барической топографии для анализа применяются следующие правила:

1. Приземные центры барических систем перемещаются в направлении воздушного потока течений (ведущего потока), наблюдающихся в данный момент над этими центрами, на высотах 3-6 км, т.е. в направлении изогипс на АТ700 и АТ500.

При этом скорость перемещения центров приземных барических образований будет составлять 0,7 от скорости ветра на АТ700 и 0,5 от скорости ветра на АТ500.

2. Высокие циклоны (AZn) c вертикальной осью остаются малоподвижными и заполняются (разрушаются). Большой наклон оси указывает на быстрое перемещение барического образования.

3. Циклоны углубляются, если над ними на картах АТ700 и АТ500 наблюдается расходимость потоков; заполняются, если имеется сходимость потоков.

4. Антициклоны и гребни усиливаются, если над ними на картах АТ700 и АТ500 наблюдается сходимость потоков, и разрушаются, если есть расходимость потоков.

Для прогноза перемещения фронта применяется карта АТ700, каждая точка на приземной линии фронта перемещается вдоль изогипс, проходящих над этой точкой со скоростью 0,8 для теплых и 0,9 для холодных фронтов от скорости ветра на этой изобарической поверхности.

Таким образом, определяя скорость и направление перемещения барических образований и атмосферных фронтов, составляется прогноз синоптического положения, т.е. будущее расположение атмосферных объектов. Учет эволюции атмосферных фронтов и барических систем является важным элементом при разработке синоптического положение и прогноза погоды, причем прогноз погоды исходит из основного принципа, что с перемещением воздушных масс и фронтов переносятся с определенными изменениями свойственные им условия погоды. Поэтому в первом приближении принимаются те значения метеоэлементов, откуда ожидается перемещение фронта и перенос воздушной массы.

5.2 Карты барической топографии. Их анализ. Карты тропопаузы.

Карты барической топографии (БТ) составляют по данным радио­зондирования в 00, 12, UTC. По этим картам определяют метеорологические условия на различных высотах, а также уточняют анализ погоды у поверхности земли. Карты БТ составляют для поверх­ностей равного давления, которые называются изобарическими.

Изобарические поверхности не параллельны уровню моря. В зависимости от распределения давления на уровне моря и от распре­деления температуры воздуха они или поднимаются несколько вверх (над антициклоном и в области тепла), или опускаются вниз (над циклоном и в области холода) относительно своей средней высоты. Высота изобарической поверхности выражается в геопотенциальных метрах 1 или декаметрах (десятках метров). Изобарических поверхно­стей в атмосфере можно выделить бесконечное множество. На практи­ке обычно выделяют несколько, их называют стандартными, или главными. В зависимости от уровня отсчета высоты изобарической поверхности эти карты подразделяют на карты абсолютной топографии (AT) - высота изобарической поверхности отсчитывается от уровня моря и карты относительной топографии (ОТ) - высота отсчитывается от любой ниже расположенной изобарической поверх­ности или от поверхности земли. На практике составляют только одну ОТ500/1000

1 Геопотенциальный метр отличается от линейного не более чем на 0,3 %.

.

Изобарические поверхности и карты барической топографии

Карты абсолютной топографии составляются для следующих изобарических поверхностей:

850гПа,Нср≈1,5км (слой1…2км)

700 гПа, Нср ≈ 3 км (2…4км)

500 гПа, Нср ≈ 5 км (4…6км)

400 гПа, Нср ≈ 7 км (6…8км)

300 гПа, Нср ≈ 9 км (8…10км)

200гПа,Нср≈ 12 км (10…12км)

100гПа,Нср≈ 16 км (12…14км)

На карты AT наносят следующие данные:

Здесь ННН - высота изобарической поверхности, геопотенциальные декаметры (гп. дкм); t - температура воздуха на высоте данной изобарической поверхности, °С; Δtd- дефицит точки росы, указывается цифрой. Направление δ и ff скорость ветра и наносят так же, как на приземную карту:

Точки с одинаковой высотой данной изобарической поверхности соединяют на картах AT плавными черными линиями, которые назы­ваются изогипсами (изос - равно, гипса – высота).

После проведения изогипс на картах AT выделяются высотные центры барических систем. Высотные циклоны и антициклоны очерче­ны замкнутыми изогипсами. В циклоне высота изобарической поверх­ности к центру уменьшается, а в антициклоне высота изобарической поверхности к центру увеличивается.

С помощью карт AT определяют следующие параметры.

1. Направление и скорость ветра в том районе, где данные о ветре отсутствуют, т. е. направление и скорость градиентного ветра, харак­теристики которого зависят от направления и густоты изогипс.

2. Струйное течение (СТ). Это - ветровой поток со скоростью
100 км/ч (30 м/с) и больше, который простирается на несколько тысяч
километров по горизонтали. Иногда СТ опоясывает весь земной шар.
Ось СТ (максимальная скорость) располагается на 1,5...2 км ниже
тропопаузы.

3. Зоны облачности и обледенения. На изобарических поверхно­стях 850,700 и 500 гПа облачность вероятна при Δtd ≤ 2 °С;

на изобарических поверхностях 400, 300 и 200 гПа облачность вероятна при Δtd ≤ 4°С;

4. Зоны болтанки (_/\_ - умеренная; -сильная). Если на не­большом участке маршрута резко меняется направление или скорость ветра или то и другое вместе, то при полете на этом участке маршрута будет наблюдаться болтанка;

5. Ведущий поток. Это господствующее направление ветра над данным районом в средней тропосфере (в слое 3 – 6 км) Его определяют по картам АТ-700 и АТ-500. По ведущему потоку определяется направление и скорость перемещения основных барических систем, а также скорость перемещения атмосферных фронтов.

6. Вертикальная мощность циклонов и антициклонов.

7. Положение атмосферных фронтов и воздушных масс.

8. Эволюция приземных циклонов и антициклонов

Карты тропопаузы.

Карты тропопаузы составляют по данным радиозондирования в 00 и 12 ч по Гринвичу. Они дают представление о пространственном положении тропопаузы.

На карты наносят следующие данные:

Здесь РРР- давление на самом нижнем уровне тропопаузы; t- температура воздуха на уровне тропопаузы, °С; Δtd - дефицит точки росы, указывается цифрой кода (так же, как на картах AT).

Направление δ и скорость ветра наносят так же, как на приземную карту. По карте тропопаузы при полетах на высоких эшелонах можно определить, где ВС будет пересекать тропопаузу, и ее наклон.

В местах, где наклон тропопаузы равен или больше 1/300 будет наблюдаться сильная болтанка. Пересекать тропопаузу в таких районах не рекомендуется.

Что мы знаем о голубой атмосфере Земли? Давайте совершим небольшое путешествие в ее глубины.

Когда говорят об атмосфере в целом, ее делят на четыре большие области, на четыре «этажа». Первый — самая нижняя часть атмосферы — тропосфера. Верхняя граница этой области в разных местах различна. У экватора она простирается до высоты 15-18 км, а у полюсов — только до 7-9. Здесь находится четыре пятых всей массы воздуха, и именно здесь формируется погода.

Второй этаж атмосферы носит название стратосферы. Интересно, что она лежит не сразу за тропосферой, а отделена от нее промежуточным слоем воздуха (1-3 км толщиной) — тропопаузой, или субстратосферой. Это, как бы, небольшой переход между этажами. Положение этого перехода не остается постоянным. Он, то понижается, то повышается.

С тропопаузой связаны особые струйные течения в атмосфере. С этим загадочным явлением столкнулись, например, во время американской интервенции в Корее. Бойцы Народной армии наблюдали с земли очень странную картину. Некоторые американские бомбардировщики, летевшие на большой высоте, вдруг останавливались в воздухе, и иногда даже начинали медленно пятиться назад! Напуганные необычным явлением, американские летчики думали, что Народная армия Северной Кореи применяет против них какое-то новое, секретное оружие. Оказалось, что самолеты попадали в «воздушные реки»- своеобразные воздушные потоки, текущие с очень большой скоростью.

Изучение этих необычных потоков показало, что они образуются, как правило, у тропопаузы. Воздушные потоки действительно во многом напоминают большие реки. Ширина их составляет 100 и более километров, а глубина — несколько километров. Необыкновенно высока скорость течения «воздушных рек». Она достигает, порой -350-400 км в час. Чтобы представить себе эту скорость, достаточно вспомнить, что при сильнейших тропических ураганах скорость ветра редко превышает 200-250 км в час. Такой ветер вырывает с корнем могучие деревья, разрушает очень прочные постройки, гонит воду рек вспять. А течение «воздушных рек» еще быстрее!

Не удивительно, что самолеты, попадая в эту «реку», не могут лететь против течения. Страшной силы ветер гасит почти всю их скорость. «Воздушные реки» возникают в различных районах и быстро перемешаются. Они довольно извилисты и тянутся на сотни и тысячи километров. Известны и стратосферные струйные течения, возникающие на высоте 25-30 км.

Замечено, что в наших умеренных широтах «воздушных рек» значительно больше, чем над тропиками и у полюсов. Когда самолет летит по течению такой «воздушной реки», он резко увеличивает скорость. Известен случай, когда рейсовый самолет, летевший из США в Англию, неожиданно прибыл к месту назначения на 3 часа раньше расписания. Выяснилось, что он попал в «воздушную реку» и ее стремительные «волны» прибавили ему дополнительно несколько сотен километров скорости.

Стратосферный этаж поднимается до 80-90 км над земной поверхностью. Здесь стоит неизменно ясная погода, но часто дуют сильнейшие ветры. Исследования последних лет показали, что в стратосфере существует своя зима и свое высотное лето. Здесь обнаружены полярные области, умеренные широты и зона экватора.

Когда я слышу «страшилки» о глобальном потеплении, я напоминаю очередному пророку близкой гибели человечества о том, что во время одной только летней грозы выделяется энергия 13 атомных бомб вроде той, что была сброшена на Хиросиму. А уж об энергии ураганных ветров и говорить не приходится. Так что жалкие потуги цивилизации несравнимы с могучими силами природы. Ох, правильно говорил один из героев бессмертного романа Я.Гашека: «Что представляет собой капитан Венцель по сравнению с великолепием природы?» Далековато еще человечеству до того, чтобы загадить свою планету до невозможности проживания на ней!

Источником энергии грандиозных процессов, происходящих в атмосфере, является, конечно, Солнце. А причиной возникновения этих процессов – то, что солнечная энергия падает на поверхность Земли неравномерно. Ближе к экватору поверхность суши и поверхность океана прогреваются гораздо сильнее, чем у полюсов. В результате такой неравномерности, в атмосфере возникают воздушные потоки, переносящие тепло от более теплых к менее теплым районам Земли. Это – следствие фундаментального закона, который называется вторым началом термодинамики.

Воздух нагревается в более жарких местах, становится легче и поднимается вверх, на высоту 9-12 километров. Выше теплый воздух подняться не может из-за противодействия силы тяжести. Но и быстро охладиться он не в состоянии – слишком велик запас тепла. Поэтому воздушные потоки отклоняются к полюсам, туда, где прохладнее.

Однако до полюсов они дойти не успевают, где-то в районе 30 градусов северной или южной широты, воздух, наконец, охлаждается, опускается к поверхности Земли и теперь понизу следует в более теплые районы, то есть снова к экватору. Так образуются постоянные ветры, пассаты. Они дуют в юго-западном направлении в северном полушарии и в северо-западном направлении в южном. Смещение ветров на запад – следствие вращения Земли.

От полюсов холодный воздух движется вдоль поверхности земли туда, где теплее, то есть в южные широты. При этом он постепенно нагревается и где-то в районе 60-й широты начинает подниматься вверх, до границы тропосферы, на высоту около 9 километров. На этой высоте теплый воздух возвращается к полярным областям, постепенно отдавая свое тепло. Возле полюса он, охлажденный, спускается к поверхности земли, чтобы снова двигаться в более нагретые области.

Между этими двумя круговыми воздушными потоками возникает еще один, промежуточный. В нем холодный воздух, не успевший нагреться в районе 30 градусов широты, движется, постепенно нагреваясь, вдоль поверхности Земли и, достаточно нагревшись, поднимается вверх. По границе тропосферы он возвращается на юг, где, охладившись, вновь опускается к земной поверхности.

В местах, где эти круговые воздушные потоки соприкасаются, происходит взаимодействия холодных и теплых воздушных фронтов. В результате этого взаимодействия у поверхности Земли проливаются дожди, возникают грозы, а также ураганы, штормы и смерчи.

Что происходит на больших высотах, где тоже сталкиваются холодные и теплые воздушные фронты? Влажность здесь очень маленькая, поэтому ни дождь, ни снег, ни град здесь идти не будут. А вот грандиозные ураганные «воронки» здесь возникают с легкостью. Но направлены они не вертикально, как у поверхности Земли, а горизонтально. Поэтому они работают, как гигантские вентиляторы, создавая тонкие полосы завихряющегося воздуха, которые называются струйными течениями.

Струйные течения представляют собой узкие области высотой около 2 километров. Их ширина составляет от 40 до 160 километров. Этакие воздушные «трубы», по которым несется воздух со скоростью 400 – 500 километров в час. Длина струйного течения может быть самой разной в зависимости от скорости воздуха. Бывает, что одно струйное течение опоясывает земной шар в районе 30-х и 60-х широт. Бывает, что одно длинное струйное течение разбивается на несколько более коротких струйных течений.

Струйные течения в земной атмосфере метеорологи впервые зарегистрировали в 1883 году. В этом году произошло катастрофическое извержение вулкана Кракатау в Индонезии. Тучи дыма и вулканического пепла поднялись на стратосферные высоты – более 12 километров. Часть пепла и пыли была захвачена струйными течениями, что сделало эти течения хорошо видимыми с поверхности Земли.

В 1920 году японский метеоролог Васабуро Оиши запускал метеорологические воздушные шары с вершины горы Фудзи и обнаружил, что по достижении высот около 9 – 10 километров их резко уносит в восточном направлении. Оиши повезло, поскольку одно из струйных течений проходит как раз над Японией. Но его работы были практически неизвестны в других странах. Поэтому струйные течения повторно открыли американские летчики в 1945 году. «Летающие крепости» B-17 и B-29 летали на высотах свыше 10 километров со скоростью около 500 километров в час. На таких высотах они были недоступны для тогдашних истребителей, и американцы использовали эти самолеты для бомбардировки целей на Японских островах. Оказалось, что полет к месту бомбежки занимал гораздо больше времени, чем обратный полет. Более того, некоторые бомбардировщики, попадая в струйный поток, скорость ветра в которых достигала 400 – 500 километров в час, попросту «зависали», не в силах продвинуться вперед!

Современные пассажирские самолеты летают на высотах свыше 10 километров. Иногда они используют струйные течения для того, чтобы ускорить полет в направлении с запада на восток. Однако самолеты летят рядом, стараясь не попадать в само течение. Ведь здесь поток завихряется, в результате чего, самолет начинает сильно «болтать»

Одной из версий авиакатастрофы в Ростове-на-Дону, которая произошла 19 марта, называют редкое погодное явление струйное течение воздуха. Что это такое и как оно влияет на полеты самолетов, читайте а рубрике "Вопрос-ответ".

Что такое струйное течение?

Высотное струйное течение – это сильный ветер в виде узкого воздушного потока в верхней тропосфере или нижней стратосфере. Для него характерны большие скорости (обычно на оси более 30 м/с) и градиенты более 5 м/с на 1 км по высоте и более 10 м/с на 100 км по горизонтали. Проще говоря, струйное течение – достаточно узкий стремительный поток воздуха, похожий на струю (отсюда и название — струйный). Длинна этой струи – может быть тысячи километров, ширина — сотни километров, толщина – несколько километров. И внутри нее свирепствует ураган со скоростью ветра от 100 до 900 километров в час. При этом вокруг этой "трубы" — нет никаких изменений в атмосфере.

Что вызывает струйное течение?

По мнению ученых, виной тому неравномерное нагревание Земли, во время вращения вокруг Солнца. Теплые ветры, дующие с экватора, встречаются с холодными ветрами с полюсов, и возникает большая разница в давлении. Именно в таких областях и образуются струйные течения. Эти течения являются разделительной чертой между холодными и теплыми областями. И чем больше разница температур, тем сильнее эти ветры.

Чем опасно струйное течение для самолетов?

Струйное течение обычно возникает высоко над землей — на высоте от 9144 до 18 288 м. Поэтому на земле они не опасны. Но их очень хорошо знают летчики. В начале XX века пилоты сообщали, что иногда сталкиваются с некой воздушной стеной, при попытках влететь в которую самолеты зависали на месте. Позднее ученые дали название этому явлению "струйное течение".

Как пишет Википедия, высотные струйные течения опасны для авиации в связи с сильной турбулентностью.

Опасны эти явления и во время посадки самолета. Так как, у попавшего в струйное течение самолета может значительно ухудшиться динамическая управляемость.

Как современные летчики используют струйное течение?

Попутные струйные потоки воздуха помогают самолетам сэкономить время пути и топливо. Например, североатлантическое струйное течение летчики используют при полете на трассе Нью-Йорк - Лондон. Обратно же им приходится лететь через Исландию и юг Гренландии, чтобы избежать встречной струи. Примерные расчеты: при полете со скоростью 600 км/ч в попутном струйном течении, скорость которого 360 км/ч, путевая скорость самолета увеличивается до 960 км/ч. В этом случае расстояние в 600 км самолет преодолеет за 36 минут вместо часа. Соответственно экономия топлива составит около 50%

Почему струйное течение над Ростовом – редкое явление?



© dagexpo.ru, 2024
Стоматологический сайт