Обобщенный закон фарадея. Первый и второй закон фарадея

21.09.2019

Что может быть лучше, чем вечером понедельника почитать про основы электродинамики . Правильно, можно найти множество вещей, которые будут лучше. Тем не менее, мы все равно предлагаем Вам прочесть эту статью. Времени занимает не много, а полезная информация останется в подсознании. Например, на экзамене, в условиях стресса, можно будет успешно извлечь из недр памяти закон Фарадея. Так как законов Фарадея несколько, уточним, что здесь мы говорим о законе индукции Фарадея.

Электродинамика – раздел физики, изучающий электромагнитное поле во всех его проявлениях.

Это и взаимодействие электрического и магнитного полей, электрический ток, электро-магнитное излучение, влияние поля на заряженные тела.

Здесь мы не ставим целью рассмотреть всю электродинамику. Упаси Боже! Рассмотрим лучше один из основных ее законов, который называется законом электромагнитной индукции Фарадея .

История и определение

Фарадей, параллельно с Генри, открыл явление электромагнитной индукции в 1831 году. Правда, успел опубликовать результаты раньше. Закон Фарадея повсеместно используется в технике, в электродвигателях, трансформаторах, генераторах и дросселях. В чем суть закона Фарадея для электромагнитной индукции, если говорить просто? А вот в чем!

При изменении магнитного потока через замкнутый проводящий контур, в контуре возникает электрический ток. То есть, если мы скрутим из проволоки рамку и поместим ее в изменяющееся магнитное поле (возьмем магнит, и будем крутить его вокруг рамки), по рамке потечет ток!

Этот ток Фарадей назвал индукционным, а само явление окрестил электромагнитной индукцией.

Электромагнитная индукция – возникновение в замкнутом контуре электрического тока при изменении магнитного потока, проходящего через контур.

Формулировка основного закона электродинамики – закона электромагнитной индукции Фарадея, выглядит и звучит следующим образом:

ЭДС , возникающая в контуре, пропорциональна скорости изменения магнитного потока Ф через контур.

А откуда в формуле минус, спросите Вы. Для объяснения знака минус в этой формуле есть специальное правило Ленца . Оно гласит, что знак минус, в данном случае, указывает на то, как направлена возникающая ЭДС. Дело в том, что создаваемое индукционным током магнитное поле направлено так, что препятствует изменению магнитного потока, который вызвал индукционный ток.

Примеры решения задач

Вот вроде бы и все. Значение закона Фарадея фундаментально, ведь на использовании данного закона построена основа почти всей электрической промышленности. Чтобы понимание пришло быстрее, рассмотрим пример решения задачи на закон Фарадея.

И помните, друзья! Если задача засела, как кость в горле, и нет больше сил ее терпеть - обратитесь к нашим авторам! Теперь вы знаете . Мы быстро предоставим подробное решение и разъясним все вопросы!

а). Первый закон электролиза

Масса вещества (m ), выделившаяся на электроде, прямо пропорциональна электрическом заряду (q ), прошедшему через электролит.

m = kq или m = kIt, (1.52)

(поскольку q = It, где I - сила тока, протекающего через раствор электролита за время t, где k - электрохимический эквивалент вещества.

Электрохимический эквивалент вещества численно равен массе вещества, которая осаждается на электроде при прохождении тока через электролит единицы количества электричества (единичный заряд).

б). Второй закон электролиза

Электрохимический эквивалент вещества прямо пропорционален отношению молярной массы к валентности n .

где F = 9,64810 4 Кл/моль - число Фарадея.

в). Объединенный закон электролиза Фарадея

Первый и второй законы электролиза можно объединить. Тогда получаем

(1.54)

Из объединенного закона электролиза Фарадея следует, что число Фарадея численно равно электрическому заряду, прошедшему через электролит при выделении на электроде массы (кг) вещества, равной отношению / n .

1.15. Понятие о плазме

Подавляющая часть вещества нашей Вселенной находится в состоянии плазмы.

Плазмой называют ионизированный газ с высокой концентрацией заряженных частиц, обладающих свойством квазинейтральности.

Квазинейтральность плазмы заключается в том, что в достаточно большом объеме плазмы количество положительных и отрицательных зарядов практически одинаково. Отношение числа ионизированных атомов к их полному числу в том же объеме называют степенью ионизации плазмы . Если степень ионизации 10  3 , то вещество относят к плазме. В плазменном состоянии находится вещество галактик, звезд, межзвездной среды и т. п., в которых сосредоточена почти вся масса наблюдаемой Вселенной. В звездах молекулы ионизируются в результате тепловых столкновений. Температура внутри нашего Солнца - типичной звезды - составляет 1,510 7 К, что соответствует кинетической энергии kT = 2,7210  16 Дж и намного превышает энергию, необходимую для ионизации любой молекулы (атома), поскольку энергия ионизации молекулы 10  19 10  18 Дж. Межзвездный газ превращается в плазму из-за сильной разреженности; его плотность 10  20 10  26 кг/м 3 . Плазма существует и в непосредственной близости от земной поверхности. Так, ионосфера - внешний слой земной атмосферы состоит из сильно ионизированного газа. За ионосферой расположена магнитосфера, в которой находятся радиационные пояса Земли, внутренний и внешний, заполненные заряженными частицами, в основном электронами и протонами различных энергий. Основное качественное отличие слабо ионизированного газа от плазмы проявляется в поведении местных нарушений нейтральности среды, возникает за счет тепловых флуктуаций. В газе такие нарушения, после возникновения, развиваются беспорядочно и могут заполнить весь объем. В плазме же флуктуационные нарушения нейтральности всегда жестко локализованы в достаточно малом объеме. Так как масса ионов значительно больше массы электронов, то более подвижными в плазме являются электроны. Допустим, что область нарушения электронейтральности образуется в некотором слое небольшой толщины х (рис. 1.10, а).

При его смещении, например, вправо относительно такого же слоя ионов на расстояние   х (рис. 1.10 б), слой (типа плоского конденсатора) с поверхностной плотностью заряда  = q e n, где q e - заряд электрона; n - концентрация электронов. Возникает двойной заряженный слой. Между обкладками такого “плазменного” конденсатора возникает электрическое поле напряженности

(1.55)

Если площадь обкладок S, тогда внутри конденсатора находится nxS электронов. На них будет действовать кулоновская сила

. (1.56)

Масса всех электронов m = m e nxS, а ускорение их движения

.

Согласно второму закону Ньютона

или
(1.57)

где m e nxS=
, (1.58)

. (1.59)

Колебания, описываемые формулой (1.59), называют плазменными.  пл - плазменная частота.

Вывод: При нарушении электронейтральности в какой-либо области плазмы в ней возникают гармонические колебания плотности заряда с частотой  пл. Но плазменные колебания не имеют волнового характера, т. е. нарушение электронейтральности не распространяется по плазме.

Характерное время существования нарушения электронейтральности плазмы в лабораторных условиях 10  13 с  t пл  10  3 с. Учет столкновений ионов и электронов (друг с другом и с нейтральными молекулами) приводит к затуханию плазменных колебаний. Характерный размер областей, в которых можно наблюдать флуктуационные нарушения электронейтральности, определяется дебаевским радиусом (размером)

, (1.60)

который можно найти из условия равенства энергии плазменных колебаний одного электрона и тепловой энергии, приходящейся на одну степень свободы электрона, т. е. kT. Дебаевский размер для наиболее распространенных видов плазмы на несколько порядков превосходит размер атомов или молекул.

Следовательно, в плазме несущественны квантовые эффекты и ее поведение описывается законами классической физики.

Если в плазму ввести пробный, например, положительный заряд +q 0 , то расположенные по соседству электроны будут им притягиваться, а положительные ионы, наоборот, отталкиваться. В результате вокруг положительного заряда возникает сферически симметричное отрицательно заряженное облако. Оно будет экранировать действие заряда q 0 на расположенную вокруг плазму, которая возникает в результате суперпозиции поля положительного заряда q 0 и поля, отрицательно заряженного окружающего его облака. Поэтому на некотором удалении от заряда q 0 поле, образованное такой суперпозицией, будет исчезающе мало. Это расстояние и определяется дебаевским радиусом экранирования. Плазму экранируюет также и внешнее электрическое поле на расстоянии порядка дебаевского размера.

Полученные результаты справедливы для плазмы, находящейся в состоянии термодинамического равновесия. На практике такое состояние не наблюдается. Поэтому средние кинетические энергии для электронов и ионов оказываются различными, т. е. температура электронов Т е и температура ионов Т i не равны, причем Т е >Т i . Для равновесной плазмы Т е = Т i . При значении ионной температуры Т i <10 5 K плазму называют низкотемпературной , а при Т i >10 6 K - высокотемпературной. В плазме взаимодействует большое число частиц. Этим она резко отличается от газов. Средняя потенциальная энергия взаимодействия частиц плазмы мала по сравнению с их кинетической энергией. Поэтому тепловое движение частиц в плазме и идеальном газе имеет большое сходство. Термодинамические свойства плазмы с хорошей степенью точности описываются уравнением состояния идеального газа. Таким образом, плазма представляет собой идеальный газ, состоящий из двух противоположно заряженных частиц - ионов и электронов. Плазменные колебания - упорядоченное движение зарядов подобно звуку в веществе. Это движение дополняет тепловое движение, участвуя в котором каждая заряженная частица плазмы перемещается по плавно извивающейся линии, так как импульс каждой из них меняется в зависимости от времени очень медленно. Наличие в плазме заряженных частиц объясняет ее хорошую электропроводность. Время релаксации плазменных электронов , определяется как среднее время, за которое движение электрона теряет свою упорядоченность, т. е.

. (1.61)

Поэтому удельная электропроводность плазмы

(1.62)

1/(Омм). (1.63)

Удельная электропроводность плазмы слабо зависит от концентрации носителей, так как в ней столкновения носителей практически не играют роли. Температурная зависимость удельной электропроводности плазмы растет пропорционально Т 3/2 .

Следовательно, достаточно разогретая плазма является хорошим проводником.

Например, при температурах Т  10 8 К, достигаемых в установках для термоядерных реакций, удельная электропроводность плазмы имеет значения порядка   10 9 1/(Омм), что на порядок превышает проводимость лучших металлических проводников.

При внесении плазмы в магнитное поле электроны и ионы начинают двигаться по винтовой линии, закручивающейся вокруг силовых линий магнитного поля с частотой для электрона

(1.64)

и для иона

, (1.65)

где В - индукция магнитного поля.

Способность магнитного поля удерживать плазму от растекания используется в установках для осуществления термоядерного синтеза в высокотемпературной водородной плазме при Т 10 8 К.

Законыэлектролиза (законыФарадея)

Поскольку прохождение электрического тока через электрохимические системы связано с химическими превращениями, между количеством протекающего электричества и количеством прореагировавших веществ должна существовать определенная зависимость. Она была открыта Фарадеем и получила свое выражение в первых количественных законах электрохимии, названных впоследствии законами Фарадея.

Первый закон Фарадея . Количества веществ, превращённых при электролизе, пропорциональны количеству электричества, прошедшего через электролит :

D m =k э q =k э It ,

D m – количество прореагировавшего вещества; k э – некоторый коэффициент пропорциональности; q – количество электричества, равное произведению силы тока I на время t . Еслиq = It = 1, то D m = k э, то есть коэффициент k э представляет собой количество вещества, прореагировавшего в результате протекания единицы количества электричества. Коэффициент k э называется электрохимическим эквивалентом .

Второй закон Фарадея отражает связь, существующую между количеством прореагировавшего вещества и его природой: при постоянном количестве прошедшего электричества массы различных веществ, испытывающие превращение у электродов (выделение из раствора, изменение валентности), пропорциональны химическим эквивалентам этих веществ :

D m i /A i = const .

Можно объединить оба закона Фарадея в виде одного общего закона : для выделения или превращения с помощью тока 1 г-экв любого вещества (1/z моля вещества) необходимо всегда одно и то же количество электричества, называемое числом Фарадея (или фарадеем ):

D m =It = It .

Точно измеренное значение числа Фарадея

F = 96484,52 ± 0,038Кл/г-экв.

Таков заряд, несомый одним грамм-эквивалентом ионов любого вида. Умножив это число на z (число элементарных зарядов иона), получим количество электричества, которое несёт 1 г-ион . Разделив число Фарадея на число Авогадро, получим заряд одного одновалентного иона, равный заряду электрона:

e = 96484,52 / (6,022035 × 10 23) = 1,6021913 × 10 –19 Кл.

Законы, открытые Фарадеем в 1833 г., строго выполняются для проводников второго рода. Наблюдаемые отклонения от законов Фарадея являются кажущимися . Они часто связаны с наличием неучтённых параллельных электрохимических реакций. Отклонения от закона Фарадея в промышленных установках связаны с утечками тока, потерями вещества при разбрызгивании раствора и т.д. В технических установках отношение количества продукта, полученного при электролизе, к количеству, вычисленному на основе закона Фарадея, меньше единицы и называется выходом по току :

В Т = = .

При тщательных лабораторных измерениях для однозначно протекающих электрохимических реакций выход по току равен единице (в пределах ошибок опыта). Закон Фарадея точно соблюдается, поэтому он лежит в основе самого точного метода измерения количества электричества, прошедшего через цепь, по количеству выделенного на электроде вещества. Для таких измерений используюткулонометры . В качестве кулонометров используют электрохимические системы, в которых нет параллельных электрохимических и побочных химических реакций. По методам определения количества образующихся веществ кулонометры подразделяют на электрогравиметрические, газовые и титрационные . Примером электрогравиметрических кулонометров являются серебряный и медный кулонометры. Действие серебряного кулонометра Ричардсона, представляющего собой электролизер

(–) Ag ï AgNO 3 × aq ï Ag (+) ,

основано на взвешивании массы серебра, осевшей на катоде во время электролиза. При пропускании 96500 Кл (1 фарадея) электричества на катоде выделится 1 г-экв серебра (107 г). При пропускании n F электричества на катоде выделяется экспериментально определенная масса (D m к ). Число пропущенных фарадеев электричества определяется из соотношения

n = D m /107 .

Аналогичен принцип действия медного кулонометра.

В газовых кулонометрах продуктами электролиза являются газы, и количества выделяющихся на электродах веществ определяют измерением их объемов. Примером прибора такого типа является газовый кулонометр, основанный на реакции электролиза воды. При электролизе на катоде выделяется водород:

2Н 2 О+2е – =2ОН – +Н 2 ,

а на аноде – кислород:

Н 2 О=2Н + +½ О 2 +2е V – суммарный объем выделенного газа, м 3 .

В титрационных кулонометрах количество вещества, образовавшегося в процессе электролиза, определяют титриметрически. К этому типу кулонометров относится титрационный кулонометр Кистяковского, представляющий собой электрохимическую систему

(–) Pt ï KNO 3 , HNO 3 ï Ag (+) .

В процессе электролиза серебряный анод растворяется, образуя ионы серебра, которые оттитровывают. Число фарадеев электричества определяют по формуле

n = mVc ,

где m – масса раствора, г;V – объем титранта, пошедший на титрование 1 г анодной жидкости;c –концентрация титранта, г-экв/см 3 .

Как уже известно, при электролизе на электродах происходит выделение вещества. Попробуем выяснить, от чего будет зависеть масса это вещества. Масса выделившегося вещества m будет равна произведению массы одного иона m0i на число ионов Ni, которые достигли электрода за промежуток времени равный ∆t: m = m0i*Ni. Масса иона m0i будет вычисляться по следующей формуле:

  • m0i = M/Na,

где М - молярная масса вещества, а Na - постоянная Авогадро.

Число ионов, которые достигнут электрода, вычисляется по следующей формуле:

  • Ni = ∆q/q0i,

где ∆q = I*∆t - заряд, прошедший через электролит за время, равное ∆t, q0i - заряд иона.

Для того, чтобы определить заряд иона, используется следующая формула:

  • q0i = n*e,

где n - валентность, e - элементарный заряд.

Собирая воедино все представленные формулы, получаем формулу для вычисления массы выделившегося на электроде вещества:

  • m = (M*I*∆t)/(n*e*Na).

Теперь обозначим через k коэффициент пропорциональности между массой вещества и зарядом ∆q.

  • k = M/(e*n*Na).

Этот коэффициент k будет зависеть от природы вещества. Тогда формулу массы вещества можно переписать в следующем виде:

  • m = k*I*∆t.

Второй закон Фарадея

Масса вещества, выделившегося на электроде за время, равное ∆t, при прохождении электрического тока пропорциональна силе тока и времени. Коэффициент k называют электрохимическим эквивалентом данного вещества. Единицей измерения служит кг/Кл. Разберемся с физическим смыслом электрохимического эквивалента. Так как:

  • M/Na = m0i,
  • e*n = qi,

то формулу электрохимического эквивалента можно переписать в следующем виде:

  • k = m0i/q0i.

Таким образом, k - отношение массы иона к заряду этого иона.

Для того, чтобы удостовериться в справедливости закона Фарадея, можно провести опыт. Лабораторная установка, необходимая для него, показана на следующем рисунке.

Все три емкости заполнены одинаковым электролитическим раствором. Через них будут протекать различные электрические токи, причем I1 = I2+I3. После включения установки в цепь подождем некоторое время. Потом отключим её и измерим массы веществ, выделившихся на электродах в каждом из сосудов m1, m2, m3. Можно будет убедиться, что массы веществ будут пропорциональны силам тока, которые проходили через соответствующий сосуд.

Из формулы

  • m = (M*I*∆t)/(n*e*Na)

можно выразить значение заряда электрона

  • e = (M*I*∆t)/(n*m*Na).


© dagexpo.ru, 2024
Стоматологический сайт