Образование алкенов. Изомерия и номенклатура. Сравнительная характеристика физических свойств этилена и его гомологов

24.09.2019

Алкены - класс органических соединений, имеющий двойную связь между атомами углерода, структурная формула - C n H 2n . Двойная связь в молекулах олефинов - это одна σ- и одна π-связь. Таким образом, если мы представим два атома углерода и разместим их на плоскости, σ-связь будет расположена на плоскости, а π-связь будет распологаться выше и ниже плоскости (если Вы плохо представляете себе, о чём идёт речь, обратитесь к разделу химические связи).

Гибридизация

В алкенах имеет место sp 2 -гибридизация, для которой угол H-C-H составляет 120 градусов, а длина связи C=C равна 0,134 нм.

Строение

Из наличия π-связи следует, и подтверждается экспериментально, что:

  • По своему строению, двойная связь в молекулах алкенов более восприимчива к внешнему воздействию, нежели обычная σ-связь
  • Двойная связь делает невозможным вращение вокруг σ-связи, откуда следует наличие изомеров, данные изомеры называются цис- и транс-
  • π-связь менее прочна, чем σ-связь, поскольку электроны находятся дальше от центров атомов

Физические свойства

Физические свойства алкенов схожи с физическими свойствами алканов. Алкены, имеющие до пяти атомов углерода, находятся в газообразном состоянии при нормальных условиях. Молекулы с содержанием от шести до 16 атомов углерода находятся в жидком состоянии и от 17 атомов углерода - алкены находятся в твёрдом состоянии при нормальных условиях.

Температура кипения алкенов в среднем увеличивается на 30 градусов на каждую CH 2 -группу, как и у алканов, ответвления снижают температуру кипения вещества.

Наличие π-связи делает олефины слаборастворимыми в воде, что обуславливает их небольшую полярность. Алкены - неполярные вещества и растворяются в неполярных растворителях и слабо полярных растворителях.

Плотность алкенов выше, чем у алканов, но ниже чем у воды

Изомерия

  • Изомерия углеродного скелета: 1-бутен и 2-метилпропен
  • Изомерия положения двойной связи: 1-бутен и 2-бутен
  • Межклассовая изомерия: 1-бутен и циклобутан

Реакции

Характерные реакции алкенов - реакции присоединения, π-связь разрывается и образовавшиеся электроны охотно принимают новый элемент. Наличие π-связи означает большее количество энергии, поэтому, как правило, реакции присоединения носят экзотермический характер, т.е. протекают с выделением тепла.

Реакции присоединения

Присоединение галогенводородов

Галогенводороды легко присоединяются к двойной связи алкенов, формируя галогеналкил ы. Галогенводороды смешивают с уксусной кислотой, либо напрямую, в газообразном состоянии, смешивают с алкеном. Для рассмотрения механизма реакции, необходимо знать правило Марковникова.

Правило Марковникова

При взаимодествии гомологов этилена с кислотами, водород присоединяется к более гидрогенизированному атому углерода.
Исключение из правила, гидроборирование алкинов , будет рассмотрено в статье об алкинах.

Механизм реакции присоединения галогенводородов к алкенам следующий: происходит гомолитический разрыв связи в молекуле галогенводорода, образовывается протон и анион галогена. Протон присоединяется к алкену образуя карбкатион, такая реакция является эндотермической и имеет высокий уровень энергии активации, поэтому реакция происходит медленно. Образованный карбкатион очень реактивен, поэтому легко связывается с галогеном, энергия активации низкая, поэтому этот этап не тормозит реакцию.

При комнатной температуре алкены реагируют с хлором и бромом в присутствии тетрахлорметана. Механизм реакции присоединения галогенов выглядит следующим образом: электроны с π-связи воздействуют на молекулу галогена X 2 . По мере приближения галогена к олефину, электроны в молекуле галогена смещаются к более отдалённому атому, таким образом молекула галогена поляризуется, ближайший атом имеет положительный заряд, более удалённый - отрицательный. Происходит гетеролитический разрыв связи в молекуле галогена, образуется катион и анион. Катион галогена присоединяется к двум атомам углерода посредством электронной пары π-связи и свободной электронной пары катиона. Оставшийся анион галогена воздействует на один из атомов углерода в молекуле галогеналкена разрывая цикл C-C-X и образовывая дигалогеналкен.

Реакции присоединения алкенов находят два основных применения, первое - количественный анализ, определение количества двойных связей количеством поглощенных молекул X 2 . Второе - в промышленности. Производство пластика основано на винилхлориде. Трихлорэтилен и тетрахлорэтилен - отличные растворители ацетиленовых жиров и резин.

Гидрирование

Присоединение газообразного водорода к алкену происходит с катализаторами Pt, Pd или Ni. В результате реакции образуются алканы. Основное применение реакции каталитического присоединения водорода - это, во-первых, количественный анализ. По остатку молекул H 2 можно определить количество двойных связей в веществе. Во-вторых, растительные жиры и жиры рыб являются непредельными углеродами и такое гидрирование приводит к увеличению температуры плавления, преобразуя в твёрдые жиры. На данном процессе основано производство маргарина.

Гидратация

При смешивании алкенов с серной кислотой образуются алкил-гидросульфаты. При разбавлении алкил-гидросульфатов водой и сопутствующем нагревании, образуется спирт. Пример реакции - смешивание этена (этилен) с серной кислотой, последующее смешивание с водой и нагревание, результат - этанол.

Окисление

Алкены легко окисляются различными веществами, такими как, например, KMnO 4 , O 3 , OsO 4 и т.д. Существует два вида окисления алкенов: разрыв π-связи без разрыва σ-связи и разрыв σ- и π-связи. Окисление без разрыва сигма-связи называется мягким окислением, с разрывом сигма-связи - жёстким окислением.

Окисление этена без разрыва σ-связи образует эпоксиды (эпоксиды - это циклические соединения C-C-O) или двухатомные спирты. Окисление с разрывом σ-связи образует ацетоны, альдегиды и карбоновые кислоты.

Окисление перманганатом калия

Реакции окисления алкенов под воздействием перманганата калия называются были открыты Егором Вагнером и носит его имя. В реакции Вагнера, окисление происходит в органическом растворителе (ацетон или этанол) при температуре 0-10°C, в слабом растворе перманганата калия. В результате реакции образуются двуатомные спирты и обесцвечивается перманганат калия.

Полимеризация

Большинство простых алкенов могут испытывать реакции самоприсоединения, формируя таким образом большие молекулы из структурных единиц. Такие большие молекулы называются полимерами, реакция, которая позволяет получить полимер называется полимеризацией. Простые структурные единицы, образующие полимеры, называются мономерами. Полимер обозначается заключением повторяющейся группы в скобках с указанием индекса "n", что означает большое количество повторений, например: "-(CH 2 -CH 2) n -" - полиэтилен. Процессы полимеризации - основа производства пластика и волокон.

Радикальная полимеризация

Радикальная полимеризация инициируется при помощи катализатора - кислорода или пероксида. Реакция состоит из трёх этапов:

Инициация
ROOR → 2RO .
CH 2 = CH-C 6 H 5 → RO- CH 2 C . H-C 6 H 5
Рост цепи
RO- CH 2 C . H-C 6 H 5 + CH 2 =CH-C 6 H 5 → RO-CH 2 -CH(C 6 H 5)-CH 2 -C . -C 5 H 6
Обрыв цепи рекомбинацией
CH 2 -C . H-C 6 H 5 + CH 2 -C . H-C 6 H 5 → CH 2 -CH-C 6 H 5 -CH 2 -CH-C 6 H 5
Обрыв цепи диспропорционированием
CH 2 -C . H-C 6 H 5 + CH 2 -C . H-C 6 H 5 → CH=CH-C 6 H 5 + CH 2 -CH 2 -C 6 H 5

Ионная полимеризация

Другой способ полимеризации алкенов - это ионная полимеризация. Реакция протекает с образованием промежуточных продуктов - карбкатионов и карбанионов. Образование первого карбкатиона, как правило, осуществляется при помощи кислоты Льюиса, образование карбаниона происходит, соответственно, при реакции с основанием Льюиса.

A + CH 2 =CH-X → A-CH 2 -C + H-X → ... → A-CH 2 -CHX-CH 2 -CHX-CH 2 C + HX ...
B + CH 2 =CH-X → B-CH 2 -C - H-X → ... → B-CH 2 -CHX-CH 2 -CHX-CH 2 C - HX ...

Распространённые полимеры

Наиболее распространёнными полимерами являются:

Номенклатура

Название алкенов, аналогично алканам, состоит из первой части - префикса, обозначающего количество атомов углерода в главной цепи, и суффикса -ен. Алкен - соединение с двойной связью, поэтому молекулы алкена начинаются с двух атомов углерода. Первый в списке - этен, эт- - два атома углерода, -ен - наличие двойной связи.

Если в молекуле более трёх атомов углерода, то необходимо указывать позицию двойной связи, например, бутен может быть двух видов:

CH 2 =CH—CH 2 —CH 3
CH 3 —CH=CH—CH 3

Для обозначения позиции двойной связи, необходимо добавить цифру, для примера выше это будут 1-бутен и 2-бутен соответственно (также применяются названия 1-бутен и 2-бутен, но они не являются систематическими).

Наличие двойной связи влечёт за собой изомерию, когда молекулы могут находится по разные стороны от двойной связи, например:

Данная изомерия именуется цис- (Z-zusammen, с немецкого вместе) и транс- (E-entgegen, с немецкого напротив), в первом случае цис-1,2-дихлорэтен (или (Z)-1,2-дихлорэтен), во втором - транс-1,2-дихлорэтен (или (E)-1,2-дихлорэтен).

Алкены вступают в разнообразные реакции, в которых образуются соединения других классов. Поэтому алкены являются важными интер-медиатами в органическом синтезе. При синтезе многих типов веществ бывает полезно получить вначале алкен и уже его превращать в требуемое соединение.

Все реакции алкенов можно условно разделить на две группы. Одну из них образуют протекающие в две стадии реакции электрофильного присоединения, другую - все прочие реакции. Мы начнем ниже рассмотрение со второй группы реакций.

Гидрирование

Алкены реагируют с газообразным водородом в присутствии катализаторов (как правило, благородных металлов). Два атома водорода присоединяются при этом по двойной связи алкена и образуется алкан. Эта реакция подробно разбиралась в гл. 3. Приведем еще два примера:

Озонолиз

Эта реакция необычна в том отношении, что в ней происходит полный разрыв двойной углерод-углеродной связи и расщепление углеродного скелета молекулы на две части. Алкен обрабатывают озоном, а затем цинковой пылью. В результате молекула алкена расщепляется по двойной связи и образуется две молекулы альдегида и (или) кетона. Из циклоалкенов образуются ациклические соединения с двумя альдегидными (или кетонными) группами:

Например:

Заметьте, что в последних двух примерах при раскрытии кольца циклоалкена образуется одна ациклическая молекула, а не две, как из ациклических алкенов.

Реакция озонолиза используется как для синтеза альдегидов и кетонов, так и для установления строения алкенов. Например, пусть при озонолизе неизвестного алкена образуется смесь двух альдегидов:

В этом случае строение алкена может быть логически установлено следующим образом. Атомы углерода, связанные в молекулах альдегидов двойными связями с атомами кислорода, были в молекуле исходного алкена связаны двойной связью между собой:

Другой пример:

Структура алкена должна быть циклической, поскольку мы должны соединить два конца одной и той же молекулы:

Окисление

Разбавленный водный раствор перманганата калия превращает алкены в диолы (гликоли). В результате этой реакции две гидроксильные группы присоединяются с одной стороны двойной связи (цис- или син-присоединение).

Поэтому из циклоалкенов образуются цис-диолы. В общем виде уравнение реакции выглядит так:

Например:

Наилучшим образом синтез диолов протекает в слабощелочной среде и мягких условиях (невысокая температура и разбавленный раствор перманганата калия). В более жестких условиях (кислый катализ, нагревание) происходит расщепление молекулы по двойной связи и образуются карбоновые кислоты.

Реакция с перманганатом калия используется не только для получения диолов, Но и служит простым тестом, позволяющим легко определять алкены. Раствор перманганата имеет интенсивную фиолетовую окраску. Если в исследуемом образце содержится алкен, то при добавлении к нему нескольких капель раствора перманганата фиолетовая окраска последнего немедленно переходит в коричневую. Такое же изменение окраски вызывают только алкины и альдегиды. Соединения большинства других классов в этих условиях не реагируют. Описанная выше процедура называется пробой Байера. Ниже показано отношение соединений различных классов к пробе Байера: положительная проба (фиолетовая окраска исчезает), отрицательная проба (фиолетовая окраска сохраняется).

Аллильное галогенирование

Если алкены подвергать свободнорадикальному галогенированию, легче всего замещаются на галоген атомы водорода при углеродном атоме, соседствующем с двойной связью. Это положение в молекуле алкена называется аллильным:

Специфическим реагентом для аллильного бромирования является -бромсукцинимид Он представляет собой твердое вещество,

с которым удобно работать в лаборатории, тогда как молекулярный бром - летучая, высокотоксичная и опасная в обращении жидкость При нагревании (иногда необходим катализ пероксидами) N-бромсукцинимид становится источником атомов брома.

Галогенирование идет в аллильное положение, так как промежуточно образующийся при этом аллильный радикал стабильнее, чем любой другой свободный радикал, который может получиться из молекулы алкена. Поэтому именно этот радикал образуется легче других. Повышенная устойчивость аллильного радикала объясняется его резонансной стабилизацией, в результате которой неспаренный электрон оказывается делокализован по двум углеродным атомам. Ниже показан механизм аллильного хлорирования:

Алкены расщепляются озоном с образованием альдегидов и кетонов, что позволяет устанавливать строение алкенов. Алкены подвергаются гидрированию с образованием алканов и окислению с образованием диолов. Кроме зтих реакций с участием двойной связи для алкенов характерно селективное галогенирование в положение, соседнее с двойной связью. Сама двойная связь при этом не затрагивается.

Электр офильное присоединение к алкенам

Реакции электрофильного присоединения, отличаясь друг от друга природой присоединяющихся по двойной связи групп, имеют одинаковый двухстадийный механизм. На первой его стадии электрофильная (обладающая сродством к электрону) частица (например, катион) притягивается -электронным облаком и присоединяется по двойной связи:

В большинстве случаев выполняется правило Марковникова - электрофил присоединяется к наиболее гидрогенизированному концу двойной связи, а нуклеофил к противоположному. Подробнее об этих реакциях идет речь в тех главах, где рассматривается образование соответствующих функциональных групп. Например, присоединение бромоводорода обсуждается в гл. 5 (там, где идет речь о синтезе галогеналканов) присоединение воды рассмотрено в гл. 7 (синтез спиртов). Здесь мы только еще раз подчеркнем роль положительно заряженных частиц, имеющих незаполненную внешнюю электронную оболочку, и их взаимодействия с -электронами. Приведем также несколько примеров:

Алкены реагируют с электрофильными реагентами, которые присоединяются по двойной связи. Реакция протекает в две стадии. Таким путем получают соединения различных классов, например галогеналканы и спирты.

Схема 6-1. Реакции электрофильного присоединения к алкенам

Самыми простыми органическими соединениями являются предельные и непредельные углеводороды. К ним относят вещества класса алканов, алкинов, алкенов.

Формулы их включают атомы водорода и углерода в определенной последовательности и количестве. Они часто встречаются в природе.

Определение алкенов

Другое их название - олефины или углеводороды этиленовые. Именно так назвали данный класс соединений в 18 столетии при открытии маслянистой жидкости − хлористого этилена.

К алкенам относятся вещества, состоящие из водородных и углеродных элементов. Они относятся к ациклическим углеводородам. В их молекуле присутствует единственная двойная (ненасыщенная) связь, соединяющая два углеродных атома между собой.

Формулы алкенов

Каждый класс соединений имеет свое химическое обозначение. В них символами элементов периодической системы указывается состав и структура связи каждого вещества.

Общая формула алкенов обозначается следующим образом: C n H 2n , где число n больше или равняется 2. При ее расшифровке видно, что на каждый атом углерода приходится по два атома водорода.

Молекулярные формулы алкенов из гомологического ряда представлены следующими структурами: C 2 H 4 , C 3 H 6 , C 4 H 8 , C 5 H 10 , C 6 H 12 , C 7 H 14 , C 8 H 16 , C 9 H 18 , C 10 H 20 . Видно, что каждый последующий углеводород содержит на один больше углерода и на 2 больше водорода.

Существует графическое обозначение расположения и порядка химических соединений между атомами в молекуле, которое показывает формула алкенов структурная.С помощью валентных черточек обозначается связь углеродов с водородами.

Формула алкенов структурная может быть изображена в развернутом виде, когда показываются все химические элементы и связи. При более кратком выражении олефинов не показывается соединение углерода и водорода с помощью валентных черточек.

Формулой скелетной обозначают самую простую структуру. Ломаной линией изображают основу молекулы, в которой атомы углерода представлены ее верхушками и концами, а звеньями указывают водород.

Как образуются наименования олефинов

CH 3 -HC=CH 2 + H 2 O → CH 3 -OHCH-CH 3 .

При воздействии на алкены кислотой серной происходит процесс сульфирования:

CH 3 -HC=CH 2 + HO−OSO−OH → CH 3 -CH 3 CH-O−SO 2 −OH.

Реакция протекает с образованием кислых эфиров, например, изопропилсерной кислоты.

Алкены подвержены окислению во время их сжигания при действии кислорода с формированием воды и газа углекислого:

2CH 3 -HC=CH 2 + 9O 2 → 6CO 2 + 6H 2 O.

Взаимодействие олефиновых соединений и разбавленного калия перманганата в форме раствора приводит к возникновению гликолей или спиртов двухатомного строения. Данная реакция также является окислительной с образованием этиленгликоля и обесцвечиванием раствора:

3H 2 C=CH 2 + 4H 2 O+ 2KMnO 4 → 3OHCH-CHOH+ 2MnO 2 +2KOH.

Молекулы алкенов могут быть задействованы в процессе полимеризации со свободнорадикальным или катионно-анионным механизмом. В первом случае под влиянием пероксидов получается полимер типа полиэтилена.

По второму механизму катионными катализаторами выступают кислоты, а анионными являются вещества металлорганические с выделением стереоселективного полимера.

Что такое алканы

Их еще называют парафинами или предельными ациклическими углеводородами. Они обладают линейной или разветвлённой структурой, в которой содержатся только насыщенные простые связи. Все представители данного класса имеют общую формулу C n H 2n+2 .

В их составе присутствуют только атомы углерода и водорода. Общая формула алкенов образуется из обозначения предельных углеводородов.

Названия алканов и их характеристика

Самым простым представителем данного класса является метан. За ним следуют вещества типа этана, пропана и бутана. В основе их названия лежит корень числительного на греческом языке, к которому прибавляют суффикс -ан. Наименования алканов занесены в IUPAC номенклатуру.

Общая формула алкенов, алкинов, алканов включает только две разновидности атомов. К ним относятся элементы углерода и водорода. Количество углеродных атомов во всех трех классах совпадает, отличие наблюдается только в численности водорода, который может отщепляться или присоединяться. Из получают ненасыщенные соединения. У представителей парафинов в молекуле содержится на 2 атома водорода больше, чем у олефинов, что подтверждает общая формула алканов, алкенов. Алкенов структура считается ненасыщенной за счет наличия двойной связи.

Если соотнести число во-до-ро-дных и уг-ле-ро-дных ато-мов в ал-ка-нах, то значение будет мак-си-маль-ным в сравнении с другими классами уг-ле-во-до-ро-дов.

Начиная с метана и заканчивая бутаном (от С 1 до С 4), вещества существуют в газообразном виде.

В жидкой форме представлены углеводороды гомологического промежутка от С 5 до С 16 . Начиная с алкана, имеющего в основной цепи 17 атомов углерода, происходит переход физического состояния в твердую форму.

Для них характерна изомерия по углеродному скелету и оптические видоизменения молекулы.

В парафинах углеродные ва-лент-но-сти считаются полностью за-ня-тыми соседними уг-ле-ро-да-ми или во-до-ро-да-ми с образованием связи σ-типа. С хи-ми-че-ской точки зрения это обуславливает их слабые свой-ства, именно поэтому алканы носят название пре-дель-ны-х или на-сы-щен-ны-х уг-ле-во-до-ро-дов, лишенных сродства.

Они вступают в реакции замещения, связанные с галогенированием по радикальному типу, сульфохлорированием или нитрованием молекулы.

Парафины подвергаются процессу окисления, горения или разложения при высоких температурах. Под действием ускорителей реакций происходит отщепление атомов водорода или дегидрирование алканов.

Что такое алкины

Их еще называют ацетиленовыми углеводородами, у которых в цепочке углеродной присутствует тройная связь. Структура алкинов описывается общей формулой C n H 2 n-2 . Из нее видно, что в отличие от алканов, у ацетиленовых углеводородов недостает четыре атома водорода. Их заменяет тройная связь, образованная двумя π- соединениями.

Такое строение обуславливает химические свойства данного класса. Структурная формула алкенов и алкинов наглядно показывает ненасыщенность их молекул, а также наличие двойной (H 2 C꞊CH 2) и тройной (HC≡CH) связи.

Наименование алкинов и их характеристика

Самым простым представителем является ацетилен или HC≡CH. Его также именуют этином. Происходит оно от названия насыщенного углеводорода, в котором убирают суффикс -ан и добавляют -ин. В наименованиях длинных алкинов цифрой указывают расположение тройной связи.

Зная строение углеводородов насыщенных и ненасыщенных, можно определить, под какой буквой обозначена общая формула алкинов: а) CnH2n; в) CnH2n+2; c) CnH2n-2; г) CnH2n-6. Правильным ответом будет третий вариант.

Начиная с ацетилена и заканчивая бутаном (от С 2 до С 4), вещества имеют газообразную природу.

В жидкой форме находятся углеводороды гомологического промежутка от С 5 до С 17 . Начиная с алкина, имеющего в основной цепи 18 атомов углерода, происходит переход физического состояния в твердую форму.

Для них характерна изомерия по углеродному скелету, по положению связи тройной, а также межклассовые видоизменения молекулы.

По химическим характеристикам ацетиленовые углеводороды подобны алкенам.

Если у алкинов тройная связь концевая, то они выполняют функцию кислоты с образованием солей алкинидов, например, NaC≡CNa. Наличие двух π-связей делает молекулу ацетиледина натрия сильным нуклеофилом, вступающим в реакции замещения.

Ацетилен подвергается хлорированию в присутствии хлорида меди с получением дихлорацетилена, конденсации под действием галогеналкинов с выделением диацетиленовых молекул.

Алкины участвуют в реакциях принцип которых лежит в основе галогенирования, гидрогалогенирования, гидротации и карбонилирования. Однако такие процессы протекают слабее, чем у алкенов с двойной связью.

Для ацетиленовых углеводородов возможны реакции присоединения по нуклеофильному типу молекулы спирта, первичного амина или сероводорода.

Продолжение. Начало см. в № 15, 16, 17, 18, 19/2004

Урок 9.
Химические свойства алкенов

Химические cвойства алкенов (этилена и его гомологов) во многом определяются наличием в их молекулах д… связи. Алкены вступают в реакции всех трех типов, причем наиболее характерными для них являются реакции п… . Рассмотрим их на примере пропилена С 3 Н 6 .
Все реакции присоединения протекают по двойной связи и состоят в расщеплении -связи алкена и образовании на месте разрыва двух новых -связей.

Присоединение галогенов:

Присоединение водорода (реакция гидрирования):

Присоединение воды (реакция гидратации):

Присоединение галогеноводородов (HHal) и воды к несимметричным алкенам происходит по правилу В.В.Марковникова (1869). Водород кислоты Hhal присоединяется к наиболее гидрированному атому углерода при двойной связи. Соответственно остаток Hal связывается с атомом С, при котором находится меньшее число атомов водорода.

Горение алкенов на воздухе.
При поджигании алкены горят на воздухе:

2СН 2 =СНСН 3 + 9О 2 6СО 2 + 6Н 2 О.

С кислородом воздуха газообразные алкены образуют взрывчатые смеси.
Алкены окисляются перманганатом калия в водной среде, что сопровождается обесцвечиванием раствора KMnO 4 и образованием гликолей (соединений с двумя гидроксильными группами при соседних атомах С). Этот процесс – гидроксилирование алкенов :

Алкены окисляются кислородом воздуха в эпоксиды при нагревании в присутствии серебряных катализаторов:

Полимеризация алкенов – связывание множества молекул алкена друг с другом. Условия реакции: нагревание, присутствие катализаторов. Соединение молекул происходит путем расщепления внутримолекулярных-cвязей и образования новых межмолекулярных -cвязей:

В этой реакции диапазон значений n = 10 3 –10 4 .

Упражнения.

1. Напишите уравнения реакций бутена-1 с: а) Br 2 ; б) HBr; в) H 2 O; г) H 2 . Назовите продукты реакций.

2. Известны условия, в которых присоединение воды и галогеноводородов по двойной связи алкенов протекает против правила Марковникова. Составьте уравнения реакций
3-бромпропилена по анти-Марковникову с: а) водой; б) бромоводородом.

3. Напишите уравнения реакций полимеризации: а) бутена-1; б) винилхлорида СН 2 =СНСl;
в) 1,2-дифторэтилена.

4. Составьте уравнения реакций этилена с кислородом для следующих процессов: а) горение на воздухе; б) гидроксилирование с водным KMnO 4 ; в) эпоксидирование (250 °С, Ag).

5. Напишите структурную формулу алкена, зная, что 0,21 г этого соединения способно присоединить 0,8 г брома.

6. При сгорании 1 л газообразного углеводорода, обесцвечивающего малиновый раствор перманганата калия, расходуется 4,5 л кислорода, причем получается 3 л СО 2 . Составьте структурную формулу этого углеводорода.

Урок 10.
Получение и применение алкенов

Реакции получения алкенов сводятся к обращению реакций, представляющих химические свойства алкенов (протеканию их справа налево, см. урок 9). Надо только подыскать соответствующие условия.
Отщепление двух атомов галогена от дигалогеноалканов , содержащих галогены при соседних атомах С. Реакция протекает под действием металлов (Zn и др.):

Крекинг предельных углеводородов. Так, при крекинге (см. урок 7) этана образуется смесь этилена и водорода:

Дегидратация спиртов. При действии на спирты водоотнимающих средств (концентрированной серной кислоты) или при нагревании 350 °С в присутствии катализаторов отщепляется вода и образуются алкены:

Таким способом в лаборатории получают этилен.
Промышленным способом получения пропилена наряду с крекингом служит дегидратация пропанола над оксидом алюминия:

Дегидрохлорирование хлоралканов проводят при действии на них раствора щелочи в спирте, т.к. в воде продуктами реакции оказываются не алкены, а спирты.

Применение этилена и его гомологов основано на их химических свойствах, т. е. способности превращаться в различные полезные вещества.

Моторные топлива , обладающие высокими октановыми числами, получают гидрированием разветвленных алкенов:

Обесцвечивание желтого раствора брома в инертном растворителе (ССl 4) происходит при добавлении капли алкена или пропускании через раствор газообразного алкена. Взаимодействие с бромом – характерная качественная реакция на двойную связь :

Продукт гидрохлорирования этилена – хлорэтан – используют в химическом синтезе для введения группы С 2 Н 5 – в молекулу:

Хлорэтан также обладает местным анестезирующим (обезболивающим) действием, что используется при хирургических операциях.

Гидратацией алкенов получают спирты, например, этанол :

Спирт C 2 H 5 ОН используют как растворитель, для дезинфекции, в синтезе новых веществ.

Гидратация этилена в присутствии окислителя [O] приводит к этиленгликолю – антифризу и полупродукту химического синтеза :

Окислением этилена получают этиленоксид и ацетальдегид – сырье в химической отрасли промышленности:

Полимеры и пластики – продукты полимеризации алкенов, например, политетрафторэтилен (тефлон):

Упражнения.

1. Завершите уравнения реакций элиминирования (отщепления), назовите получающиеся алкены :

2. Составьте уравнения реакций гидрирования: а) 3,3-диметилбутена-1;
б) 2,3,3-триметилбутена-1. В этих реакциях получаются алканы, используемые в качестве моторных топлив, дайте им названия.

3. Через трубку с нагретым оксидом алюминия пропустили 100 г этилового спирта С 2 Н 5 ОН. В результате получили 33,6 л углеводорода (н.у.). Сколько спирта (в %) прореагировало?

4. Сколько граммов брома прореагирует с 2,8 л (н.у.) этилена?

5. Составьте уравнение реакции полимеризации трифторхлорэтилена. (Образующаяся пластмасса устойчива к действию горячей серной кислоты, металлического натрия и т.п.)

Ответы на упражнения к теме 1

Урок 9

5. Реакция алкена С n H 2n с бромом в общем виде:

Молярная масса алкена M n H 2n ) = 0,21 160/0,8 = 42 г/моль.
Это – пропилен.
Ответ . Формула алкена – СН 2 =СНСН 3 (пропилен).

6. Поскольку все участвующие в реакции вещества – газы, стехиометрические коэффициенты в уравнении реакции пропорциональны их объемным соотношениями. Запишем уравнение реакции:

С a H в + 4,5О 2 3СО 2 + 3Н 2 О.

Число молекул воды определяем по уравнению реакции: 4,5 2 = 9 атомов О вступило в реакцию, 6 атомов О связаны в СО 2 , остальные 3 атома О входят в состав трех молекул Н 2 О. Поэтому индексы равны: а = 3, в = 6. Искомый углеводород – пропилен С 3 Н 6 .
Ответ . Структурная формула пропилена – СН 2 =СНСН 3 .

Урок 10

1. Уравнения реакций элиминирования (отщепления) – синтез алкенов:

2. Реакции гидрирования алкенов при нагревании под давлением в присутствии катализатора:

3. Реакция дегидратации этилового спирта имеет вид:

Здесь через х обозначена масса спирта, превратившегося в этилен.
Найдем значение х : х = 46 33,6/22,4 = 69 г.
Доля прореагировавшего спирта составила: 69/100 = 0,69, или 69%.
Ответ . Прореагировало 69% спирта.

4.

Поскольку стехиометрические коэффициенты перед формулами реагирующих веществ (С 2 Н 4 и Br 2) равны единице, справедливо соотношение:
2,8/22,4 = х /160. Отсюда х = 20 г Br 2 .
Ответ . 20 г Br 2 .

Алкены ненасыщенные алифатические углеводороды с одной или несколькими двойными углерод-углеродными связями. Двойная связь превращает два атома углерода в плоскую структуру с валентными углами между соседними связями по 120°С:

Гомологический ряд алкенов имеет общую формулу двумя его первыми членами являются этен (этилен) и пропен (пропилен):

Члены ряда алкенов с четырьмя или большим числом атомов углерода обнаруживают изомерию положения связей. Например, алкен с формулой имеет три изомера, два из которых являются изомерами положения связей:

Заметим, что нумерация цепи алкенов производится с того ее конца, который ближе к двойной связи. Положение двойной связи указывается меньшим из двух номеров, которые соответствуют двум атомам углерода, связанным между собой двойной связью. Третий изомер имеет разветвленную структуру:

Число изомеров какого-либо алкена возрастает с числом атомов углерода. Например, гексен имеет три изомера положения связей:

диенов является бута-1,3-диен, или просто бутадиен:

Соединения, содержащие три двойные связи, называются триенами. Соединения с несколькими двойными связями имеют общее название полиены.

Физические свойства

Алкены имеют несколько более низкие температуры плавления и кипения, чем соответствующие им алканы. Например, пентан имеет температуру кипения . Этилен, пропен и три изомера бутена при комнатной температуре и нормальном давлении находятся в газообразном состоянии. Алкены с числом атомов углерода от 5 до 15 в нормальных условиях находятся в жидком состоянии. Их летучесть, как и у алканов, возрастает при наличии разветвления в углеродной цепи. Алкены с числом атомов углерода больше 15 при нормальных условиях представляют собой твердые вещества.

Получение в лабораторных условиях

Двумя основными способами получения алкенов в лабораторных условиях являются дегидратация спиртов и дегидрогалогенирование галогеноалканов. Например, этилен можно получить дегидратацией этанола при действии избытка концентрированной серной кислоты при температуре 170 °С (см. разд. 19.2):

Этилен можно также получить из этанола, пропуская пары этанола над поверхностью нагретого оксида алюминия. Для этой цели можно использовать установку, схематически изображенную на рис. 18.3.

Второй распространенный метод получения алкенов основан на проведении дегидрогалогенирования галогеноалканов в условиях основного катализа

Механизм реакции элиминирования такого типа описан в разд. 17.3.

Реакции алкенов

Алкены обладают намного большей реакционной способностью, чем алканы. Это обусловлено способностью -электронов двойной связи притягивать электрофилы (см. разд. 17.3). Поэтому характерные реакции алкенов представляют собой главным образом реакции электрофильного присоединения по двойной связи:

Многие из этих реакций имеют ионные механизмы (см. разд. 17.3).

Гидрирование

Если какой-нибудь алкен, например этилен, смешать с водородом и пропустить эту смесь над поверхностью платинового катализатора при комнатной температуре или никелевого катализатора при температуре около 150°С, то произойдет присоединение

водорода по двойной связи алкена. При этом образуется соответствующий алкан:

Реакция этого типа представляет собой пример гетерогенного катализа. Его механизм описан в разд. 9.2 и схематически показан на рис. 9.20.

Присоединение галогенов

Хлор или бром легко присоединяются по двойной связи алкена; эта реакция протекает в неполярных растворителях, например в тетрахлорометане или гексане. Реакция протекает по ионному механизму, который включает образование карбкатиона. Двойная связь поляризует молекулу галогена, превращая ее в диполь:

Поэтому раствор брома в гексане или тетрахлорометане при встряхивании с алкеном обесцвечивается. То же самое происходит, если встряхивать алкен с бромной водой. Бромная вода представляет собой раствор брома в воде. Этот раствор содержит бромноватистую кислоту . Молекула бромноватистой кислоты присоединяется по двойной связи алкена, и в результате образуется бромозамещенный спирт. Например

Присоединение галогеноводородов

Механизм реакции этого типа описан в разд. 18.3. В качестве примера рассмотрим присоединение хлороводорода к пропену:

Отметим, что продукт этой реакции представляет собой 2-хлоропропан, а не 1-хлоро-пропан:

В таких реакциях присоединения наиболее электроотрицательный атом или наиболее электроотрицательная группа всегда присоединяются к атому углерода, связанному с

наименьшим числом атомов водорода. Эта закономерность носит название правила Марковникова.

Предпочтительное присоединение электроотрицательного атома или группы к атому углерода, связанному с наименьшим числом атомов водорода, обусловлено повышением устойчивости карбкатиона по мере возрастания числа алкильных заместителей на атоме углерода. Это повышение устойчивости в свою очередь объясняется индуктивным эффектом, возникающим в алкильных группах, так как они являются донорами электронов:

В присутствии какого-либо органического пероксида пропен реагирует с бромоводородом, образуя т. е. не по правилу Марковникова. Такой продукт называется антимарковниковским. Он образуется в результате протекания реакции по радикальному, а не ионному механизму.

Гидратация

Алкены реагируют с холодной концентрированной серной кислотой, образуя алкил-гидросульфаты. Например

Эта реакция представляет собой присоединение, поскольку в ней происходит присоединение кислоты по двойной связи. Она является обратной реакцией по отношению к дегидратации этанола с образованием этилена. Механизм этой реакции подобен механизму присоединения галогеноводородов по двойной связи. Он включает образование промежуточного карбкатиона. Если продукт этой реакции разбавить водой и осторожно нагревать, он гидролизуется, образуя этанол:

Реакция присоединения серной кислоты к алкенам подчиняется правилу Марковникова:

Реакция с подкисленным раствором перманганата калия

Фиолетовая окраска подкисленного раствора перманганата калия исчезает, если этот раствор встряхивают в смеси с каким-либо алкеном. Происходит гидроксилирование алкена (введение в него гидроксигруппы, образующейся вследствие окисления), который в результате превращается в диол. Например, при встряхивании избыточного количества этилена с подкисленным раствором происходит образование этан-1,2-диола (этиленгликоля)

Если алкен встряхивают с избыточным количеством раствора -ионов, происходит окислительное расщепление алкена, приводящее к образованию альдегидов и кетонов:

Альдегиды, образующиеся при этом, подвергаются дальнейшему окислению с образованием карбоновых кислот.

Гидроксилирование алкенов с образованием диолов может также проводиться с помощью щелочного раствора перманганата калия.

Реакция с пербензойной кислотой

Алкены реагируют с пероксикислотами (надкислотами), например с пербензойной кислотой, образуя простые циклические эфиры (эпоксисоединения). Например

При осторожном нагревании эпоксиэтана с разбавленным раствором какой-либо кислоты образуется этан-1,2-диол:

Реакции с кислородом

Как и все другие углеводороды, алкены горят и при обильном доступе воздуха образуют диоксид углерода и воду:

При ограниченном доступе воздуха горение алкенов приводит к образованию моноксида углерода и воды:

Поскольку алкены имеют более высокое относительное содержание углерода, чем соответствующие алканы, они горят с образованием более дымного пламени. Это обусловлено образованием частиц углерода:

Если смешать какой-либо алкен с кислородом и пропустить эту смесь над поверхностью серебряного катализатора, при температуре около 200 °С образуется эпоксиэтан:

Озонолиз

При пропускании газообразного озона через раствор какого-либо алкена в трихлорометане или тетрахлорометане при температуре ниже 20 °С образуется озонид соответствующего алкена (оксиран)

Озониды - неустойчивые соединения и могут быть взрывоопасными. Они подвергаются гидролизу с образованием альдегидов или кетонов. Например

В этом случае часть метаналя (формальдегида) реагирует с пероксидом водорода, образуя метановую (муравьиную) кислоту:

Полимеризация

Простейшие алкены могут полимеризоваться с образованием высокомолекулярных соединений, которые обладают той же эмпирической формулой, что и исходный алкен:

Эта реакция протекает при высоком давлении, температуре 120°С и в присутствии кислорода, который играет роль катализатора. Однако полимеризацию этилена можно проводить и при более низком давлении, если воспользоваться катализатором Циглера. Одним из наиболее распространенных катализаторов Циглера является смесь триэтилалюминия и тетрахлорида титана.

Полимеризация алкенов более подробно рассматривается в разд. 18.3.



© dagexpo.ru, 2024
Стоматологический сайт