Обратное распространение ошибки. Среда разработки и причины ее выбора

21.09.2019

Ошибки от выходов сети к её входам, в направлении, обратном прямому распространению сигналов в обычном режиме работы. Барцев и Охонин предложили сразу общий метод («принцип двойственности »), приложимый к более широкому классу систем, включая системы с запаздыванием, распределённые системы , и т. п.

Для возможности применения метода обратного распространения ошибки передаточная функция нейронов должна быть дифференцируема . Метод является модификацией классического метода градиентного спуска .

Сигмоидальные функции активации

Наиболее часто в качестве функций активации используются следующие виды сигмоид :

Функция Ферми (экспоненциальная сигмоида):

Рациональная сигмоида:

Гиперболический тангенс:

,

где s - выход сумматора нейрона, - произвольная константа.

Менее всего, сравнительно с другими сигмоидами, процессорного времени требует расчет рациональной сигмоиды. Для вычисления гиперболического тангенса требуется больше всего тактов работы процессора. Если же сравнивать с пороговыми функциями активации, то сигмоиды рассчитываются очень медленно. Если после суммирования в пороговой функции сразу можно начинать сравнение с определенной величиной (порогом), то в случае сигмоидальной функции активации нужно рассчитать сигмоид (затратить время в лучшем случае на три операции: взятие модуля, сложение и деление), и только потом сравнивать с пороговой величиной (например, нулём). Если считать, что все простейшие операции рассчитываются процессором за примерно одинаковое время, то работа сигмоидальной функции активации после произведённого суммирования (которое займёт одинаковое время) будет медленнее пороговой функции активации как 1:4.

Функция оценки работы сети

В тех случаях, когда удается оценить работу сети, обучение нейронных сетей можно представить как задачу оптимизации. Оценить - означает указать количественно, хорошо или плохо сеть решает поставленные ей задачи. Для этого строится функция оценки. Она, как правило, явно зависит от выходных сигналов сети и неявно (через функционирование) - от всех её параметров. Простейший и самый распространенный пример оценки - сумма квадратов расстояний от выходных сигналов сети до их требуемых значений:

,

где - требуемое значение выходного сигнала.

Описание алгоритма

Архитектура многослойного перцептрона

Алгоритм обратного распространения ошибки применяется для многослойного перцептрона . У сети есть множество входов , множество выходов Outputs и множество внутренних узлов. Перенумеруем все узлы (включая входы и выходы) числами от 1 до N (сквозная нумерация, вне зависимости от топологии слоёв). Обозначим через вес, стоящий на ребре, соединяющем i-й и j-й узлы, а через - выход i-го узла. Если нам известен обучающий пример (правильные ответы сети , ), то функция ошибки, полученная по методу наименьших квадратов , выглядит так:

Как модифицировать веса? Мы будем реализовывать стохастический градиентный спуск , то есть будем подправлять веса после каждого обучающего примера и, таким образом, «двигаться» в многомерном пространстве весов. Чтобы «добраться» до минимума ошибки, нам нужно «двигаться» в сторону, противоположную градиенту , то есть, на основании каждой группы правильных ответов, добавлять к каждому весу

,

где - множитель, задающий скорость «движения».

Производная считается следующим образом. Пусть сначала , то есть интересующий нас вес входит в нейрон последнего уровня. Сначала отметим, что влияет на выход сети только как часть суммы , где сумма берется по входам j-го узла. Поэтому

Аналогично, влияет на общую ошибку только в рамках выхода j-го узла (напоминаем, что это выход всей сети). Поэтому

Если же j-й узел - не на последнем уровне, то у него есть выходы; обозначим их через Children(j). В этом случае

, .

Ну а - это в точности аналогичная поправка, но вычисленная для узла следующего уровня будем обозначать ее через - от она отличается отсутствием множителя . Поскольку мы научились вычислять поправку для узлов последнего уровня и выражать поправку для узла более низкого уровня через поправки более высокого, можно уже писать алгоритм. Именно из-за этой особенности вычисления поправок алгоритм называется алгоритмом обратного распространения ошибки (backpropagation). Краткое резюме проделанной работы:

  • для узла последнего уровня
  • для внутреннего узла сети
  • для всех узлов

Получающийся алгоритм представлен ниже. На вход алгоритму, кроме указанных параметров, нужно также подавать в каком-нибудь формате структуру сети. На практике очень хорошие результаты показывают сети достаточно простой структуры, состоящие из двух уровней нейронов - скрытого уровня (hidden units) и нейронов-выходов (output units); каждый вход сети соединен со всеми скрытыми нейронами, а результат работы каждого скрытого нейрона подается на вход каждому из нейронов-выходов. В таком случае достаточно подавать на вход количество нейронов скрытого уровня.

Алгоритм

Алгоритм: BackPropagation

где - коэффициент инерциальнности для сглаживания резких скачков при перемещении по поверхности целевой функции

Математическая интерпретация обучения нейронной сети

На каждой итерации алгоритма обратного распространения весовые коэффициенты нейронной сети модифицируются так, чтобы улучшить решение одного примера. Таким образом, в процессе обучения циклически решаются однокритериальные задачи оптимизации.

Обучение нейронной сети характеризуется четырьмя специфическими ограничениями, выделяющими обучение нейросетей из общих задач оптимизации: астрономическое число параметров, необходимость высокого параллелизма при обучении, многокритериальность решаемых задач, необходимость найти достаточно широкую область, в которой значения всех минимизируемых функций близки к минимальным. В остальном проблему обучения можно, как правило, сформулировать как задачу минимизации оценки. Осторожность предыдущей фразы («как правило») связана с тем, что на самом деле нам неизвестны и никогда не будут известны все возможные задачи для нейронных сетей, и, быть может, где-то в неизвестности есть задачи, которые несводимы к минимизации оценки. Минимизация оценки - сложная проблема: параметров астрономически много (для стандартных примеров, реализуемых на РС - от 100 до 1000000), адаптивный рельеф (график оценки как функции от подстраиваемых параметров) сложен, может содержать много локальных минимумов.

Недостатки алгоритма

Несмотря на многочисленные успешные применения обратного распространения, оно не является панацеей. Больше всего неприятностей приносит неопределённо долгий процесс обучения. В сложных задачах для обучения сети могут потребоваться дни или даже недели, она может и вообще не обучиться. Причиной может быть одна из описанных ниже.

Паралич сети

В процессе обучения сети значения весов могут в результате коррекции стать очень большими величинами. Это может привести к тому, что все или большинство нейронов будут функционировать при очень больших значениях OUT, в области, где производная сжимающей функции очень мала. Так как посылаемая обратно в процессе обучения ошибка пропорциональна этой производной, то процесс обучения может практически замереть. В теоретическом отношении эта проблема плохо изучена. Обычно этого избегают уменьшением размера шага η, но это увеличивает время обучения. Различные эвристики использовались для предохранения от паралича или для восстановления после него, но пока что они могут рассматриваться лишь как экспериментальные.

Локальные минимумы

Обратное распространение использует разновидность градиентного спуска , то есть осуществляет спуск вниз по поверхности ошибки, непрерывно подстраивая веса в направлении к минимуму. Поверхность ошибки сложной сети сильно изрезана и состоит из холмов, долин, складок и оврагов в пространстве высокой размерности. Сеть может попасть в локальный минимум (неглубокую долину), когда рядом имеется гораздо более глубокий минимум. В точке локального минимума все направления ведут вверх, и сеть неспособна из него выбраться. Основную трудность при обучении нейронных сетей составляют как раз методы выхода из локальных минимумов: каждый раз выходя из локального минимума снова ищется следующий локальный минимум тем же методом обратного распространения ошибки до тех пор, пока найти из него выход уже не удаётся.

Размер шага

Внимательный разбор доказательства сходимости показывает, что коррекции весов предполагаются бесконечно малыми. Ясно, что это неосуществимо на практике, так как ведёт к бесконечному времени обучения. Размер шага должен браться конечным. Если размер шага фиксирован и очень мал, то сходимость слишком медленная, если же он фиксирован и слишком велик, то может возникнуть паралич или постоянная неустойчивость. Эффективно увеличивать шаг до тех пор, пока не прекратится улучшение оценки в данном направлении антиградиента и уменьшать, если такого улучшения не происходит. П. Д. Вассерман описал адаптивный алгоритм выбора шага, автоматически корректирующий размер шага в процессе обучения. В книге А. Н. Горбаня предложена разветвлённая технология оптимизации обучения.

Следует также отметить возможность переобучения сети, что является скорее результатом ошибочного проектирования её топологии. При слишком большом количестве нейронов теряется свойство сети обобщать информацию. Весь набор образов, предоставленных к обучению, будет выучен сетью, но любые другие образы, даже очень похожие, могут быть классифицированы неверно.

См. также

  • Алгоритм скоростного градиента

Литература

  1. Уоссермен Ф. Нейрокомпьютерная техника: Теория и практика . - М .: «Мир», 1992.
  2. Хайкин С. Нейронные сети: Полный курс. Пер. с англ. Н. Н. Куссуль, А. Ю. Шелестова. 2-е изд., испр. - М.: Издательский дом Вильямс, 2008, 1103 с.

Ссылки

  1. Копосов А. И., Щербаков И. Б., Кисленко Н. А., Кисленко О. П., Варивода Ю. В. и др. . - М .: ВНИИГАЗ, 1995.

Метод обратного распространения ошибки

Метод обратного распространения ошибки - метод обучения многослойного персептрона, один из вариантов обучения с учителем. Впервые метод был описан Полом Дж. Вербосом. Далее существенно развит в 1986 г. Дэвидом И. Румельхартом, Дж. Е. Хинтоном и Рональдом Дж. Вильямсом. Это итеративный градиентный алгоритм, который используется с целью минимизации ошибки работы многослойного перцептрона и получения желаемого выхода.

Основная идея этого метода состоит в распространении сигналов ошибки от выходов сети к её входам, в направлении, обратном прямому распространению сигналов в обычном режиме работы. Барцев и Охонин предложили сразу общий метод («принцип двойственности»), приложимый к более широкому классу систем, включая системы с запаздыванием, распределённые системы, и т.п.

Метод является модификацией классического метода градиентного спуска.

Алгоритм метода обратного распространения ошибки

Пусть у нас имеется многослойная сеть прямого распространения со случайными весовыми коэффициентами. Есть некоторое обучающее множество, состоящее из пар вход сети - желаемый выход. Через Y обозначим реальное выходное значение нашей сети, которое в начале практически случайно из-за случайности весовых коэффициентов.

Обучение состоит в том, чтобы подобрать весовые коэффициенты таким образом, чтобы минимизировать некоторую целевую функцию. В качестве целевой функции рассмотрим сумму квадратов ошибок сети на примерах из обучающего множества.

где реальный выход N-го выходного слоя сети для p-го нейрона на j-м обучающем примере, желаемый выход. То есть, минимизировав такой функционал, мы получим решение по методу наименьших квадратов.

Поскольку весовые коэффициенты в зависимость входят нелинейно, воспользуемся для нахождения минимума методом наискорейшего спуска. То есть на каждом шаге обучения будем изменять весовые коэффициенты по формуле

где весовой коэффициент j-го нейрона n-го слоя для связи с i-м нейроном (n-1)-го слоя.

Параметр называется параметром скорости обучения.

Таким образом, требуется определить частные производные целевой функции E по всем весовым коэффициентам сети. Согласно правилам дифференцирования сложной функции

где - выход, а - взвешенная сума входов j-го нейрона n-го слоя. Заметим, что, зная функцию активации, мы можем вычислить. Например, для сигмоида эта величина будет равняться

Третий сомножитель / есть ни что иное, как выход i-го нейрона (n-1)-го слоя, то есть

Частные производные целевой функции по весам нейронов выходного слоя теперь можно легко вычислить. Производя дифференцирование (1) по и учитывая (3) и (5) будем иметь

Введем обозначение

Тогда для нейронов выходного слоя

Для весовых коэффициентов нейронов внутренних слоев мы не можем сразу записать, чему равен первый сомножитель из (4), однако его можно представить следующим образом:

Заметим, что в этой формуле первые два сомножителя есть не что иное, как. Таким образом, с помощью (9) можно выражать величины для нейронов n-го слоя черездля нейронов (n+1)-го. Поскольку для последнего слоя легко вычисляется по (8), то можно с помощью рекурсивной формулы

получить значения для вех нейронов всех слоев.

Окончательно формулу (2) для модификации весовых коэффициентов можно записать в виде

Таким образом, полный алгоритм обучения нейронной сети с помощью алгоритма обратного распространения строиться следующим образом.

Присваиваем всем весовым коэффициентам сети случайные начальные значения. При этом сеть будет осуществлять какое-то случайное преобразование входных сигналов и значения целевой функции (1) будут велики.

Подать на вход сети один из входных векторов из обучающего множества. Вычислить выходные значения сети, запоминая при этом выходные значения каждого из нейронов.

Скорректировать веса сети:

Оценка работы сети

В тех случаях, когда удается оценить работу сети, обучение нейронных сетей можно представить как задачу оптимизации. Оценить - означает указать количественно, хорошо или плохо сеть решает поставленные ей задачи. Для этого строится функция оценки. Она, как правило, явно зависит от выходных сигналов сети и неявно (через функционирование) - от всех её параметров. Простейший и самый распространенный пример оценки - сумма квадратов расстояний от выходных сигналов сети до их требуемых значений:

где - требуемое значение выходного сигнала.

Метод наименьших квадратов далеко не всегда является лучшим выбором оценки. Тщательное конструирование функции оценки позволяет на порядок повысить эффективность обучения сети, а также получать дополнительную информацию - «уровень уверенности» сети в даваемом ответе.

Недостатки алгоритма

Несмотря на многочисленные успешные применения обратного распространения, оно не является панацеей. Больше всего неприятностей приносит неопределённо долгий процесс обучения. В сложных задачах для обучения сети могут потребоваться дни или даже недели, она может и вообще не обучиться. Причиной может быть одна из описанных ниже.

Паралич сети

В процессе обучения сети значения весов могут в результате коррекции стать очень большими величинами. Это может привести к тому, что все или большинство нейронов будут функционировать при очень больших значениях OUT, в области, где производная сжимающей функции очень мала. Так как посылаемая обратно в процессе обучения ошибка пропорциональна этой производной, то процесс обучения может практически замереть. В теоретическом отношении эта проблема плохо изучена. Обычно этого избегают уменьшением размера шага з, но это увеличивает время обучения. Различные эвристики использовались для предохранения от паралича или для восстановления после него, но пока что они могут рассматриваться лишь как экспериментальные.

Локальные минимумы

Обратное распространение использует разновидность градиентного спуска, то есть осуществляет спуск вниз по поверхности ошибки, непрерывно подстраивая веса в направлении к минимуму. Поверхность ошибки сложной сети сильно изрезана и состоит из холмов, долин, складок и оврагов в пространстве высокой размерности. Сеть может попасть в локальный минимум (неглубокую долину), когда рядом имеется гораздо более глубокий минимум. В точке локального минимума все направления ведут вверх, и сеть неспособна из него выбраться. Основную трудность при обучении нейронных сетей составляют как раз методы выхода из локальных минимумов: каждый раз выходя из локального минимума, снова ищется следующий локальный минимум тем же методом обратного распространения ошибки до тех пор, пока найти из него выход уже не удаётся.

Размер шага

Внимательный разбор доказательства сходимости показывает, что коррекции весов предполагаются бесконечно малыми. Ясно, что это неосуществимо на практике, так как ведёт к бесконечному времени обучения. Размер шага должен браться конечным. Если размер шага фиксирован и очень мал, то сходимость слишком медленная, если же он фиксирован и слишком велик, то может возникнуть паралич или постоянная неустойчивость. Эффективно увеличивать шаг до тех пор, пока не прекратится улучшение оценки в данном направлении антиградиента и уменьшать, если такого улучшения не происходит. П. Д. Вассерман описал адаптивный алгоритм выбора шага, автоматически корректирующий размер шага в процессе обучения. В книге А. Н. Горбаня предложена разветвлённая технология оптимизации обучения.

Следует также отметить возможность переобучения сети, что является скорее результатом ошибочного проектирования её топологии. При слишком большом количестве нейронов теряется свойство сети обобщать информацию. Весь набор образов, предоставленных к обучению, будет выучен сетью, но любые другие образы, даже очень похожие, могут быть классифицированы неверно.

Среда разработки и причины ее выбора

Разработка приложения будет осуществляться на языке программирования C# с фреймворком.NETFramework4.0 в среде разработки MicrosoftVisualStudio 2010. Фрагменты кода, требующие массивных вычислений, разработаны на языке C++. MSVisualStudio 2010 включает в себя полный набор новых и улучшенных функций, упрощающих все этапы процесса разработки от проектирования до развертывания.

MicrosoftVisualStudio 2010 Ultimate - интегрированная среда инструментальных средств и серверная инфраструктура, упрощающая процесс разработки приложения в целом. Для создания бизнес-приложений используются эффективные, предсказуемые, настраиваемые процессы. Детальная аналитика повышает прозрачность и прослеживаемость всего жизненного цикла приложения. Как при создании новых решений, так и при доработке существующих, доступна разработка с помощью мощных инструментов создания прототипов, проектирования архитектуры и разработки, которые позволяют разрабатывать приложения для всевозможных платформ и технологий, таких как обработка данных в облаке и параллельная обработка данных. Расширенные возможности координирования совместной деятельности наряду с интегрированными инновационными инструментами тестирования и отладки обеспечат повышение производительности группы и создание высококачественных и недорогих решений.

Разработка приложений в MicrosoftVisualStudio2010 Ultimate на языке C# с фреймворком.NETFramework4.0 осуществляется с применением объектно-ориентированного программирования и визуального программирования.

Ошибки от выходов сети к её входам, в направлении, обратном прямому распространению сигналов в обычном режиме работы. Барцев и Охонин предложили сразу общий метод («принцип двойственности »), приложимый к более широкому классу систем, включая системы с запаздыванием, распределённые системы , и т. п.

Для возможности применения метода обратного распространения ошибки передаточная функция нейронов должна быть дифференцируема . Метод является модификацией классического метода градиентного спуска .

Сигмоидальные функции активации

Наиболее часто в качестве функций активации используются следующие виды сигмоид :

Функция Ферми (экспоненциальная сигмоида):

Рациональная сигмоида:

Гиперболический тангенс:

,

где s - выход сумматора нейрона, - произвольная константа.

Менее всего, сравнительно с другими сигмоидами, процессорного времени требует расчет рациональной сигмоиды. Для вычисления гиперболического тангенса требуется больше всего тактов работы процессора. Если же сравнивать с пороговыми функциями активации, то сигмоиды рассчитываются очень медленно. Если после суммирования в пороговой функции сразу можно начинать сравнение с определенной величиной (порогом), то в случае сигмоидальной функции активации нужно рассчитать сигмоид (затратить время в лучшем случае на три операции: взятие модуля, сложение и деление), и только потом сравнивать с пороговой величиной (например, нулём). Если считать, что все простейшие операции рассчитываются процессором за примерно одинаковое время, то работа сигмоидальной функции активации после произведённого суммирования (которое займёт одинаковое время) будет медленнее пороговой функции активации как 1:4.

Функция оценки работы сети

В тех случаях, когда удается оценить работу сети, обучение нейронных сетей можно представить как задачу оптимизации. Оценить - означает указать количественно, хорошо или плохо сеть решает поставленные ей задачи. Для этого строится функция оценки. Она, как правило, явно зависит от выходных сигналов сети и неявно (через функционирование) - от всех её параметров. Простейший и самый распространенный пример оценки - сумма квадратов расстояний от выходных сигналов сети до их требуемых значений:

,

где - требуемое значение выходного сигнала.

Описание алгоритма

Архитектура многослойного перцептрона

Алгоритм обратного распространения ошибки применяется для многослойного перцептрона . У сети есть множество входов , множество выходов Outputs и множество внутренних узлов. Перенумеруем все узлы (включая входы и выходы) числами от 1 до N (сквозная нумерация, вне зависимости от топологии слоёв). Обозначим через вес, стоящий на ребре, соединяющем i-й и j-й узлы, а через - выход i-го узла. Если нам известен обучающий пример (правильные ответы сети , ), то функция ошибки, полученная по методу наименьших квадратов , выглядит так:

Как модифицировать веса? Мы будем реализовывать стохастический градиентный спуск , то есть будем подправлять веса после каждого обучающего примера и, таким образом, «двигаться» в многомерном пространстве весов. Чтобы «добраться» до минимума ошибки, нам нужно «двигаться» в сторону, противоположную градиенту , то есть, на основании каждой группы правильных ответов, добавлять к каждому весу

,

где - множитель, задающий скорость «движения».

Производная считается следующим образом. Пусть сначала , то есть интересующий нас вес входит в нейрон последнего уровня. Сначала отметим, что влияет на выход сети только как часть суммы , где сумма берется по входам j-го узла. Поэтому

Аналогично, влияет на общую ошибку только в рамках выхода j-го узла (напоминаем, что это выход всей сети). Поэтому

Если же j-й узел - не на последнем уровне, то у него есть выходы; обозначим их через Children(j). В этом случае

, .

Ну а - это в точности аналогичная поправка, но вычисленная для узла следующего уровня будем обозначать ее через - от она отличается отсутствием множителя . Поскольку мы научились вычислять поправку для узлов последнего уровня и выражать поправку для узла более низкого уровня через поправки более высокого, можно уже писать алгоритм. Именно из-за этой особенности вычисления поправок алгоритм называется алгоритмом обратного распространения ошибки (backpropagation). Краткое резюме проделанной работы:

  • для узла последнего уровня
  • для внутреннего узла сети
  • для всех узлов

Получающийся алгоритм представлен ниже. На вход алгоритму, кроме указанных параметров, нужно также подавать в каком-нибудь формате структуру сети. На практике очень хорошие результаты показывают сети достаточно простой структуры, состоящие из двух уровней нейронов - скрытого уровня (hidden units) и нейронов-выходов (output units); каждый вход сети соединен со всеми скрытыми нейронами, а результат работы каждого скрытого нейрона подается на вход каждому из нейронов-выходов. В таком случае достаточно подавать на вход количество нейронов скрытого уровня.

Алгоритм

Алгоритм: BackPropagation

где - коэффициент инерциальнности для сглаживания резких скачков при перемещении по поверхности целевой функции

Математическая интерпретация обучения нейронной сети

На каждой итерации алгоритма обратного распространения весовые коэффициенты нейронной сети модифицируются так, чтобы улучшить решение одного примера. Таким образом, в процессе обучения циклически решаются однокритериальные задачи оптимизации.

Обучение нейронной сети характеризуется четырьмя специфическими ограничениями, выделяющими обучение нейросетей из общих задач оптимизации: астрономическое число параметров, необходимость высокого параллелизма при обучении, многокритериальность решаемых задач, необходимость найти достаточно широкую область, в которой значения всех минимизируемых функций близки к минимальным. В остальном проблему обучения можно, как правило, сформулировать как задачу минимизации оценки. Осторожность предыдущей фразы («как правило») связана с тем, что на самом деле нам неизвестны и никогда не будут известны все возможные задачи для нейронных сетей, и, быть может, где-то в неизвестности есть задачи, которые несводимы к минимизации оценки. Минимизация оценки - сложная проблема: параметров астрономически много (для стандартных примеров, реализуемых на РС - от 100 до 1000000), адаптивный рельеф (график оценки как функции от подстраиваемых параметров) сложен, может содержать много локальных минимумов.

Недостатки алгоритма

Несмотря на многочисленные успешные применения обратного распространения, оно не является панацеей. Больше всего неприятностей приносит неопределённо долгий процесс обучения. В сложных задачах для обучения сети могут потребоваться дни или даже недели, она может и вообще не обучиться. Причиной может быть одна из описанных ниже.

Паралич сети

В процессе обучения сети значения весов могут в результате коррекции стать очень большими величинами. Это может привести к тому, что все или большинство нейронов будут функционировать при очень больших значениях OUT, в области, где производная сжимающей функции очень мала. Так как посылаемая обратно в процессе обучения ошибка пропорциональна этой производной, то процесс обучения может практически замереть. В теоретическом отношении эта проблема плохо изучена. Обычно этого избегают уменьшением размера шага η, но это увеличивает время обучения. Различные эвристики использовались для предохранения от паралича или для восстановления после него, но пока что они могут рассматриваться лишь как экспериментальные.

Локальные минимумы

Обратное распространение использует разновидность градиентного спуска , то есть осуществляет спуск вниз по поверхности ошибки, непрерывно подстраивая веса в направлении к минимуму. Поверхность ошибки сложной сети сильно изрезана и состоит из холмов, долин, складок и оврагов в пространстве высокой размерности. Сеть может попасть в локальный минимум (неглубокую долину), когда рядом имеется гораздо более глубокий минимум. В точке локального минимума все направления ведут вверх, и сеть неспособна из него выбраться. Основную трудность при обучении нейронных сетей составляют как раз методы выхода из локальных минимумов: каждый раз выходя из локального минимума снова ищется следующий локальный минимум тем же методом обратного распространения ошибки до тех пор, пока найти из него выход уже не удаётся.

Размер шага

Внимательный разбор доказательства сходимости показывает, что коррекции весов предполагаются бесконечно малыми. Ясно, что это неосуществимо на практике, так как ведёт к бесконечному времени обучения. Размер шага должен браться конечным. Если размер шага фиксирован и очень мал, то сходимость слишком медленная, если же он фиксирован и слишком велик, то может возникнуть паралич или постоянная неустойчивость. Эффективно увеличивать шаг до тех пор, пока не прекратится улучшение оценки в данном направлении антиградиента и уменьшать, если такого улучшения не происходит. П. Д. Вассерман описал адаптивный алгоритм выбора шага, автоматически корректирующий размер шага в процессе обучения. В книге А. Н. Горбаня предложена разветвлённая технология оптимизации обучения.

Следует также отметить возможность переобучения сети, что является скорее результатом ошибочного проектирования её топологии. При слишком большом количестве нейронов теряется свойство сети обобщать информацию. Весь набор образов, предоставленных к обучению, будет выучен сетью, но любые другие образы, даже очень похожие, могут быть классифицированы неверно.

См. также

  • Алгоритм скоростного градиента

Литература

  1. Уоссермен Ф. Нейрокомпьютерная техника: Теория и практика . - М .: «Мир», 1992.
  2. Хайкин С. Нейронные сети: Полный курс. Пер. с англ. Н. Н. Куссуль, А. Ю. Шелестова. 2-е изд., испр. - М.: Издательский дом Вильямс, 2008, 1103 с.

Ссылки

  1. Копосов А. И., Щербаков И. Б., Кисленко Н. А., Кисленко О. П., Варивода Ю. В. и др. . - М .: ВНИИГАЗ, 1995.

Обратное распространение ошибки - стандартный способ обучения нейронной сети, хотя существуют и другие методы (о них в одной из следующих глав). Принцип работы примерно такой:

1. Входной набор данных, на котором сеть должна быть обучена, подается на входной слой сети, и сеть функционирует в нормальном режиме (т.е. вычисляет выходные данные).

2. Полученные данные сравниваются с известными выходными данными для рассматриваемого входного набора. Разница между полученными и известными (опытными) данными - вектор ошибки.


3. Вектор ошибки используется для модифицирования весовых коэффициентов выходного слоя с тем, чтобы при повторной подаче того же набора входных данных вектор ошибки уменьшался.

4. Затем таким же образом модифицируются весовые коэффициенты скрытого слоя, на этот раз сравниваются выходные сигналы нейронов скрытого слоя и входные сигналы нейронов выходного слоя, целью данного сравнения является формирование вектора ошибки для скрытого слоя.

5. Наконец, если в сети существует входной слой (именно слой, а не ряд входных значений), то проводятся аналогичные действия и с ним.

Следует заметить, что ошибка может быть распространена на любой желаемый уровень (т.е. в нейронной сети может быть неограниченное количество скрытых слоев, для которых мы рассчитываем вектор ошибки по одной и той же схеме). Метод обратного распространения ошибки напоминает мне волны прибоя, - входные сигналы движутся в сторону выходного слоя (т.е. берега), а ошибки - в обратном направлении (как и морская волна вынуждена в конечном счете отступить от суши).

Сеть обучается путем предъявления каждого входного набора данных и последующего распространения ошибки. Этот цикл повторяется много раз. Например, если вы распознаете цифры от 0 до 9, то сначала обрабатывается символ "0", символ "1" и так далее до "9", затем весь цикл повторяется много раз. Не следует поступать иначе, а именно, обучать сеть по отдельности сначала символу "0" (n-ое количество раз), потом "1", потом "2" и т.д., т.к. сеть вырабатывает очень "четкие" весовые коэффициенты для последнего входного набора (то есть для "9"), "забывая" предыдущие. Например, к тысячному повтору обучения символу "1" теряются весовые коэффициенты для распознавания символа "0". Повторяя весь цикл для всего словарного набора входных данных, мы предполагаем, что каждый символ оказывает равноправное влияние на значения весовых коэффициентов.

Запомните
Обозначим через переменную NUM_HID количество нейронов в скрытом слое (нумерация начинается с индекса 1). NUM_OUT - количество нейронов в выходном слое.

Обратное распространение и формулы.
А теперь, настройтесь! Я собираюсь привести ниже множество математических выкладок.

    Во-первых, инициализируем пороговые значения и весовые коэффициенты небольшими случайными величинами (не более 0.4)

    Теперь прогоним сеть в режиме прямого функционирования - процедура run_network (см. прошлую главу)

    Вычислим ошибки для выходного слоя. При этом мы используем следующую формулу для каждого i-ого значения выходного слоя (т.е. проходим по всем узлам выходного слоя):

    E i = (t i - a i).a i .(1 - a i)

    Здесь E i - ошибка для i-ого узла выходного слоя, a i - активность данного узла, t i - требуемая активность для него же (т.е. требуемое выходное значение).

    Вот код на паскале:

    procedure calculate_output_layer_errors; var i : byte; {for loop variable} begin for i: = 1 to NUM_OUT do with ol[ i] do E: = (desired_output[ i] - a) * a * (1 - a) end ;

    Здесь видно, почему я ввел переменную для ошибки непосредственно в описание нейрона. Благодаря этому становится ненужным создание отдельного массива для значений ошибки.

    Сейчас мы можем использовать значения ошибок выходного слоя для определения ошибок в скрытом слое. Формула практически та же, но теперь не определены желаемые выходные значения. - Мы вычисляем взвешенную сумму значений ошибок выходного слоя:

    E i = a i . (1 - a i) . S j E j .w ij

    Смысл переменных по сравнению с прошлой формулой изменился незначительно. индекс i используется для нейронов скрытого слоя (а не выходного), E i , следовательно, значение ошибки для нейрона скрытого слоя, и a i - сигнал на выходе нейрона. Индекс j относится к нейронам выходного слоя: wij - вес (весовой коэффициент) связи между i-ым скрытым нейроном и j-ым выходным нейроном, а E j - значение ошибки для выходного нейрона j. Суммирование проводится для всех весов связей между отдельно взятым i-ым нейроном и всеми нейронами выходного слоя.

    И вновь турбо паскаль. Обратите внимание, что сумма включает в себя взвешенные связи только между рассматриваемым в данный момент нейроном скрытого слоя и всеми нейронами выходного слоя.

    procedure calculate_hidden_layer_errors; var i,j : byte; sum : real ; begin for i: = 1 to NUM_HID do {обсчитываем весь скрытый слой} with hl[ i] do begin sum: = 0; {sum error values from O/P layer} for j: = 1 to NUM_OUT do sum: = sum + ol[ j] .E * ol[ j] .w[ i] {только веса, относящиеся к нейрону i} E: = a * (1 - a) * sum {no other w value} end ; end ;
  • Полученные значения ошибок для выходного слоя мы используем для изменения весовых коэффициентов между скрытым и выходным слоями.Мы должны вычислить все значения ошибок до модификации весовых коэффициентов, так как в формуле присутствуют и старые значения весов. Если же мы вычислим сначала весовые коэффициенты, а уже затем - значения ошибок, то процесс обучения застопорится.

    Применяем уравнение:

    new w ij = old w ij + h.d j .x i

    где w ij - вес связи между нейроном i скрытого слоя и нейроном j выходного, d j - приращение ошибки для выходного нейрона j и x i - сигнал на выходе скрытого нейрона i, h - константа. Эта константа используется для того, чтобы обучение не проводилось слишком быстро, то есть весовые коэффициенты не изменялись слишком сильно за один шаг обучения (что является причиной прыжков сходимости при обучении сети).

    А как насчет пороговых уровней нейронов? Они также инициализируются небольшими случайными числами и нуждаются в обучении. Пороговые уровни трактуются так же, как и весовые коэффициенты, за исключением того, что входные значения для них всегда равны -1 (знак минуса - т.к. уровни вычитаеются во время функционирования сети):

    new threshold = old threshold + h.d j .(-1)

    или (в более удобном виде):

    new threshold = old threshold - h.d j

    Данная процедура обучает весовые коэффициенты и пороговые уровни:

    В этом коде я использовал j для индексирования узлов выходного слоя, чтобы привести в соответствие с уравнением (т.е. E соответствует d j ). Таким же образом hl[i].out соответствует x i , а w[i] - w ij .

  • Наконец, мы должны модифицировать веса скрытого слоя. В реальности, если имеются дополнительные слои, приведенный код также работает.

    procedure update_hidden_weights; const LEARNING_RATE = 0.025; {нет никаких причин, чтобы это значение не отличалось от использованного для выходных узлов} var i,j : byte; begin for j : = 1 to NUM_HID do {обходим все скрытые узлы} with hl[ j] do begin {обрабатываем все связи от входного слоя к этому узлу} for i : = 1 to NUM_INP do w[ i] : = w[ i] + LEARNING_RATE * E * test_pat[ i] ; {модифицируем пороговый уровень этого узла} threshold : = threshold - LEARNING_RATE * E end end ;

Все то же самое на JAVA
Ниже приведена реализация нейронной сети, обучаемой методом обратного распространения ошибки на JAVA:

Если вам нужен исходный текст, то кликните . Конечно же, изменяйте его как хотите.

Если вам нуже скомпилированный код, который вы конечно же можете включить в свою веб-страницу, то кликните .

Сеть, как она здесь представлена, имеет фиксированное количество входов (6) и фиксированное количество выходов (5). Скрытые узлы в середине изображены синими кружками.

Обучающие наборы представлены по левую сторону. Для того, чтобы изменить входные наборы, желаемые выходные наборы, кликните на столбец из шести входных квадратов или на столбец из пяти выходных квадратов. Каждый клик мышью затемняет квадрат (белый - 0, светлосерый - 0.3, темносерый - 0.7, черный - 1).

Эта комбинация, например, обозначает, что для входного набора установлены данные (1, 0, 0, 0.3, 0, 0.7), а для выходного набора - (0, 0, 0.7, 0.7, 0). Кликните на символ + или - (около словосочетания "Training patterns") для изменения количества наборов.

Для того, чтобы обучить сеть, кликните на кнопку "Train". Для тестирования сети введите значение компонента входного набора в слот наверху, а затем кликните на компонент входного набора (на одно из тех текстовых значений в рамке слева на структурной схеме сети). Запустите сеть - кнопка "Run"

В многослойных нейронных сетях оптимальные выходные значения нейронов всех слоев, кроме последнего, как правило, неизвестны трех- или более слойный персептрон уже невозможно обучить, руководствуясь только величинами ошибок на выходах сети

Один из вариантов решения этой проблемы - разработка наборов выходных сигналов, соответствующих входным, для каждого слоя нейронной сети, что, конечно, является очень трудоемкой операцией и не всегда осуществимо Второй вариант - динамическая подстройка весовых коэффициентов синапсов, в ходе которой выбираются, как правило, наиболее слабые связи и изменяются на малую величину в ту или иную сторону, а сохраняются только те изменения, которые повлекли уменьшение ошибки на выходе всей сети Очевидно, что данный метод, несмотря на

кажущуюся простоту, требует громоздких рутинных вычислений И, наконец, третий, более приемлемый вариант - распространение сигналов ошибки от выходов нейронной сети к ее входам, в направлении, обратном прямому распространению сигналов в обычном режиме работы Этот алгоритм обучения получил название процедуры обратного распространения ошибки (error back propagation) Именно он рассматривается ниже

Алгоритм обратного распространения ошибки - это итеративный градиентный алгоритм обучения, который используется с целью минимизации среднеквадратичного отклонения текущих от требуемых выходов многослойных нейронных сетей с последовательными связями

Согласно методу наименьших квадратов, минимизируемой целевой функцией ошибки нейронной сети является величина

где - реальное выходное состояние нейрона у выходного слоя нейронной сети при подаче на ее входы образа, требуемое выходное состояние этого нейрона

Суммирование ведется по всем нейронам выходного слоя и по всем обрабатываемым сетью образам Минимизация методом градиентного спуска обеспечивает подстройку весовых коэффициентов следующим образом

где - весовой коэффициент синаптической связи, соединяющей нейрон слоя нейроном слоя - коэффициент скорости обучения,

В соответствии с правилом дифференцирования сложной функции

где - взвешенная сумма входных сигналов нейрона аргумент активационной функции Так как производная активационной функции должна быть определена на всей оси абсцисс, то функция единичного скачка и прочие активационные функции с неоднородностями не подходят для рассматриваемых нейронных сетей В них применяются такие гладкие функции, как гиперболический тангенс или классический сигмоид с экспонентой (см табл 1 1) Например, в случае гиперболического тангенса

Третий множитель равен выходу нейрона предыдущего слоя

Что касается первого множителя в (1.11), он легко раскладывается следующим образом:

Здесь суммирование по выполняется среди нейронов слоя Введя новую переменную:

получим рекурсивную формулу для расчетов величин слоя из величин более старшего слоя

Для выходного слоя:

Теперь можно записать (1.10) в раскрытом виде:

Иногда для придания процессу коррекции весов некоторой инерционности, сглаживающей резкие скачки при перемещении по поверхности целевой функции, (1.17) дополняется значением изменения веса на предыдущей итерации.

где коэффициент инерционности; номер текущей итерации.

Таким образом, полный алгоритм обучения нейронной сети с помощью процедуры обратного распространения строится следующим образом.

ШАГ 1. Подать на входы сети один из возможных образов и в режиме обычного функционирования нейронной сети, когда сигналы распространяются от входов к выходам, рассчитать значения последних. Напомним, что:

где - число нейронов в слое с учетом нейрона с постоянным выходным состоянием задающего смещение; вход нейрона у слоя

где - сигмоид,

где компонента вектора входного образа.

ШАГ 4. Скорректировать все веса в нейронной сети:

ШАГ 5. Если ошибка сети существенна, перейти на шаг 1. В противном случае - конец.

Сети на шаге 1 попеременно в случайном порядке предъявляются все тренировочные образы, чтобы сеть, образно говоря, не забывала одни по мере запоминания других.

Из выражения (1.17) следует, что когда выходное значение стремится к нулю, эффективность обучения заметно снижается. При двоичных входных векторах в среднем половина весовых коэффициентов не будет корректироваться, поэтому область возможных значений выходов нейронов желательно сдвинуть в пределы что достигается простыми модификациями логистических функций. Например, сигмоид с экспонентой преобразуется к виду:

Рассмотрим вопрос о емкости нейронной сети, т. е. числа образов, предъявляемых на ее входы, которые она способна научиться распознавать. Для сетей с числом слоев больше двух, этот вопрос остается открытым. Для сетей с двумя слоями, детерминистская емкость сети оценивается следующим образом:

где - число подстраиваемых весов, - число нейронов в выходном слое.

Данное выражение получено с учетом некоторых ограничений. Во-первых, число входов и нейронов в скрытом слое должно удовлетворять неравенству Во-вторых, Однако приведенная оценка выполнена для сетей с пороговыми активационными функциями нейронов, а емкость сетей с гладкими активационными функциями, например (1.23), обычно больше. Кроме того, термин детерминистский означает, что полученная оценка емкости подходит для всех входных образов, которые могут быть представлены входами. В действительности распределение входных образов, как правило, обладает некоторой регулярностью, что позволяет нейронной сети проводить обобщение и, таким образом, увеличивать реальную емкость. Так как распределение образов, в общем случае, заранее не известно, можно говорить о реальной емкости только предположительно, но обычно она раза в два превышает детерминистскую емкость.

Вопрос о емкости нейронной сети тесно связан с вопросом о требуемой мощности выходного слоя сети, выполняющего окончательную классификацию образов. Например, для разделения множества входных образов по двум классам достаточно одного выходного нейрона. При этом каждый логический уровень будет обозначать отдельный класс. На двух выходных нейронах с пороговой функцией активации можно закодировать уже четыре класса. Для повышения достоверности классификации желательно ввести избыточность путем выделения каждому классу одного нейрона в выходном слое или, что еще лучше, нескольких, каждый из которых обучается определять принадлежность образа к классу со своей степенью достоверности, например: высокой, средней и низкой. Такие нейронные сети позволяют проводить классификацию входных образов, объединенных в нечеткие (размытые или пересекающиеся) множества. Это свойство приближает подобные сети к реальным условиям функционирования биологических нейронных сетей.

Рассматриваемая нейронная сеть имеет несколько «узких мест». Во-первых, в процессе большие положительные или отрицательные значения весов могут сместить рабочую точку на сигмоидах нейронов в область насыщения. Малые величины производной от логистической функции приведут в соответствии с (1.15) и (1.16) к остановке обучения, что парализует сеть. Во-вторых, применение метода градиентного спуска не гарантирует нахождения глобального минимума целевой функции. Это тесно связано вопросом выбора скорости обучения. Приращения весов и, следовательно, скорость обучения для нахождения экстремума должны быть бесконечно малыми, однако в этом случае обучение будет

происходить неприемлемо медленно. С другой стороны, слишком большие коррекции весов могут привести к постоянной неустойчивости процесса обучения. Поэтому в качестве коэффициента скорости обучения 1] обычно выбирается число меньше 1 (например, 0,1), которое постепенно уменьшается в процессе обучения. Кроме того, для исключения случайных попаданий сети в локальные минимумы иногда, после стабилизации значений весовых коэффициентов, 7 кратковременно значительно увеличивают, чтобы начать градиентный спуск из новой точки. Если повторение этой процедуры несколько раз приведет сеть в одно и то же состояние, можно предположить, что найден глобальный минимум.

Существует другой метод исключения локальных минимумов и паралича сети, заключающийся в применении стохастических нейронных сетей.

Дадим изложенному геометрическую интерпретацию.

В алгоритме обратного распространения вычисляется вектор градиента поверхности ошибок. Этот вектор указывает направление кратчайшего спуска по поверхности из текущей точки, движение по которому приводит к уменьшению ошибки. Последовательность уменьшающихся шагов приведет к минимуму того или иного типа. Трудность здесь представляет вопрос подбора длины шагов.

При большой величине шага сходимость будет более быстрой, но имеется опасность перепрыгнуть через решение или в случае сложной формы поверхности ошибок уйти в неправильном направлении, например, продвигаясь по узкому оврагу с крутыми склонами, прыгая с одной его стороны на другую. Напротив, при небольшом шаге и верном направлении потребуется очень много итераций. На практике величина шага берется пропорциональной крутизне склона, так что алгоритм замедляет ход вблизи минимума. Правильный выбор скорости обучения зависит от конкретной задачи и обычно делается опытным путем. Эта константа может также зависеть от времени, уменьшаясь по мере продвижения алгоритма.

Обычно этот алгоритм видоизменяется таким образом, чтобы включать слагаемое импульса (или инерции). Это способствует продвижению в фиксированном направлении, поэтому, если было сделано несколько шагов в одном и том же направлении, то алгоритм увеличивает скорость, что иногда позволяет избежать локального минимума, а также быстрее проходить плоские участки.

На каждом шаге алгоритма на вход сети поочередно подаются все обучающие примеры, реальные выходные значения сети сравниваются с требуемыми значениями, и вычисляется ошибка. Значение ошибки, а также градиента поверхности ошибок

используется для корректировки весов, после чего все действия повторяются. Процесс обучения прекращается либо когда пройдено определенное количество эпох, либо когда ошибка достигнет некоторого определенного малого уровня, либо когда ошибка перестанет уменьшаться.

Рассмотрим проблемы обобщения и переобучения нейронной сети более подробно. Обобщение - это способность нейронной сети делать точный прогноз на данных, не принадлежащих исходному обучающему множеству. Переобучение же представляет собой чрезмерно точную подгонку, которая имеет место, если алгоритм обучения работает слишком долго, а сеть слишком сложна для такой задачи или для имеющегося объема данных.

Продемонстрируем проблемы обобщения и переобучения на примере аппроксимации некоторой зависимости не нейронной сетью, а посредством полиномов, при этом суть явления будет абсолютно та же.

Графики полиномов могут иметь различную форму, причем, чем выше степень и число членов, тем более сложной может быть эта форма. Для исходных данных можно подобрать полиномиальную кривую (модель) и получить, таким образом, объяснение имеющейся зависимости. Данные могут быть зашумлены, поэтому нельзя считать, что лучшая модель в точности проходит через все имеющиеся точки. Полином низкого порядка может лучше объяснять имеющуюся зависимость, однако, быть недостаточно гибким средством для аппроксимации данных, в то время как полином высокого порядка может оказаться чересчур гибким, но будет точно следовать данным, принимая при этом замысловатую форму, не имеющую никакого отношения к настоящей зависимости.

Нейронные сети сталкивается с такими же трудностями. Сети с большим числом весов моделируют более сложные функции и, следовательно, склонны к переобучению. Сети же с небольшим числом весов могут оказаться недостаточно гибкими, чтобы смоделировать имеющиеся зависимости. Например, сеть без скрытых слоев моделирует лишь обычную линейную функцию.

Как же выбрать правильную степень сложности сети? Почти всегда более сложная сеть дает меньшую ошибку, но это может свидетельствовать не о хорошем качестве модели, а о переобучении сети.

Выход состоит в использовании контрольной кросс-проверки. Для этого резервируется часть обучающей выборки, которая используется не для обучения сети по алгоритму обратного распространения ошибки, а для независимого контроля результата в ходе алгоритма. В начале работы ошибка сети на обучающем и

контрольном множествах будет одинаковой. По мере обучения сети ошибка обучения убывает, как и ошибка на контрольном множестве. Если же контрольная ошибка перестала убывать или даже стала расти, это указывает на то, что сеть начала слишком близко аппроксимировать данные (переобучилась) и обучение следует остановить. Если это случилось, то следует уменьшить число скрытых элементов и/или слоев, ибо сеть является слишком мощной для данной задачи. Если же обе ошибки (обучения и кросспроверки) не достигнут достаточного малого уровня, то переобучения, естественно не произошло, а сеть, напротив, является недостаточно мощной для моделирования имеющейся зависимости.

Описанные проблемы приводят к тому, что при практической работе с нейронными сетями приходится экспериментировать с большим числом различных сетей, порой обучая каждую из них по несколько раз и сравнивая полученные результаты. Главным показателем качества результата является здесь контрольная ошибка. При этом, в соответствии с общесистемным принципом, из двух сетей с приблизительно равными ошибками контроля имеет смысл выбрать ту, которая проще.

Необходимость многократных экспериментов приводит к тому, что контрольное множество начинает играть ключевую роль в выборе модели и становится частью процесса обучен-ия. Тем самым ослабляется его роль как независимого критерия качества модели. При большом числе экспериментов есть большая вероятность выбрать удачную сеть, дающую хороший результат на контрольном множестве. Однако для того чтобы придать окончательной модели должную надежность, часто (когда объем обучающих примеров это позволяет) поступают следующим образом: резервируют тестовое множество примеров. Итоговая модель тестируется на данных из этого множества, чтобы убедиться, что результаты, достигнутые на обучающем и контрольном множествах примеров, реальны, а не являются артефактами процесса обучения. Разумеется, для того чтобы хорошо играть свою роль, тестовое множество должно быть использовано только один раз: если его использовать повторно для корректировки процесса обучения, то оно фактически превратится в контрольное множество.

С целью ускорения процесса обучения сети предложены многочисленные модификации алгоритма обратного распространения ошибки, связанные с использованием различных функций ошибки, процедур определения направления и величин шага.

1) Функции ошибки:

Интегральные функции ошибки по всей совокупности обучающих примеров;

Функции ошибки целых и дробных степеней

2) Процедуры определения величины шага на каждой итерации

Дихотомия;

Инерционные соотношения (см выше);

3) Процедуры определения направления шага.

С использованием матрицы производных второго порядка (метод Ньютона);

С использованием направлений на нескольких шагах (партан метод).



© dagexpo.ru, 2024
Стоматологический сайт