Направление лимфы в организме. Красота и лимфатическая система. Причины нарушений в организме

19.07.2019

Примерно 100 мл лимфы протекает через грудной проток человека в покое в течение одного часа, и примерно 20 мл лимфы попадает в кровообращение каждый час через другие каналы, таким образом, общий определяемый ток лимфы составляет около 120 мл в час.

Это составляет 1/120000 от рассчитанной скорости диффузии жидкости вперед и назад, через мембраны капилляров, и это составляет десятую часть скорости фильтрации от артериальных концов капилляров в тканевые пространства всего тела.

Эти факты показывают, что течение лимфы относительно невелико, по сравнению с общим обменом жидкости между плазмой и интерстициальной жидкостью. Факторы, которые определяют скорость течения лимфы. Давление интерстициальной жидкости.

Повышение давления интерстициальной свободной жидкости по сравнению с ее нормальным уровнем 6,3мм рт.ст. увеличивает скорость течения в лимфатических капиллярах. Увеличение скорости течения становится прогрессивно большим при нарастании давления интерстициальной жидкости до тех пор, пока это значение давления не достигнет величины, слегка большей, чем 0 мм рт.ст., в таком случае скорость течения достигает максимума, он возрастает от 10 до 50 раз по сравнению с нормальным.

Таким образом, какой-то фактор, (кроме обструкции лимфатической системы самой по себе), может приводить к повышению интерстициального давления, что повышает скорость течения лимфы.

Такие факторы включают: повышенное капиллярное течение; пониженное осмотическое давление коллоидов плазмы; повышенное содержание белков в интерстициальной жидкости; повышение проницаемости капилляров.

Лимфатический насос. Клапаны имеются во всех лимфатических каналах, в который впадает лимфатический капилляр.

В больших лимфатических сосудах клапаны расположены через каждые несколько миллиметров, а в малых лимфатических сосудах клапаны расположены несколько чаще, что говорит о широком распространении клапанов. Лимфатический сосуд сжимается под давлением по какой-либо причине, лимфа проталкивается в обоих направлениях, но поскольку лимфатический клапан открыт только в центральном направлении, лимфа двигается только в одном направлении.

Лимфатические сосуды могут сжиматься или при сокращении стенок лимфатического сосуда или при давлении от окружающих структур.

Киносъемки обнаженного лимфатического сосуда, как у животных, так и у человека, показали, что если в какое либо время лимфатический сосуд растягивается жидкостью, то гладкая мускулатура в стенке сосуда автоматически сокращается.

Далее каждый сегмент лимфатического сосуда между клапанами действует как отдельный автоматический насос. А именно, заполнение сегмента заставляет его сокращаться, и жидкость прокачивается через следующий клапан в следующий лимфатический сегмент.

Последующий сегмент, таким образом наполняется, и через несколько секунд он также сокращается; этот процесс продолжается вдоль всего лимфатического сосуда до тех пор, пока жидкость наконец не истечет. В большом лимфатическом узле этот лимфатический насос может создавать давление от 25 до 50 мм рт.ст., если выход из сосуда перекрыт.

В дополнение к прокачиванию, вызванному внутренним сокращением стенок лимфатического сосуда, прокачивание могут вызвать другие внешние факторы, которые сжимают лимфатический сосуд. В порядке их важности, такими факторами являются: сокращение мышц; движение частей тела; артериальные пульсации; сжатие тканей предметами вне тела.

Отток лимфы от органа, в общем, тем значительнее, чем интенсивнее работает орган. Если, например, раздражать у собаки, то усиливается секреция подчелюстной железы, а вместе с этим из лимфатических сосудов железы увеличивается истечение лимфы.

Можно было бы думать, что это зависит от одновременного расширения в железе кровеносных сосудов; однако если отравить железу атропином и затем раздражать хорду, то отток лимфы не увеличивается, несмотря на то, что кровоснабжение железы усиливается совершенно так же, как и прежде.

Аналогичным же образом можно усилить отток лимфы от печени, возбуждая усиленное образование желчи путем внутривенной инъекции таурохолевокислого натрия или гемоглобина или от поджелудочной железы, усиливая ее секрецию впрыскиванием секретина.

Далее, уже Клод Бернар и Ранке наблюдали, что деятельная железа или деятельный мускул извлекают воду из протекающей по ним крови. При попытке физико-химического истолкования этих явлений следует прежде всего принять во внимание, что в общем при процессе обмена веществ в органах большие молекулы расщепляются на многочисленные малые, а так как осмотическое давление является функцией числа молекул, то в силу этого рука об руку с повышением обмена веществ идет и повышение осмотического давления.

В этом влиянии обмена веществ можно убедиться, если у собаки вырезать например обе почки. Так как функция почек состоит в том, чтобы удалять из тела избыток молекул в форме конечных продуктов обмена веществ, то поэкстирпации их даже при голодании животного осмотическое давление крови все растет и растет и следовательно точка замерзания ее понижается, например с-0,56 до -0,75.

Таким образом, можно представить себе в качестве непосредственного эффекта работы органов усиленное всасывание ими воды из протекающей крови путем осмоса.

Впоследствии органы освобождаются от этого избытка воды, причем в этом отношении надо принять во внимание ряд факторов, а именно, во-первых, тургор органов; когда работающие органы очень наполняются тканевой водой, то их капсулы, пронизанные эластическими волокнами, растягиваясь, напрягаются и таким образом могут отпрессовывать жидкость (по крайней мере, при предположении, что сопротивления для течения периодически изменяются).

Во-вторых, всякое давление на органы извне способствует току лимфы, и это тем более, что в лимфатических сосудах имеются клапаны, допускающие подобно венозным клапанам течение только в одном направлении - в направлении к грудному протоку.

Далее, лимфатические сосуды воспроизводят перистальтические сокращения (Геллер), которые опять- таки совместно с клапанами обеспечивают отток лимфы. Затем при каждом вдыхательном движении лимфа присасывается в грудной проток вследствие увеличения отрицательного давления в грудной полости.

Наконец имеются местные специальные приспособления для передвижения лимфы. Сюда относятся гладкие мышцы, содержащиеся в капсуле и перекладинах лимфатических желез; они могут выдавливать содержимое желез при своем сокращении.

Точно так же ворсинки кишечника благодаря своим ритмическим движениям перекачивают лимфу из центрального лимфатического сосуда в более крупные лимфатические сосуды брыжейки, а у некоторых животных имеются особые лимфатические сердца как специальные двигатели лимфы. У лягушки, например два таких сердца лежат по обе стороны крестцовой кости и два над плечевым поясом.

Гейденгайн обратил внимание на особые химические вещества, вызывающие образование лимфы, на так называемые лимфогонные средства. Это - чуждые организму вещества, например экстракты из пиявок, мышц раков, раковин, земляники, бактерий, далее - туберкулин, пептон, куриный белок, желчь. Действие этих средств пока еще недостаточно проанализировано.

Предполагаются два типа лимфообразования:

1. При нулевом или даже отрицательном интерстициальном давлении и отсутствии межэндотелиальных щелей в лимфатических капиллярах характеризуется диффузионным переходом белка и других крупномолекулярных соединений в лимфатическое русло при наличии соответствующего градиента концентраций белка между лимфой и интерстициальной жидкостью.

2. При положительном интерстициальном давлении и раскрытых межэндотелиальных стыках лимфатических капилляров характеризуется переходом интерстициальной жидкости в лимфатическое русло в силу гидростатической разницы давлений.

Такие условия характерны для гидратированных тканей, а механизм лимфообразования соответствует фильтрационно-резорбционной теории. Регуляция процесса лимфообразования направлена на увеличение или уменьшение фильтрации воды и других элементов плазмы крови (солей, белков и др.) осуществляется вегетативной нервной системой и гумарально-вазоактивными веществами, меняющими давление крови в артериолах, венулах и капиллярах, а также проницаемость стенок сосудов.

Например, кателхомины (адреналин и норадреналин) повышают давление крови в венулах и капиллярах, тем самым увеличивают фильтрацию жидкости в интерстициальное пространство, что усиливает образование лимфы.

Местная регуляция осуществляется метаболитами тканей и биологически активными веществами, выделяемыми клетками, в том числе, эндотелием кровеносных сосудов. Очевидно, лимфатический насос становится очень активным во время физических упражнений, часто повышая поток лимфы в 5-15 раз.

С другой стороны, во время отдыха поток лимфы очень слабый. Лимфатический капиллярный насос. Многие физиологи предполагают, что лимфатический капилляр также способен прокачивать лимфу, в дополнение к лимфатическому насосу больших лимфатических сосудов. Как объяснялось раньше в главе, стенки лимфатических капилляров тесно связаны с окружающими клетками посредством их прикрепляющих нитей.

Таким образом, в то время, когда избыток жидкости попадает в ткани и тканевые припухлости, прикрепляющие нити заставляют лимфатические капилляры открываться, и жидкость течет в капилляр через соединения между эндотелиальными клетками.

Таким образом, когда ткань сжата, давление внутри капилляра повышается и заставляет жидкость продвигаться по двум направлениям: во-первых, назад, через открытия между эндотелиальными клетками, и, во-вторых, вперед, в собирающие лимфатические сосуды.

Однако, поскольку края эндотелиальных клеток в норме перекрываются, внутри лимфатического капилляра, то обратному току препятствуют перекрывания клеток над открытиями.

Таким образом, открытия закрываются, они действуют как однопутные клапаны, и очень немного жидкости протекает обратно в ткани.

С другой стороны, лимфа, которая продвигается вперед в собирающий лимфатический сосуд, не возвращается в капилляр после того, как компрессионный цикл закончен, поскольку многие клапаны в собирающем лимфатическом сосуде блокируют какой-либо обратный ток лимфы.

Таким образом, какой-либо фактор, который вызывает сжатие лимфатических капилляров, вероятно, заставляет жидкость подвигаться таким же образом, как сжатие больших лимфатических узлов вызывает покачивание лимфы.

В нашем организме протекают две реки жизни, очень тесно связанные между собой, но, тем не менее, вполне себе автономные. Одна из них «красная река». Это кровь и кровеносная система. Другая – «белая река». Это лимфа (от лат. lympha – чистая вода, влага) и лимфатическая система. Когда мы говорим о лимфе, то имеем в виду ту прозрачную жидкость, которая выделяется из мелких ранок и в народе зовётся сукровицей.

Т.е. в памяти народной, закреплённой и хранящейся в языке, она именуется «почти кровью». В которой просто-напросто отсутствуют эритроциты (красные тельца). Из-за этого и цвет у лимфы не красный, а желтовато-прозрачный.

Две этих реки – белая и красная – равны в нашем организме и по значимости, и по протяжённости. Но если сходство в протяжённости и разветвлённости прекрасно видно невооружённым глазом любому дилетанту на любой схеме (см. рисунок ниже), то об их равнозначности и равноценности в жизнедеятельности нашего организма знают далеко не все.

Лимфаденит

И вот прежде чем мы поговорим о лимфадените, который, как компас, указывает на нарушения в плавном течении «белой реки», попытаемся устранить «белые пятна» в наших представлениях о лимфатической системе – её элементах, назначении и функциях.

Известно, что наш организм состоит из великого множества клеток, которые представляют собой самостоятельные, автономные живые организмы. Все-все эти клеточки находятся в «мировом океане» межклеточной жидкости (сукровицы), которая их омывает. Этот «мировой океан» составляет примерно 30% от массы тела человека, т.е. в некоторых случаях доходит и до 50 л! Почему так много? А потому, что межклеточная жидкость выполняет в нашем организме сразу несколько функций.

С одной стороны, это питание: каждая клетка получает необходимый ей для её жизнедеятельности кислород, питательные вещества, витамины и микроэлементы, доставляемые в межклеточную жидкость кровеносными капиллярами.

Для этого в межклеточных и межтканевых щелях и щёлочках существуют тонюсенькие лимфатические капиллярчики. В лимфатических капиллярах межклеточная жидкость становится уже лимфой. Основное предназначение лимфы состоит в том, чтобы своим напором смывать в лимфатические капилляры и протоки погибшие в результате жизнедеятельности организма клетки, а также бактерии, вирусы и токсины.

Лимфа очень похожа на плазму крови и циркулирует она по лимфатической системе значительно медленнее, чем кровь по кровеносной. В лимфе, как и в крови, обитают лейкоциты (белые клетки крови), которые отвечают за иммунитет и именуются лимфоцитами.

Густые сети лимфатических капилляров сливаются в крупные лимфатические сосуды, которые имеются во всех частях тела, за исключением центральной нервной системы, костей, хрящей и зубов. Потом лимфатические сосуды уже объединяются в два большущих лимфатических протока.

В один из них – грудной проток – стекается лимфа со всего тела, кроме правой половины шеи и головы. Оставшиеся не у дел лимфатические сосуды с правой половины головы и шеи образуют правый проток. В итоге вся лимфа из нашего тела попадает в вены. Каждую минуту из грудного протока в вену поступает от 4 до 10 мл лимфы. За сутки 50% циркулирующего в крови белка и 60% общего объёма плазмы фильтруется из капилляров в лимфатическую систему, а оттуда поступает обратно в кровь.


Поскольку лимфатическая система представляет собой систему очистки, фильтрации и иммунологической обработки, в ней тоже есть «фильтры тонкой и грубой очистки» от всяких примесей и грязи. Это лимфатические узлы. В организме каждого человека от 400 до 1000 лимфоузлов размером от булавочной головки до ореха (0,1 до 2,2 см). Расположены они группами вдоль лимфатических сосудов через каждые 3-5 см.

Больше всего фильтров-лимфоузлов в лимфатических сосудах, которые несут лимфу от тонкой и толстой кишок, почек, желудка и лёгких. Т.е. в тех местах, где наиболее вероятно проникновение оккупантов – вирусов и микробов.

Входов в лимфатический узел несколько, а вот выход – один. Кстати, в силу того, что лимфатической системой проводится очень серьёзная и сложная работа по наведению порядка в нашем организме, по лимфатической системе одномоментно циркулирует всего 1,5-2 л лимфы.

В лимфатических узлах попадающие из сосудов бактерии и прочие инородные частицы фильтруются и уничтожаются, а покидающая узел лимфа захватывает лимфоциты и антитела для доставления их к очагам заражения. С этой целью в лимфоузле живут, обучаются и работают макрофаги и лимфоциты (количество лимфоцитов в организме более или менее постоянно, но в зависимости от состояния здоровья оно может увеличиваться или уменьшаться).

Иногда во время схватки с микробами, токсинами и прочими врагами нашего организма лимфатические узлы увеличиваются , ведь лимфоцитов для борьбы надо больше. Как говорится – всё для фронта, всё для победы. При воспалениях в лимфатических узлах всегда идёт битва не на жизнь, а на смерть, всегда идёт борьба добра со злом, в которой лимфоциты гибнут тысячами и не всегда добро побеждает зло… Тут уж дело в иммунитете. И если иммунитет слабый, то мы в результате получаем лимфаденит – бактериальное воспаление и увеличение узлов лимфатической системы. Поступление лимфы из поражённого органа временно блокируется, он распухает и становится болезненным.

Существует такое расхожее мнение, согласно которому 80% того, что мы делаем, вредит нашему здоровью. Насколько горький смысл содержится в этой фразе, легко можно увидеть на примере нашего поведения по отношению к одной только лимфатической системе.

Итак, лимфатическая система – это система наведения порядка в нашем организме и вывода шлаков и ядов из него.

Для эффективной работы лимфатической системы необходимо помнить всего-навсего четыре правила:

  • Яд растворить можно только в воде и ни в чём ином.
  • Вывести яд можно только через слизистые оболочки, потому что они не имеют твёрдого защитного барьера эпидермиса.
  • Скорость выведения зависит от скорости движения лимфы по лимфатическим сосудам.
  • Очищение организма и, соответственно, движение лимфы идёт в направлении снизу вверх.

Казалось бы, чего уж проще! Но теперь давайте посмотрим, как мы эти истины реализуем на практике.

Из почти ста тысяч живых существ на планете Земля только человек пьёт что-то, кроме воды (молоко у млекопитающих – еда, а не питьё). Существует аксиома: чем больше человек ест, тем больше он должен пить. Но в большинстве своём люди пьют тогда, когда уже начинают испытывать чувство жажды. А ведь жажда – это уже 4-й или 5-й признак обезвоживания.

Когда во рту пересохло – это уже глубокое обезвоживание. Теперь вспомните, чем обычно утоляют жажду? Квасом, сладкими газированными напитками, компотом, соком, чаем, минералкой. Но ни один из этих напитков не утолит жажды. Нет, желание пить на какое-то время пропадёт. Но жажда – как потребность организма в воде – никуда не исчезнет. Вода – это универсальный растворитель.

Нашим клеткам нужна только вода точно так же, как только водой вы сможете, например, вымыть волосы или искупаться. Не соком, не кофе, не квасом и даже не молоком – а только водой. Если нам говорят, что в день человеку необходимо выпивать 1,5-2 л жидкости, то здесь речь идёт преимущественно о воде.

80% ядов и токсинов находятся не в кишечнике, почках или печени, а в межклеточной жидкости. Если человек хочет прочистить свой организм, значит ему необходимо вывести из себя всю эту «закисленную» межклеточную жидкость. Прочистить лимфу – значит разжижить, дополнив чистой водой, а не употреблять без меры солёное и сладкое, которое «выманивает» из клетки и ту воду, которая туда всё-таки попала. Точно так же, как выманивает сок соль, посыпанная на разрезанный свежий огурец, и сахар, насыпанный на свежую клубнику.

Теперь немного о втором простом правиле. Выводится, выделяется любой яд и мусор из нашего организма при помощи всевозможных выделений. Например, одни только слюнные железы – мощнейший дезинтоксикационный орган (через слюну отходит до полулитра жидкости с токсинами). Мокрота, выделения из половых путей, насморк, жидкий стул – всё это вынужденный вариант очищения организма от шлаков и токсинов.

Однако благодаря определенным стереотипам, навязанным рекламой и другими способами, складывается мнение, что нужно всеми возможными способами бороться со всеми выделениями. Но это в корне не правильно, т.к. такая «борьба» мало того, что не устраняет причины нарушений, но еще и не дает организму очищаться, тем самым только усугубляя процесс нарушения.

Например, через нос выводится основное количество воздушно-капельной инфекции. А нам настойчиво предлагают убрать выделения из носа всяческими препаратами. Если у ребёнка периодически возникает насморк или наблюдается хронический ринит, существует мнение, что во всём виноваты аденоиды и их нужно удалить. Но ведь аденоиды – это лимфатические узлы. Они увеличиваются только тогда, когда в организме присутствует инфекция и лимфатическая система с этим активно борется. Аденоиды отрезали – убрали свой защитный рубеж!

Или, например, потовые железы, которых особенно много в подмышечных впадинах. За сутки до 50% ядов выводится через потовые железы в коже. Подмышечные впадины – главный дренаж от молочных желёз. Нам же предлагается предпринимать все меры для того, чтобы не потеть никогда. Использование суперсильных антиперсперантов настолько прочно вошло в привычку, что иногда ими пользуются сразу же выходя из душа и даже в выходные дни. Но если яды не могут выйти через потовые железы в подмышечных впадинах, они пойдут в ближайшее место – в молочную железу, обеспечив там условия для появления мастопатии.

Для лимфатической системы нет отдельного сердца. Движение лимфы осуществляется за счет сократительной деятельности лимфатических узлов при подаче импульсов по нервным путям , а также за счет движения мышц, расположенных по соседству с лимфатическими протоками; обеспечивается движение давлением жидкости и физиологической активностью органов, окружающих лимфатические сосуды. Мышца сокращается – лимфа проталкивается. Но если мышцы вокруг лимфатического сосуда не работают, откуда взяться движению лимфы?

Отсюда и основная причина проблем с очищением организма – застой и поражение лимфы от обездвиженности мышц. Заставить лимфу двигаться могут только активные движения, сокращения мышц, гимнастика. Причём любая. В идеале движения должны быть гармонично распределены между всеми группами мышц и сопровождаться небольшим учащением пульса и потоотделения. Только в этом случае физическую нагрузку можно считать эффективной.

Те 6-8-10 часов, которые обычно проводятся стоя за прилавком или сидя за компьютером, эффективной нагрузкой не считаются, потому что нет распределения нагрузки по всем группам мышц. А чувство усталости, которое возникает – это зачастую признак того, что застоялась лимфа. Как почувствовали усталость, подвигайтесь, попейте воды (!), сделайте скрытую гимнастику – и усталость наверняка отступит.

Всё, что в организме связано с отеками, как правило, относится к лимфатической системе. Отёки на ногах, руках, глазах, на пояснице, суставах – это всё, как правило, застоявшаяся лимфа.

Хорошая тренировка для лимфатической системы – сауна. Межклеточное пространство может находиться в одном из двух состояний, которые переходят друг в друга, - густом (гель) или жидком (золь). Лимфа, если она сильно засорена, представляет собой очень густой гель.

В норме лимфа должна быть относительно жидкой. На процесс перехода из одного в другое быстрее всего влияет температура. В парилке межклеточная жидкость разжижается, а после прыжка в бассейн – превращается в гель. Кроме сауны, лимфостимуляторами, разжижающими лимфу, могут быть лист смородины, корень солодки, тысячелистник, шиповник, овёс или до 1,5-2 литра воды в сутки.

Перемещается лимфа в одном направлении – от тканей, снизу вверх. С кончиков пальцев – и до грудного лимфатического протока. Это продиктовано тем, что задача лимфатической системы – собрать из тканей жидкость и затем очищенную отвести в кровоток.

Во всех лимфатических сосудах есть клапаны, которые не позволяют лимфе течь обратно. Клапан пропускает поднимающуюся лимфу и тут же захлопывается, не давая возможности обратного хода лимфе.

Ускорить движение лимфы в лимфатических сосудах, увеличивая отток тканевой жидкости, помогает массаж. Но делать массаж нужно только в направлении движения лимфы – снизу вверх. И даже если вы сами растираете себе ноги, то движения должны быть от кончиков пальцев к бедрам, в одном направлении. А как нам обычно делают массаж? Правильно: сверху вниз, т.е. ПРОТИВ хода лимфы – а это значит, что нарушаются лимфатические потоки. А сильно пережав или передавив, можно разрушить и клапаны в лимфатических сосудах!

Не соблюдение этих простых правил, приводит к тому, что лимфатическая система уже просто не в состоянии полноценно выполнять свою работу. И тогда появляются признаки того, что лимфатическая система подавлена и не работает. Это и образование угревой сыпи различных видов (выходят токсины через кожные покровы).

Это Вам будет интересно:

Это и неприятные «старческие» запахи (токсины задерживаются в кожных покровах и подвергаются окислению). И «внезапно» появляющиеся на коже папилломы, пигментные пятна, бородавки и другие образования на коже – всё это не что иное, как последствия интоксикации лимфатической системы.

Воспаление суставов, горла, бронхов, лёгких, отёки на ногах, в большинстве случаев, – тоже следствие поражения лимфатической системы, хотя большинство людей думает, что это сердечная или почечная недостаточность. Отёк на ногах может указывать на то, что сильно зашлакованы паховые лимфоузлы, и лимфа не поднимается. Отёчность рук – это зачастую закупорка подмышечных лимфоузлов. Отёчность глаз – это, возможно, закупорка подчелюстных и лицевых лимфоузлов. опубликовано

Ольга Бутакова

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

Поступившую в ткани жидкость — лимфу. Лимфатическая система — составная часть сосудистой системы, обеспечивающая образование лимфы и лимфообращение.

Лимфатическая система - сеть капилляров, сосудов и узлов, по которым в организме передвигается лимфа. Лимфатические капилляры замкнуты с одного конца, т.е. слепо заканчиваются в тканях. Лимфатические сосуды среднего и крупного диаметра, подобно венам, имеют клапаны. По их ходу расположены лимфатические узлы — «фильтры», задерживающие вирусы, микроорганизмы и наиболее крупные частицы, находящиеся в лимфе.

Лимфатическая система начинается в тканях органов в виде разветвленной сети замкнутых лимфатических капилляров, которые не имеют клапанов, а их стенки обладают высокой проницаемостью и способностью всасывать коллоидные растворы и взвеси. Лимфатические капилляры переходят в лимфатические сосуды, снабженные клапанами. Благодаря этим клапанам, препятствующим обратному току лимфы, она течет только в направлении к венам . Лимфатические сосуды впадают в лимфатический грудной проток, через который течет лимфа от 3/4 организма. Грудной проток впадает в краниальную полую вену или яремную вену. Лимфа по лимфатическим сосудам поступает в правый лимфатический ствол, впадающий в краниальную полую вену.

Рис. Схема лимфатической системы

Функции лимфатической системы

Лимфатическая система выполняет несколько функций:

  • защитную функцию обеспечивает лимфоидная ткань лимфатических узлов, вырабатывающая фагоцитарные клетки, лимфоциты и антитела. Перед входом в лимфатический узел лимфатический сосуд делится на мелкие ветви, которые переходят в синусы узла. От узла отходят также мелкие ветви, которые объединяются вновь в один сосуд;
  • фильтрационная функция также связана с лимфатическими узлами, в которых механически задерживаются различные чужеродные вещества и бактерии;
  • транспортная функция лимфатической системы заключается в том, что через эту систему в кровь поступает основное количество жира, который всасывается в желудочно-кишечном тракте;
  • лимфатическая система выполняет также гомеостатическую функцию, поддерживая постоянство состава и объема интерстициальной жидкости;
  • лимфатическая система выполняет дренажную функцию и удаляет избыток находящейся в органах тканевой (интерстициальной) жидкости.

Образование и циркуляция лимфы обеспечивают удаление избытка внеклеточной жидкости, который создается за счет того, что фильтрация превышает реабсорбцию жидкости в кровеносные капилляры. Такая дренажная функция лимфатической системы становится очевидной, если отток лимфы из какой-то области тела снижен или прекращен (например, при сдавливании конечностей одеждой, закупорке лимфатических сосудов при их травме, пересечении во время хирургической операции). В этих случаях дистальнее места сдавливания развивается местный отек ткани. Такой вид отека называют лимфатическим.

Возврат в кровеносное русло альбумина, профильтровавшегося в межклеточную жидкость из крови, особенно в органах, имеющих высокопроницаемые (печень, желудочно-кишечный тракт). За сутки с лимфой в кровоток возвращается более 100 г белка. Без этого возврата потери белка кровью были бы невосполнимы.

Лимфа входит в систему, обеспечивающую гуморальные связи между органами и тканями. С ее участием осуществляется транспорт сигнальных молекул, биологически активных веществ, некоторых ферментов (гистаминаза, липаза).

В лимфатической системе завершаются процессы дифференцировки лимфоцитов, транспортируемых лимфой вместе с иммунными комплексами, выполняющими функции иммунной защиты организма .

Защитная функция лимфатической системы проявляется также в том, что в лимфоузлах отфильтровываются, захватываются и в ряде случаев обезвреживаются инородные частицы, бактерии, остатки разрушенных клеток, различные токсины, а также опухолевые клетки. С помощью лимфы удаляются из тканей эритроциты, вышедшие из кровеносных сосудов (при травмах, повреждениях сосудов, кровотечениях). Нередко накопление токсинов и инфекционных агентов в лимфатическом узле сопровождается его воспалением.

Лимфа участвует в транспорте в венозную кровь хиломикронов, липопротеинов и жирорастворимых веществ, всасывающихся в кишечнике.

Лимфа и лимфообращение

Лимфа представляет собой фильтрат крови, образующийся из тканевой жидкости. Она имеет щелочную реакцию, в ней отсутствуют , но содержатся , фибриноген и , поэтому она способна свертываться. Химический состав лимфы сходен с таковым плазмы крови, тканевой жидкости и других жидкостей организма.

Лимфа, оттекающая от разных органов и тканей, имеет различный состав в зависимости от особенностей их обмена веществ и деятельности. Лимфа, оттекающая от печени, содержит больше белков, лимфа — больше . Продвигаясь по лимфатическим сосудам, лимфа проходит через лимфатические узлы и обогащается лимфоцитами.

Лимфа - прозрачная бесцветная жидкость, содержащаяся в лимфатических сосудах и лимфатических узлах, в которой нет эритроцитов, имеются тромбоциты и много лимфоцитов. Ее функции направлены на поддержание гомеостаза (возврат белка из тканей в кровь, перераспределение жидкости в организме, образование молока, участие в пищеварении, обменных процессах), а также участие в иммунологических реакциях. В лимфе содержится белок (около 20 г/л). Продукция лимфы сравнительно невелика (больше всего в печени), за сутки образуется около 2 л путем реабсорбции из интерстициальной жидкости в кровь кровеносных капилляров после фильтрации.

Образование лимфы обусловлено переходом воды и растворенных в веществ из кровеносных капилляров в ткани, а из тканей — в лимфатические капилляры. В состоянии покоя процессы фильтрации и абсорбции в капиллярах сбалансированы и лимфа полностью абсорбируется обратно в кровь. В случае повышенной физической нагрузки в процессе метаболизма образуется ряд продуктов, которые повышают проницаемость капилляров для белка, его фильтрация увеличивается. Фильтрация в артериальной части капилляра происходит при повышении гидростатического давления над онкотическим на 20 мм рт. ст. При мышечной деятельности объем лимфы нарастает и ее давление обусловливает проникновение интерстициальной жидкости в просвет лимфатических сосудов. Лимфообразованию способствует повышение осмотического давления тканевой жидкости и лимфы в лимфатических сосудах.

Движение лимфы по лимфатическим сосудам происходит за счет присасывающей силы грудной клетки, сокращения , сокращения гладких мышц стенки лимфатических сосудов и за счет лимфатических клапанов.

Лимфатические сосуды имеют симпатическую и парасимпатическую иннервацию. Возбуждение симпатических нервов приводит к сокращению лимфатических сосудов, а при активации парасимпатических волокон происходит сокращение и расслабление сосудов, что усиливает лимфоток.

Адреналин, гистамин, серотонин усиливают ток лимфы. Уменьшение онкотического давления белков плазмы и повышение капиллярного давления увеличивает объем оттекающей лимфы.

Образование и количество лимфы

Лимфа является жидкостью, текущей по лимфатическим сосудам и составляющей часть внутренней среды организма. Источники ее образования — , профильтровавшаяся из микроциркуляторного русла в ткани и содержимое интерстициального пространства. В разделе, посвященном микроциркуляции, обсуждалось, что объем плазмы крови, фильтрующейся в ткани, превышает объем жидкости, реабсорбируемой из них в кровь. Таким образом, около 2-3 л фильтрата крови и жидкости межклеточной среды, не реабсорбировавшихся в кровеносные сосуды, поступают за сутки по межэндотелиальным щелям в лимфатические капилляры, систему лимфатических сосудов и вновь возвращаются в кровь (рис. 1).

Лимфатические сосуды имеются во всех органах и тканях организма за исключением , поверхностных слоев кожи и костной ткани. Наибольшее их количество насчитывается в печени и тонком кишечнике, где образуется около 50% всего суточного объема лимфы организма.

Основной составной частью лимфы является вода. Минеральный состав лимфы идентичен составу межклеточной среды той ткани, в которой образовалась лимфа. В лимфе содержатся органические вещества, преимущественно белки, глюкоза, аминокислоты, свободные жирные кислоты. Состав лимфы, оттекающей от разных органов, неодинаков. В органах с относительно высокой проницаемостью кровеносных капилляров, например в печени, лимфа содержит до 60 г/л белка. В лимфе имеются белки, участвующие в образовании тромбов (протромбин, фибриноген), поэтому она может свертываться. Лимфа, оттекающая от кишечника, содержит не только много белка (30-40 г/л), но и большое количество хиломикронов и липопротеинов, образованных из апонротеинов и жиров, всосавшихся из кишечника. Эти частицы находятся в лимфе во взвешенном состоянии, транспортируются ею в кровь и придают лимфе схожесть с молоком. В составе лимфы других тканей содержание белка в 3-4 раза меньше, чем в плазме крови. Главным белковым компонентом тканевой лимфы является низкомолекулярная фракция альбумина, фильтрующегося через стенку капилляров во внесосудистые пространства. Поступление белков и других крупномолекулярных частиц в лимфу лимфатических капилляров осуществляется за счет их пиноцитоза.

Рис. 1. Схематическое строение лимфатического капилляра. Стрелками показано направление тока лимфы

В лимфе содержатся лимфоциты и другие формы лейкоцитов. Их количество в разных лимфатических сосудах различается и находится в пределах 2-25*10 9 /л, а в грудном протоке составляет 8*10 9 /л. Другие виды лейкоцитов (гранулоциты, моноциты и макрофаги) содержатся в лимфе в небольшом количестве, но их число возрастает при воспалительных и других патологических процессах. Эритроциты и тромбоциты могут появляться в лимфе при повреждении кровеносных сосудов и травмах тканей.

Всасывание и движение лимфы

Лимфа всасывается в лимфатические капилляры, обладающие рядом уникальных свойств. В отличие от кровеносных капилляров лимфатические капилляры являются замкнутыми, слепо заканчивающимися сосудами (рис. 1). Их стенка состоит из одного слоя эндотелиальных клеток, мембрана которых фиксирована с помощью коллагеновых нитей к внесосудистым тканевым структурам. Между эндотелиальными клетками имеются межклеточные щелевидные пространства, размеры которых способны изменяться в широких пределах: от замкнутого состояния до размера, через который в капилляр могут проникать форменные элементы крови, фрагменты разрушенных клеток и частицы, сопоставимые по размерам с форменными элементами крови.

Сами лимфатические капилляры также могут изменять их размер и достигать диаметра до 75 мкм. Эти морфологические особенности строения стенки лимфатических капилляров придают им способность изменять проницаемость в широких пределах. Так, при сокращении скелетных мышц или гладкой мускулатуры внутренних органов за счет натяжения коллагеновых нитей могут раскрываться межэндотелиальные щели, через которые в лимфатический капилляр свободно перемещается межклеточная жидкость, содержащиеся в ней минеральные и органические вещества, включая белки и тканевые лейкоциты. Последние могут легко мигрировать в лимфатические капилляры также из-за их способности к амебоидному движению. Кроме того, в лимфу поступают лимфоциты, образующиеся в лимфатических узлах. Поступление лимфы в лимфатические капилляры осуществляется не только пассивно, но также под действием сил отрицательного давления, возникающего в капиллярах благодаря пульсирующему сокращению более проксимальных участков лимфатических сосудов и наличию в них клапанов.

Стенка лимфатических сосудов построена из эндотелиальных клеток, которые с наружной стороны сосуда охватываются в виде манжетки гладкомышечными клетками, расположенными радиально вокруг сосуда. Внутри лимфатических сосудов имеются клапаны, строение и принцип функционирования которых сходны с клапанами венозных сосудов. Когда гладкие миоциты расслаблены и лимфатический сосуд расширен, створки клапанов открыты. При сокращении гладких миоцитов, вызывающем сужение сосуда, давление лимфы в данном участке сосуда повышается, створки клапанов смыкаются, лимфа не может перемещаться в обратном (дистальном) направлении и проталкивается по сосуду проксимально.

Лимфа из лимфатических капилляров перемещается в посткапиллярные и затем в крупные внутриорганные лимфатические сосуды, впадающие в лимфатические узлы. Из лимфатических узлов по небольшим внеорганным лимфатическим сосудам лимфа течет в более крупные внеорганные сосуды, образующие самые крупные лимфатические стволы: правый и левый грудные протоки, через которые лимфа доставляется в кровеносную систему. Из левого грудного протока лимфа поступает в левую подключичную вену в месте возле ее соединения с яремными венами. Через этот проток в кровь перемещается большая часть лимфы. Правый лимфатический проток доставляет лимфу в правую подключичную вену от правой половины груди, шеи и правой руки.

Ток лимфы может быть охарактеризован объемной и линейной скоростями. Объемная скорость поступления лимфы из грудных протоков в вены составляет 1-2 мл/мин, т.е. всего 2-3 л/сут. Линейная скорость движения лимфы очень низкая — менее 1 мм/мин.

Движущую силу тока лимфы формирует ряд факторов.

  • Разность между величиной гидростатического давления лимфы (2-5 мм рт. ст.) в лимфатических капиллярах и ее давлением (около 0 мм рт. ст.) в устье общего лимфатического протока.
  • Сокращение гладкомышечных клеток стенок лимфатических сосудов, продвигающих лимфу в направлении грудного протока. Этот механизм иногда называют лимфатическим насосом.
  • Периодическое повышение внешнего давления на лимфатические сосуды, создаваемое сокращением скелетных или гладких мышц внутренних органов. Например, сокращение дыхательных мышц создает ритмические изменения давления в грудной и брюшной полостях. Понижение давления в грудной полости при вдохе создает присасывающую силу, способствующую перемещению лимфы в грудной проток.

Количество лимфы, образующейся за сутки в состоянии физиологического покоя, составляет около 2-5% от массы тела. Скорость се образования, движения и состав зависят от функционального состояния органа и ряда других факторов. Так, объемный ток лимфы от мышц при мышечной работе увеличивается в 10-15 раз. Через 5-6 ч после приема пищи увеличивается объем лимфы, оттекающей от кишечника, изменяется ее состав. Это происходит главным образом за счет поступления в лимфу хиломикронов и липопротеинов.

Пережатие вен ног или длительное стояние приводит к затруднению возврата венозной крови от ног к сердцу. При этом увеличивается гидростатическое давление крови в капиллярах конечностей, возрастает фильтрация и создается избыток тканевой жидкости. Лимфатическая система в таких условиях не может обеспечить в достаточной мере свою дренажную функцию, что сопровождается развитием отека.

1

Свешников К.А., Русейкин Н.С.

Наблюдения проведены на 48 больных остеопорозом и с переломами. Контрольные даны были получены у 20 практически здоровых людей. Для исследований применяли серный коллоид с размером частиц 5 нм (препарат "лимфоцис" или ТСК-17 фирмы "СIS" Франция). На нижней конечности изучали три коллектора. На верхней конечности - в латеральном и медиальном коллекторах. Количество вводимого лимфоциса составляло во всех случаях 0,2 мл (3,7 МБк). Инъекции выполнялись в межпальцевой промежуток одновременно в левую и правую конечности. Обследования проводились на гамма-камере и планисканере фирмы «Deltronics Nuclear» (Голландия). У здоровых людей скорость движения лимфы при исследовании медиального коллектора на бедре равна 16,1±1,2 см/мин, в латеральном - 13,7±0,9 см/мин, в глубоком - 5,6±0,5 см/мин. В латеральном коллекторе плеча – 10,0±0,8 см/мин, в медиальном – 7,4±0,6 см/мин. В течение двух недель после травм скорость движения лимфы уменьшена, на третьей неделе происходила нормализация.

Важным звеном микроциркуляции является движение лимфы. Изучение скорости её тока и накопительной функции лимфатических узлов позволяет судить о состоянии компенсаторно-приспособительных механизмов особенно при переломах. Малозначимые сведения о скорости движения лимфы в конечностях здорового человека представлены в единичных работах . Наблюдения сделаны лишь в одном медиальном коллекторе нижней конечности. Трудность подобного исследования в том, что для изучения естественного транспорта лимфы необходимы мельчайшие частицы веществ, которые после инъекции под кожу перемещались бы в лимфатическом русле физиологическим путем. Прогресс в этом направлении был достигнут только после получения серного коллоида с размером частиц в 5 нм. Для наблюдения за их движением осуществляют метку 99m Тс. С помощью радиометрической установки, сканера или гамма-камеры регистрируют время появления меченых частиц в подколенных и паховых лимфоузлах нижней конечности или в локтевом и подмышечных - верхней.

Материал и методы

Под наблюдением находилось 48 больных остеопорозом и с переломами костей в возрасте 65-75 лет. У 26 практически здоровых людей в возрасте 18-28 лет уравнивали длину конечностей. Контролем служили 20 практически здоровых лиц с незначительными повреждениями костно-суставного аппарата (ушибы, растяжения, подозрение на перелом), которые направлялись на исследование врачебно-физкультурным диспансером. Возраст в контроле колебался в пределах от 20 до 50 лет.

Для исследований применяли серный коллоид с размером частиц 5 нм (препарат "лимфоцис" или ТСК-17 фирмы "СIS" Франция). Обследования проводили в положении лежа на спине. На нижней конечности изучали функциональное состояние трех основных коллекторов: 1) медиального - после введения меченого соединения подкожно в первый межпальцевый промежуток; 2) латерального введение препарата в четвертый межпальцевой промежуток и 3) глубокого - после инъекции коллоида у медиального края пяточной кости с подошвенной стороны.

На верхней конечности ток лимфы исследовали в латеральном и медиальном коллекторах. При изучении первого из них коллоид вводили подкожно во второй межпальцевой промежуток, при исследовании второго - у дистального края локтевой кости с ладонной стороны. Количество вводимого лимфоциса составляло во всех случаях 0,2 мл (3,7 МБк). Инъекции выполнялись одновременно в левую и правую конечности. Обследования проводились на гамма-камере и планисканере фирмы «Deltronics Nuclear» (Голландия).

Сразу после введения меченого препарата определяли число импульсов в месте инъекции, а также величину фона в подколенных и паховых лимфоузлах при обследовании нижней конечности, локтевых и подмышечных – при обследовании верхней конечности. Зная длину стопы, голени и бедра, а также верхней конечности (кисть, предплечье, плечо) рассчитывали скорость движения лимфы в см/мин. Подсчитав величину меченого соединения в лимфатических узлах через 1 и 2 часа после инъекции, судили об их накопительной функции.

В качестве инструмента вычислений использован пакет статистического анализа и встроенные формулы расчетов компьютерной программы Microsoft® Excell (Microsoft® Office 1997 –Professional Runtime).

Результаты исследований

1. Исследование тока лимфы у практически здоровых людей. 1.1. Нижняя конечность. В течение первых 25 с после инъекции меченого соединения место введения на мониторе компьютера сохраняло округлую форму, несколько вытянутую в направлении инъекции. В последующие 30 с форма становилась вытянутой в сагиттальном направлении. Меченое соединение перераспределялось в месте инъекции и через каждые 5 с его становилось все больше в направлении движения лимфы. Поступление меченого соединения в лимфатический капилляр наблюдалось уже на 30-й с: появлялся небольшой выступ в верхней части пятна. Еще через 5 с он был виден уже отчетливо и в дальнейшем в нем становилось все больше меченых частиц. Особенно наглядно это видно через 50 с. На 55-й с видно, как закрылся клапан лимфатического сосуда. Еще через 5 с он вновь открывался и меченое соединение продвигалось дальше в сосуд.

Естественно, что лимфатический сосуд становился видимым в силу того, что здесь было много меченого соединения, а отдельные частицы тем временем движутся током тканевой жидкости дальше к лимфатическим узлам.

Меченые коллоидные частицы при исследовании медиального коллектора появлялись в подколенных лимфатических узлах через 6,6±1,2 мин, латерального - спустя 5,5±0,9 мин, глубокого - 8,7±1,7 мин. В паховых узлах они обнаруживались соответственно через 9,7±1,8; 9,2±1,6; и 17,7 ±2,0 мин. Аналогичная зависимость получена (табл. 1) и при расчете скорости движения лимфы: в медиальном и латеральном коллекторах статистически достоверных различий не обнаружено, а в глубоком она была значительно меньше.

Выведение РФП из тканевых депо за 1 и 2 часа наблюдения было одинаковым во всех коллекторах. Самая низкая величина активности в подколенных лимфатических узлах отмечалась при исследовании медиального коллектора. В течение 2 часов в них накапливалось только 3% от введенного меченого коллоида. При оттоке лимфы по латеральному коллектору она была выше на 30-50 %, а по глубокому - в 2 раза (табл. 1). В паховых лимфатических узлах, по сравнению с подколенными, наблюдалась наибольшая величина накопления меченого соединения: через 2 часа при исследовании лимфатических сосудов медиального коллектора она составляла 13 % от первоначальной величины, в глубоком – 18 % и в латеральном – 25 %.

Таблица 1. Скорость движения лимфы и накопительная функция лимфатических узлов конечностей здорового человека (М ±SD)

Показатель

Конечность

Коллектор

медиальный

латеральный

глубокий

латеральный

медиальный

Скорость(см/мин) на: стопе и голени

предплечье

Выведение (%) из депо:

Накопление (%) за 1 ч, узлы: подколенные

локтевые

подмышечные

Накопление (%) за 2 ч, узлы:подколенные

локтевые

1.2. Верхняя конечность. Появление активности в локтевых лимфоузлах при исследовании латерального и медиального коллекторов составило 4,4±0,6 мин. Учитывая разный путь, проходимый мечеными частицами при определении скорости движения лимфы, удалось установить, что в латеральном коллекторах верхней конечности она течет медленнее, чем в коллекторах нижней (табл. 1). Из тканевых депо выводится и поглощается в локтевых и подмышечных лимфатических узлах такой же процент введенного меченого соединения, как и в нижней конечности.

В приведенных наблюдениях впервые удалось проследить начальные этапы движения лимфы в конечности, показать, в какие временные промежутки происходит заполнение лимфатических капилляров, зарегистрировать работу клапанов лимфатических сосудов. Обнаружены различия в скорости движения лимфы в коллекторах нижней и верхней конечности: самая большая в медиальном и латеральном коллекторах нижней конечности - 9,1-10,8 см/мин. В глубоком - она в 2 раза меньше.

Выявлены различия и в накопительной функции лимфатических узлов: в паховых она в 4 раза больше, чем в подколенных. Это обусловлено тем, что паховые узлы массивнее. Наибольшая величина (18-25 %) меченого коллоида накапливается в глубоких лимфоузлах, собирающих лимфу из сосудов задней поверхности голени и глубоких отделов бедра. Меньше РФП в поверхностных узлах (13 %). На верхней конечности скорость движения лимфы меньше, однако величина выведения коллоида из депо и накопительная способность лимфатических узлов такая же, как и на нижней.

Мы сумели существенно расширить сведения о скорости лимфотока. Имеющиеся в литературе данные ограничены определением её только в медиальном коллекторе нижней конечности и получены при введении в лимфатический сосуд на тыле стопы красителей или рентгеноконтрастных препаратов. При таком способе введения не учитывается время на всасывание препарата из депо и его движение от пальцев до места инъекции на тыле стопы. Препарат вводится под давлением, что сказывается на времени появления в узлах (регистрацию проводили в грудном лимфатическом протоке). Оказывает влияние также анестезия (для нахождения сосуда под кожей), мобилизация сосуда, нервно-рефлекторные воздействия. Результаты таких исследований противоречивы. Так, при введении синего Эванса на тыле стопы он появлялся в грудном протоке на шее через 3-5 мин . После инъекции индигокармина в паховый лимфатический узел (путь в 2 раза короче) время было также равно 3 мин. Из подобных наблюдений сделано заключение, что лимфа движется со скоростью 0,5-1,0 см/мин. При введении ультражидких масляных контрастных веществ на тыле стопы они появлялись в грудном протоке через 30-40 мин . Если же эти вещества не задерживались в лимфатических узлах, т.е. проходили в обход их, то время укорачивалось до 12 мин.

В наших наблюдениях время физиологического транспорта меченого коллоида в медиальном коллекторе нижней конечности (от пальцев стопы до паховых лимфоузлов) составляло 9,7±1,8 мин. Проведенное исследование отличается физиологичностью условий наблюдения и высокой чувствительностью регистрирующего оборудования. Наблюдения сделаны во всех коллекторах нижней и верхней конечности, что в значительной мере расширило представление о токе лимфы в конечностях.

2. Скорость тока лимфы после переломов.

2.1. Нижняя конечность. Скорость движения лимфы по-разному менялась в 3 исследованных коллекторах. В медиальном - на 3-14 дни увеличивалось время появления меченого коллоида (табл. 2) и соответственно уменьшалась скорость движения, на 30-40 % ослаблялась накопительная функ ция лимфатических узлов (табл. 2).

Таблица 2. Время (мин) появления меченого серного коллоида в лимфатических узлах нижней конечности после перелома костей голени (М ±SD)

Лимфатические узлы

Коллектор

Медиальный

Латеральный

Глубокий

Дни после перелома

Подколенные

При сканировании на 1-е сутки выявлялся лишь 1 узел, вместо 2 в норме, с уменьшенной величиной поглощения меченого соединения. На 3-й день величина накопления меченого коллоида начинала увеличиваться были видны уже два узла, но на травмированной конечности второй меньше, чем на противоположной неповрежденной, к 21-му дню форма узла была близка к норме.

В латеральном коллекторе изменения отмечены в этот же период, однако наблюдался прямо противоположный сдвиг - скорость движения лимфы и накопительная функция лимфатических узлов возрастали на 20-25 %. В лимфатических сосудах глубокого коллектора скорость движения лимфы увеличивалась и к 21-му дню возрастала на 45 % (табл. 3).

Таблица 3. Скорость движения лимфы (см/мин) и накопительная функция лимфатических узлов (%) нижней конечности при лечении переломов костей голени (М ±SD)

Показатель

Коллектор

Медиальный

Латеральный

Глубокий

Дни после перелома

Скорость на:

стопе и голени

Выведение из депо:

Накопление (%): под-

коленные узлы: 1 час

паховые узлы:

Примечание: знаком «*» обозначены величины, статистически достоверно (р

2.2. Верхняя конечность. После травмы появление РФП в латеральном коллекторе значительно замедлялось. В медиальном коллекторе меченое соединение, наоборот, появлялось быстрее. Соответственно уменьшалась скорость движения лимфы и накопительная функция лимфатических узлов (табл. 4). Выведение меченого РФП из депо и накопление в лимфатических узлах изменялись аналогично с данными на нижней конечности. Показатели, близкие к норме, также отмечены на 21-й день.

Обнаружены некоторые различия в движении лимфы в коллекторах нижней и верхней конечностей. Самой большой была скорость в медиальном и латеральном коллекторах нижней конечности - 9,1-10,8 см/мин. В глубоком она в 2 раза меньше. Несмотря на это из тканевых депо удалялась одинаковая величина меченого коллоида. Вероятно, это обусловлено большей вместимостью сосудистого русла. В связи с этим при меньшей скорости выводилось одинаковое количество препарата.

Таким образом, имеются различия в накопительной функции лимфатических узлов: в паховых она в 4 раза больше, чем подколенных. Это обусловлено тем, что они более массивные, чем подколенные. Наибольшее количество меченого коллоида (18-25 %) накапливается в глубоких узлах, собирающих лимфу из сосудов задней поверхности голени, глубоких сосудов бедра и меньше в поверхностных (13 %).

Таблица 4. Время (мин) появления меченого серного коллоида в лимфатических узлах верхней конечности после перелома костей предплечья (М ±SD)

Лимфатические узлы

Коллектор

Латеральный

Медиальный

Дни после перелома

Локтевые

Подмышечные

Примечание: здесь, а также в табл. 5 знаком «*» обозначены величины, статистически достоверно (р

Таблица 5. Скорость движения лимфы (см/мин) и накопительная функция лимфатических узлов (%) верхней конечности после переломов костей предплечья (М ±SD)

Показатель

Коллектор

латеральный

медиальный

Дни после перелома

Скорость на: предплечье

Выведение из депо: 1 ч

Накопление: локтевые: 1 ч

подмышечные: 1 ч

В верхней конечности скорость движения лимфы меньше, однако, величина выведения коллоида из депо и накопительная способность такая же, как и в нижней.

После переломов костей голени наиболее глубокие изменения отмечены в поверхностном коллекторе. Ослаблялась также накопительно-поглотительная функция поверхностных паховых узлов. Изменения были кратковременными, обусловлены некоторым ограничением подвижности больных в первые дни после травмы. Можно полагать, что отечность стопы и голени обусловлена уменьшением тока лимфы в медиальных сосудах в результате частичной блокады коллектора после травмы. По этой причине нарушается транспорт частиц в пределах стопы.

На верхней конечности уменьшение тока лимфы наблюдалось в латеральном коллекторе, увеличение - в медиальном. При уменьшении тока лимфы в одном из коллекторов происходит компенсаторное ускорение в другом. И это не случайно. Метод лечения переломов костей по Илизарову создает максимальное благоприятные условия для регенерации костной и мягких тканей.

СПИСОК ЛИТЕРАТУРЫ:

1. Зедгенидзе Г.А., Цыб А.Ф. Клиническая лимфография. М.: Медицина. 1977. 296.

2. Панченков Р.Т., Ярема И.В., Сильманович Н.Н. Лимфостимуляция. М.: Медицина. 1986. 237 с.

3. Olszewski W.L., Engeset A. //Am. J. Physiol. 1980. V. 239. P.775.

Библиографическая ссылка

Свешников К.А., Русейкин Н.С. СКОРОСТЬ ДВИЖЕНИЯ ЛИМФЫ В ЗДОРОВОЙ И ТРАВМИРОВАННОЙ КОНЕЧНОСТЯХ // Современные проблемы науки и образования. – 2008. – № 2.;
URL: http://science-education.ru/ru/article/view?id=684 (дата обращения: 18.07.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

© dagexpo.ru, 2024
Стоматологический сайт