Нахождение точек на поверхности вращения. Поверхности и тела вращения

21.09.2019

К поверхностям вращения относятся поверхности, образующиеся вращением линии l вокруг прямой i, представляющей собой ось вращения. Они могут быть линейчатыми, например конус или цилиндр вращения, и нелинейчатыми или криволинейными, например сфера. Определитель поверхности вращения включает образующую l и ось i. Криволинейная поверхность вращения образуется при вращении лю-

Каждая точка образующей при вращении описывает окружность, плоскость которой перпендикулярна оси вращения. Такие окружности поверхности вращения называются параллелями. Наибольшую из параллелей называют экватором. Экватор.определяет горизонтальный очерк поверхности, если i _|_ П 1 . В этом случае параллелями являются горизонтали hэтой поверхности.

Кривые поверхности вращения, образующиеся в результате пересечения поверхности плоскостями, проходящими через ось вращения, называются меридианами. Все меридианы одной поверхности конгруэнтны. Фронтальный меридиан называют главным меридианом; он определяет фронтальный очерк поверхности вращения. Профильный меридиан определяет профильный очерк поверхности вращения.

Строить точку на криволинейных поверхностях вращения удобнее всего с помощью параллелей поверхности. На рис. 103 точка М построена на параллели h 4 .

Поверхности вращения нашли самое широкое применение в технике. Они ограничивают поверхности большинства машиностроительных деталей.

Коническая поверхность вращения образуется вращением прямой i вокруг пересекающейся с ней прямой - оси i (рис. 104, а). Точка М на поверхности построена с помощью образующей l и параллели h. Эту поверхность называют еще конусом вращения или прямым круговым конусом.

Цилиндрическая поверхность вращения образуется вращением прямой l вокруг параллельной ей оси i (рис. 104, б). Эту поверхность называют еще цилиндром или прямым круговым цилиндром.

Сфера, образуется вращением окружности вокруг ее диаметра (рис. 104, в). Точка A на поверхности сферы принадлежит главному

меридиану f, точка В - экватору h, а точка М построена на вспомогательной параллели h".

Тор образуется вращением окружности или ее дуги вокруг оси, лежащей в плоскости окружности. Если ось расположена в пределах образующейся окружности, то такой тор называется закрытым (рис. 105, а). Если ось вращения находится вне окружности, то такой тор называется открытым (рис. 105, б). Открытый тор называется еще кольцом.

Поверхности вращения могут быть образованы и другими кривыми второго порядка. Эллипсоид вращения (рис. 106, а) образуется вращением эллипса вокруг одной из его осей; параболоид вращения (рис. 106, б) - вращением параболы вокруг ее оси; гиперболоид вращения однополостный (рис. 106, в) образуется вращением гиперболы вокруг мнимой оси, а двуполостный (рис. 106, г) - вращением гиперболы вокруг действительной оси.


В общем случае поверхности изображаются не ограниченными в направлении распространения образующих линий (см. рис. 97, 98). Для решения конкретных задач и получения геометрических фигур ограничиваются плоскостями обреза. Например, чтобы получить круговой цилиндр, необходимо ограничить участок цилиндрической поверхности плоскостями обреза (см. рис. 104, б). В результате получим его верхнее и нижнее основания. Если плоскости обреза перпендикулярны оси вращения, цилиндр будет прямым, если нет - цилиндр будет наклонным.

Чтобы получить круговой конус (см. рис. 104, а), необходимо выполнить обрез по вершине и за пределами ее. Если плоскость обреза основания цилиндра будет перпендикулярна оси вращения - конус будет прямой, если нет - наклонный. Если обе плоскости обреза не проходят через вершину - конус получим усеченным.

С помощью плоскости обреза можно получить призму и пирамиду. Например, шестигранная пирамида будет прямой, если все ее ребра имеют одинаковый наклон к плоскости обреза. В других случаях она будет наклонной. Если она выполнена с помощью плоскостей обреза и ни одна из них не проходит через вершину - пирамида усеченная.

Призму (см. рис. 101) можно получить, ограничив участок призматической поверхности двумя плоскостями обреза. Если плоскость обреза перпендикулярна ребрам, например восьмигранной призмы, она прямая, если не перпендикулярна - наклонная.

Выбирая соответствующее положение плоскостей обреза, можно получать различные формы геометрических фигур в зависимости от условий решаемой задачи.

Рис. 3.15

Поверхности вращения имеют весьма широкое применение во всех областях техники. Поверхностью вращения называют поверхность, получающуюся от вращения некоторой образующей линии 1 вокруг неподвижной прямойi - оси вращения поверхности (рис.3.15). На чертеже поверхность вращения задается своим очерком. Очерком поверхности называются линии, которые ограничивают области ее проекций. При вращении каждая точка образующей описывает окружность, плоскость которой перпендикулярна оси. Соответственно, линия пересечения поверхности вращения плоскостью, перпендикулярной оси, является окружностью. Такие окружности называют параллелями (рис. 3.15). Параллель наибольшего радиуса называют экватором, наименьшего - горлом. Плоскость, проходящую через ось поверхности вращения, называют меридиональной, линию ее пересечения с поверхностью вращения - меридианом. Меридиан, лежащий в плоскости, параллельной плоскости проекций, называют главным меридианом. В практике выполнения чертежей наиболее часто встречаются следующие поверхности вращения: цилиндрическая, коническая, сферическая, торовая.

Рис. 3.16

Цилиндрическую поверхность вращения . В качестве направляющейа следует взять окружность, а в качестве прямойb - осьi (рис.3.16). Тогда получим, что образующаяl , параллельная осиi , вращается вокруг последней. Если ось вращения перпендикулярна горизонтальной плоскости проекций, то наП 1 цилиндрическая поверхность проецируется в окружность, а наП 3 - в прямоугольник. Главным меридианом цилиндрической поверхности являются две параллельные прямые.

Рис 3.17

Коническую поверхность вращения получим, вращая прямолинейную образующуюl вокруг осиi . При этом образующаяl пересекает осьi в точкеS , называемой вершиной конуса (рис.3.17). Главным меридианом конической поверхности являются две пересекающиеся прямые. Если в качестве образующей взять отрезок прямой, а ось конуса перпендикулярнойП 1 , то наП 1 коническая поверхность проецируется в круг, а наП 2 - в треугольник.

Сферическая поверхность образуется за счет вращения окружности вокруг оси, проходящей через центр окружности и лежащей в ее плоскости (рис.3.18). Экватор и меридианы сферической поверхности являются равными между собой окружностями. Поэтому при ортогональном проецировании на любую плоскость сферическая поверхность проецируется в круги.

Рис. 3.18 При вращении окружности вокруг оси, лежащей в плоскости этой окружности, но не проходящей через ее центр, образуется поверхность, называемая торовой (рис.3.19).

Рис. 3.19

11.ПОЗИЦИОННЫЕ ЗАДАЧИ.ПРИНАДЛЕЖНОСТЬ ТОЧКИ, ЛИНИИ ПОВЕРХНОСТИ.ТЕОРЕМА МОНЖА. Под позиционными подразумеваются задачи, решение которых позволяет получить ответ о принадлежности элемента (точки) или подмножества (линии) множеству (поверхности). К позиционным относятся также задачи на определение общих элементов, принадлежащих различным геометрическим фигурам. Первая группа задач может быть объединена под общим названием задачи на принадлежность. К ним, в частности, относятся задачи на определение:1) принадлежности точки линии;2) принадлежности точки поверхности;3) принадлежности линии поверхности.Ко второй группе относятся задачи на пересечение. Эта группа содержит также три типа задач:1) на пересечение линии с линией;2) на пересечение поверхности с поверхностью;3) на пересечение линии с поверхностью.Принадлежность точки поверхности . Основное положение при решении задач для этого варианта принадлежности следующее: точка принадлежит поверхности, если она принадлежит какой-либо линии этой поверхности . В этом случае линии надо выбирать наиболее простыми, чтобы легче было построить проекции такой линии, затем использовать то обстоятельство, что проекции точки, лежащие на поверхности, должны принадлежать одноименным проекциям линии этой поверхности. Пример решение этой задачи показан на рисунке . Здесь есть два пути решения, поскольку можно провести две простейших линии, принадлежащих конической поверхности. В первом случае - проводится прямая линия - образующая конической поверхности S1 так, чтобы она проходила через какую-либо заданную проекцию точки С. Тем самым предполагаем, что точка С принадлежит образующей S1 конической поверхности, а следовательно - самой конической поверхности. В этом случае одноименные проекции точки С должны лежать на соответствующих проекциях этой образующей.Другая простейшая линия - окружность с диаметром 1-2 (радиус этой окружности - отсчитывается от оси конуса до очерковой образующей). Этот факт известен еще из школьного курса геометрии: при пересечении кругового конуса плоскостью, параллельной его основанию, или перпендикулярной к его оси, в сечении будет получаться окружность. Второй способ решения позволяет найти недостающую проекцию точки С, заданной своей фронтальной проекцией, принадлежащей поверхности конуса и совпадающей на чертеже с осью вращения конуса, без построения третьей проекции. Всегда следует иметь в виду, видима или не видима точка, лежащая на поверхности конуса (в случае, если она не видна, соответствующая проекция точки будет заключена в скобки). Очевидно, что в нашей задаче точка С принадлежит поверхности, поскольку проекции точки принадлежат одноимённым проекциям линий, использованных для решения как при первом, так и при втором способе решения.Принадлежность линии поверхности. Основное положение:линия принадлежит поверхности, если все точки линии принадлежат заданной поверхности . Это означает, что в данном случае принадлежности должна быть несколько раз решена задача о принадлежности точки поверхности.Торема Монжа :если две поверхности второго порядка описаны около третьей или вписаны в неё, то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки пересечения окружности касания.

12.СЕЧЕНИЯ КОНУСА ВРАЩЕНИЯ ПРОЕЦИРУЮЩИМИ ПЛОСКОСТЯМИ . При пересечении поверхностей тел проецирующими плоскостями, одна проекция сечения совпадает с проекцией проецирующей плоскости. Конус может иметь в сечении пять различных фигур.Треугольник - если секущая плоскость пересекает конус через вершину по двум образующим.Окружность - если плоскость пересекает конус параллельно основанию (перпендикулярно оси).Эллипс - если плоскость пересекает все образующие под некоторым углом.Параболу - если плоскость параллельна одной из образующих конуса.Гиперболу - если плоскость параллельна оси или двум образующим конуса.Сечение поверхности плоскостью представляет собой плоскую фигуру, ограниченную замкнутой линией, все точки которой принадлежат как секущей плоскости, так и поверхности. При пересечении плоскостью многогранника в сечении получается многоугольник с вершинами, расположенными на ребрах многогранника.Пример . Построить проекции линии пересечения L поверхности прямого кругового конуса ω плоскостью β.Решение . В сечении получается парабола, вершина которой спроецируется в точку А (А′, А′′). Точки A, D, E линии пересечения являются экстремальными. На рис. построение искомой линии пересечения осуществлено с помощью горизонтальных плоскостей уровня αi, которые пересекают поверхность конуса ω по параллелям рi , а плоскость β - по отрезкам фронтально проецирующих прямых. Линия пересечения L полностью видима на плоскостях.

13.Соосные поверхности. Метод концентрических сфер.

При построении линии пересечения поверхностей особенности пересечения соосных поверхностей вращения позволяют в качестве вспомогательных поверхностей-посредников использовать сферы, соосные с данными поверхностями. К соосным поверхностям вращения относятся поверхности, имеющие общую ось вращения. На рис. 134 изображены соосные цилиндр и сфера (рис. 134, а), соосные конус и сфера (рис. 134, б) и соосные цилиндр и конус (рис. 134, в)

Соосные поверхности вращения всегда пересекаются по окружностям, плоскости которых перпендикулярны оси вращения. Этих общих для обеих поверхностей окружностей столько, сколько существует точек пересечения очерковых линий поверхностей. Поверхности на рис. 134 пересекаются по окружностям, создаваемым точками 1 и 2 пересечения их главных меридианов. Вспомогательная сфера-посредник пересекает каждую из заданных поверхностей по окружности, в пересечении которых получаются точки, принадлежащие и другой поверхности, а значит, и линии пересечения. Если оси поверхностей пересекаются, то вспомогательные сферы проводят из одного центра-точки пересечения осей. Линию пересечения поверхностей в этом случае строят способом вспомогательных концентрических сфер. При построении линии пересечения поверхностей для использования способа вспомогательных концентрических сфер необходимо выполнение следующих условий:1) пересечение поверхностей вращения;2) оси поверхностей - пересекающиеся прямые - параллельны одной из плоскостей проекций, т. е. имеется общая плоскость симметрии;3) нельзя использовать способ вспомогательных секущих плоскостей, так как они не дают графически простых линий на поверхностях. Обычно способ вспомогательных сфер используется в сочетании со способом вспомогательных секущих плоскостей. На рис. 135 построена линия пересечения двух конических поверхностей вращения с пересекающимися во фронтальной плоскости уровня Ф (Ф1) осями вращения. Значит, главные меридианы этих поверхностей пересекаются и дают в своем пересечении точки видимости линии пересечения относительно плоскости П2 или самую высокую А и самую низкую В точки. В пересечении горизонтального меридиана h и параллели h", лежащих в одной вспомогательной секущей плоскости Г(Г2), определены точки видимости С и D линии пересечения относительно плоскости П1. Использовать вспомогательные секущие плоскости для построения дополнительных точек линии пересечения нецелесообразно, так как плоскости, параллельные Ф, будут пересекать обе поверхности по гиперболам, а плоскости, параллельные Г, будут давать в пересечении поверхностей окружности и гиперболы. Вспомогательные горизонтально или фронтально проецирующие плоскости, проведенные через вершину одной из поверхностей, будут пересекать их по образующим и эллипсам. В данном примере выполнены условия, позволяющие применение вспомогательных сфер для построения точек линии пересечения. Оси поверхностей вращения пересекаются в точке О (О1; О2), которая является центром вспомогательных сфер, радиус сферы изменяется в пределах Rmin < R < Rmах- Радиус максимальной сферы определяется расстоянием от центра О наиболее удаленной точки В (Rmax = О2В2), а радиус минимальной сферы определяется как радиус сферы, касающейся одной поверхности (по окружности h2) и пересекающей другую (по окружности h3).Плоскости этих окружностей перпендикулярны осям вращения поверхностей. В пересечении этих окружностей получаем точки Е и F, принадлежащие линии пересечения поверхностей:

h22 ^ h32 = E2(F2); Е2Е1 || А2А1; Е2Е1 ^ h21 =E1; F2F ^ h1 = F1 Промежуточная сфера радиуса R пересекает поверхности по окружностям h4 и h5, в пересечении которых находятся точки Ми N:h42 ^ h52 = M2(N2); M2M1 || А2А1, М2М1 ^ h41 = М1; N2N1 ^ h41 = N1 Соединяя одноименные проекции построенных точек с учетом их видимости, получаем проекции линии пересечения поверхностей.

№14. построение линии пересечения поверхностей, если хотя бы одна из них проецирующая. Характерные точки линии пересечения.

Прежде чем приступить к построению линии пересечения поверхностей, необходимо внимательно изучить условие задачи, т.е. какие поверхности пересекаются. Если одна из поверхностей является проецирующей, то решение задачи упрощается, т.к. на одной из проекций линия пересечения совпадает с проекцией поверхности. И задача сводится к нахождению второй проецирующей линии. При решении задачи следует отметить в первую очередь «характерные» точки или «особые». Это:

· Точки на крайних образующих

· Точки, делящие линию на видимую и невидимую часть

· Верхние и нижние точки и др. Далее следует разумно выбрать способ, каким будем пользоваться при построении линии пересечения поверхностей. Мы будем пользоваться двумя способами: 1. вспомогательных секущих плоскостей. 2. вспомогательных секущих сфер. К проецирующим поверхностям относятся: 1) цилиндр, если его ось перпендикулярна плоскости проекций; 2) призма, если ребра призмы перпендикулярны плоскости проекций. Проецирующая поверхность проецируется в линию на плоскость проекций. Все точки и линии, принадлежащие боковой поверхности проецирующего цилиндра или проецирующей призме проецируются в линию на ту плоскость, которой ось цилиндра или ребро призмы перпендикулярно. Линия пересечения поверхностей принадлежит обеим поверхностям одновременно и, если одна из этих поверхностей проецирующая, то для построения линии пересечения можно использовать следующее правило: если одна из пересекающихся поверхностей проецирующая, то одна проекция линии пересечения есть на чертеже в готовом виде и совпадает с проекцией проецирующей поверхности (окружность, в которую проецируется цилиндр или многоугольник, в который проецируется призма). Вторая проекция линии пересечения строится исходя из условия принадлежности точек этой линии другой не проецирующей поверхности.

Рассмотренные особенности характерных точек позволяют легко проверить правильность построения линии пересечения поверхностей, если она построена по произвольно выбранным точкам. В данном случае десяти точек достаточно для проведения плавных проекций линии пересечения. При необходимости может быть построено любое количество промежуточных точек. Построенные точки соединяют плавной линией с учетом особенностей их положения и видимости. Сформулируем общее правило построения линии пересечения поверхностей: выбирают вид вспомогательных поверхностей; строят линии пересечения вспомогательных поверхностей с заданными поверхностями; находят точки пересечения построенных линий и соединяют их между собой. Вспомогательные секущие плоскости выбираем таким образом, чтобы в пересечении с заданными поверхностями получались геометрически простые линии (прямые или окружности). Выбираем вспомогательные секущие плоскости. Чаще всего, в качестве вспомогательных секущих плоскостей выбирают проецирующие плоскости, в частности, плоскости уровня. При этом необходимо учитывать линии пересечения, получаемые на поверхности, в результате пресечения поверхности плоскостью. Так конус является наиболее сложной поверхностью по числу получаемых на нем линий. Только плоскости, проходящие через вершину конуса или перпендикулярные оси конуса, пересекают его соответственно по прямой линии и окружности (геометрически простейшие линии). Плоскость, проходящая параллельно одной образующей пересекает его по параболе, плоскость параллельная оси конуса пересекает его по гиперболе, а плоскость, пересекающая все образующие и наклонные к оси конуса, пересекает его по эллипсу. На сфере, при пересечении ее плоскостью, всегда получается окружность, а если пересекать ее плоскостью уровня, то эта окружность проецируется на плоскости проекции соответственно в прямую линию и окружность. Итак, в качестве вспомогательных плоскостей выбираем горизонтальные плоскости уровня, которые пересекают и конус, и сферу по окружностям (простейшие линии).Некоторые особые случаи пересечения поверхностей В некоторых случаях расположение, форма или соотношения размеров криволинейных поверхностей таковы, что для изображения линии их пресечения никаких сложных построений не требуется. К ним относятся пересечение цилиндров с параллельными образующими, конусов с общей вершиной, соосных поверхностей вращения, поверхностей вращения, описанных вокруг одной сферы.

Прямая АВ называется образующей, линия MN - направляющей, а точка S - вершиной конической поверхности.
1. Конус.
Конусом называют тело, ограниченное частью конической поверхности, расположенной по одну сторону от вершины, и плоскостью, пересекающей все образующие. Часть конической поверхности, ограниченная этой плоскостью, называется боковой поверхностью, а часть плоскости, отсекаемая боковой поверхностью, - основанием конуса. Перпендикуляр, опущенный из вершины на плоскость основания, называется высотой конуса (фиг.295,а).

Конус называется прямым круговым, если его основание - круг, а высота проходит через центр основания. Такой конус можно рассматривать как тело, полученное вращением прямоугольного треугольника SAO вокруг катета SO , как оси. При этом гипотенуза SA описывает боковую поверхность, а катет АО - основание конуса (фиг.295,б).
Если ось вращения прямого кругового конуса параллельна плоскости проекций, то проекция конуса на эту плоскость является треугольником (равнобедренным или равносторонним), основание которого будет равно диаметру основания конуса, а стороны - образующей конуса.
Если ось вращения конуса перпендикулярна плоскости проекций, то проекция конуса на эту плоскость будет кругом, равным натуральной величине основания конуса. В этом случае образующие на проекции не изображаются.
2. Изображение прямого кругового конуса (фиг.296).

Дано: основание конуса, расположенного на плоскости П 1
I. Комплексный чертеж
I, а. Проектируем основание конуса - круг, расположенный в плоскости П 1 , и вершину конуса - точку S , расположенную в пространстве на вертикальной прямой, проходящей через центр основания. Высота точки S равна высоте конуса. Горизонтальная проекция этой точки находится в центре окружности - горизонтальной проекции основания.
I, б. Проектируем боковую поверхность конуса. Для этого достаточно спроектировать на плоскость П 2 контурные образующие, для чего соединяем прямыми фронтальные проекции вершины S 2 с проекциями крайних точек основания и получаем проекции контурных образующих, а в целом - фронтальную проекцию данного конуса - равнобедренный треугольник, основание которого равно диаметру основания конуса, а высота треугольника - высоте конуса.
На горизонтальной проекции боковой поверхности конуса дана горизонтальная проекция А 1 точки А , требуется найти ее фронтальную проекцию. Для этого на горизонтальной проекции конуса через точку А 1 проводим окружность - горизонтальную проекцию параллели, затем находим ее фронтальную проекцию и при помощи вертикальной линии связи (направление которой на чертеже показано стрелкой) находим фронтальную проекцию A 2 точки A .

I. в. Эту задачу можно решить и при помощи образующей. На фронтальной проекции боковой поверхности конуса дана фронтальная проекция В 2 точки В . Из точки S 2 через точку В 2 проводим прямую S 2 М 2 - проекцию образующей конуса, затем находим ее горизонтальную проекцию S 1 М 1 и на ней при помощи вертикальной линии связи определяем место горизонтальной проекции точки В .
II. Развертка поверхности прямого кругового конуса - плоская фигура, составленная из сектора и окружности, диаметр которой равен диаметру окружности основания. Радиусом сек-гора является образующая конуса, а длина дуги равна длине окружности основания конуса. Угол сектора можно определить по формуле (a =360°R ÷ L) где R - радиус окружности основания конуса; L - образующая конуса. При построении развертки следует придерживаться следующего порядка:
а) определить угол а сектора;
б) построить развертку боковой поверхности конуса - сектор ;
в) пристроить к любой точке, дуги сектора основание конуса - круг .
Перенос точки В на развертку боковой поверхности конуса осуществляется при помощи размеров С 1 М 1 и R 2 , взятых с (фиг.296, I , в).

III. Наглядное изображение конуса в аксонометрии (изометрия и диметрия).
III, а. Изображаем основание конуса - овал по данному условию. Через центр основания проводим ось z" и на ней от точки О" откладываем высоту конуса О"S" , получаем его вершину S" .
III, б. Изображаем контурные образующие. Из точки S" проводим прямые, касательные к овалу, получаем изображение конуса. Невидимую часть основания (половину овала) изображаем штриховыми линиями.
Определение точки А на боковой поверхности осуществляем при помощи нанесения на поверхность конуса параллели, диаметр параллели берем с горизонтальной проекции (фиг.296, I, б), а ее центр О 2 определяем размером H 1 , с фронтальной проекции (фиг.296, I, б). Место точки А на параллели определяется пересечением вспомогательной прямой, проведенной на расстоянии k параллельно оси у" с параллелью.
Определение точки В на боковой поверхности конуса осуществляется:
а) нанесением на коническую поверхность образующей S"M" при помощи размеров h и f ;
б) нахождением вторичной проекции В 1 точки В при помощи размера i/2 ;
в) проведением вспомогательной прямой из точки В" 1 параллельно оси вращения S"O" . Пересечение вспомогательной прямой с образующей конуса определяют место точки В" .
Определить места точек А и В на боковой поверхности конуса можно и при помощи координат.
ТОР
Тело, полученное от вращения окружности (эта окружность называется образующей) вокруг оси, расположенной в плоскости этой окружности, но не проходящей через ее центр, называется ТОРОМ . Если ось вращения. не пересекает окружность, то тор называют кольцом (фиг.297). Изображение кольца (фиг.298).

1. Комплексный чертеж
I, а. Дано: ось кольца перпендикулярна плоскости П 1 (диаметр D образующей окружности кольца и диаметр D ц окружности центров образующих окружностей (фиг.298,а).
I, б. Горизонтальная проекция кольца выявится двумя концентрическими окружностями (фиг.298,б) диаметр большей равен D ц + D ; диаметр меньшей Dц - D . Фронтальная проекция выявится двумя образующими окружностями, сопряженными прямыми.
Заметим, что внутренние половины окружностей необходимо изобразить штриховыми линиями, как невидимые.
I, в. Дано: горизонтальные проекции параллелей и на них проекции двух точек: точки А (A 1 ) на малой параллели; точки В (B 2 ) на большой (фиг.298,в). Требуется найти их фронтальные проекции. Для этого сначала надо найти фронтальные проекции параллелей, а затем при помощи вертикальных линий связи определить на них места фронтальных проекций А 2 и В 2 .
II. Наглядное изображение кольца в изометрии и диметрии.
II, а. Изооражаем место центров сфер - окружность (D" ц ), расположенную в горизонтальной плоскости.
II, б. Изображаем контур поверхности кольца при помощи вспомогательных сфер, для чего проводим ряд окружностей диаметром D - контуров сфер, центры которых расположены на окружности центров. Затем к окружностям проводим плавную касательную, выявляя очерк кольца.
ШАР
Тело, полученное от вращения полукруга вокруг диаметра, называется шаром, а поверхность, образуемая при этом окружностью, называется шаровой или сферой. Можно также сказать, что эта поверхность есть геометрическое место точек, одинаково удаленных от одной и той же точки, называемой центром. Отрезок, соединяющий центр с какой-нибудь точкой поверхности, называется радиусом, а отрезок, соединяющий две точки поверхности и проходящий через центр, называется диаметром шара (фиг.299).
Всякая проекция шара является кругом, очерками проекций на плоскость П 1 является проекция экватора, на плоскость П 2 и П 3 являются проекции меридианов.
Изображение шара (фиг.300). Дано: одной точкой поверхности шар касается плоскости П 1 .
I. Комплексный чертеж
I, а. Проектируем экватор шара - окружность, лежащую в горизонтальной плоскости, горизонтальная проекция - это окружность, диаметр которой равен диаметру шара. Фронтальная проекция - прямая (обычно на чертеже не изображается).
Проектируем главный меридиан - окружность, лежащую в фронтальной плоскости; фронтальной проекцией является окружность, по условию касательная оси х 12 ; диаметр окружности равен диаметру шара, горизонтальная проекция прямая (обычно на чертеже не изображаемая).
В результате получим проекции шара.
I, б. На поверхности шара дана фронтальная проекция А 2 точки А , требуется найти ее горизонтальную проекцию.
Для этого через точку А 2 проведем прямую параллельно оси - фронтальную проекцию параллели, затем находим ее горизонтальную проекцию и при помощи вертикальной линии связи (направление которой на чертеже показано стрелкой) определяем место горизонтальной проекции А 1 точки А . Развертка поверхности шара. Развертка может быть построена только приближенно, так как шаровая поверхность (сфера) принадлежит к поверхностям неразвертывающимся.
Построение развертки будем выполнять методом долей (существуют и другие методы).
I, в. Для этого фронтальную проекцию главного меридиана - окружность - делим на 12 равных чаетей, каждая часть деления будет равна 1 / 12 п D (т.е. 1 / 12 меридиана). Через точки деления 1 , 2 и 3 проводим прямые, параллельные оси x 12 - проекции параллелей, и находим их горизонтальные проекции - окружности. D П1 - первая параллель; D П2 - вторая параллель и D Э - экватор. Затем горизонтальную проекцию экватора - окружность D Э - делим на 12 равных частей, каждая часть деления будет равна (1 / 12 П D Э) (т.е. 1 / 12 экватора); через каждое деление экватора проводим меридиональные плоскости, которые разделяют поверхность шара, а следовательно, и каждую параллель на 12 долей; получим части параллелей 1 / 12 П D П1 и 1 / 12 П D П2
II. Построение одной доли. Проводим прямую O 1 O 2 , равную ( П D M ÷ 2 ) и от точки О 1 откладываем три раза части, равные ( П D M ÷ 12 ), и через каждую часть проводим прямые, перпендикулярные к O 1 O 2 , на которых откладываем отрезки: (3 - 3 = П D Э ÷ 12); (2 - 2 = П D П2 ÷ 12) ; (2 - 2 = П D П1 ÷ 12) , как показано на чертеже. Соединив плавной кривой последовательно точки 3 - 2 - 1 - 0 1 - 1 - 2 - 3 , получим половину очертания доли. Построив вторую половину, получим одну долю, т.е. 1/12 часть приближенной развертки поверхности шара. Для получения полной развертки поверхности шара следует построить 12 долей.
III. Наглядное изображение шара в изометрии .
III, а. Изображаем экватор шдра как аксонометрическую проекцию окружности, лежащую в горизонтальной плоскости.
III, б. Точку О" принимаем за центр, проводим окружность (касательную к овалу), получаем изометрическую проекцию шара. Диаметр окружности равен длине овала.
Определение места точки А на шаровой поверхности можно осуществить при помощи параллели. Изображаем на поверхности шара параллель, пользуясь размерами h и D П место точки на параллели определяем с помощью прямой, проведенной параллельно оси у" на расстоянии k .
Определить точку А на шаровой поверхности можно при помощи координат.
Упражнение
Пример 1.
а) Выполнить комплексные чертежи геометрических тел согласно примерам А, Б и В по данным размерам (

Возможно, самым простым способом создания трехмерной поверхности является вращение двумерного объекта, например прямой или плоской кривой вокруг оси в пространстве. Такие поверхности называются поверхностями вращения. Сначала для простоты предположим, что ось вращения совпадает с осью и положительно направлена. Предположим также, что объекты вращения - отрезок, прямая или плоская кривая - лежат на плоскости . Позднее мы рассмотрим метод, позволяющий избавиться от этих ограничений.

Самый простой объект, который можно вращать вокруг оси, - это точка. При условии, что точка не лежит на оси, вращение на угол породит окружность. Поворот на меньший угол даст дугу окружности.

Следующим по сложности является отрезок, параллельный, но не совпадающий с осью вращения. Вращение на угол породит в этом случае круговой цилиндр. Радиусом этого цилиндра является длина перпендикуляра, опущенного с отрезка на ось вращения. Длина цилиндра равна длине отрезка. Пример изображен на рис. 6-1.

Если отрезок и ось вращения компланарны и отрезок не параллелен оси вращения, то в результате вращения вокруг оси на угол мы получим усеченный круговой конус. Радиусы оснований усеченного конуса - длины перпендикуляров, опущенных с концов отрезка на ось вращения. Высота конуса - это длина спроецированного на ось вращения отрезка. Пример изображен на рис. 6-2.

И снова, если отрезок и ось вращения компланарны и отрезок перпендикулярен оси вращения, то в результате вращения на угол мы получим плоский диск. Если отрезок пересекает (или касается) ось вращения, то получится сплошной диск, в противном случае диск будет иметь круглое отверстие. Примеры изображены на рис. 6-3.

И наконец, если отрезок наклонен к оси вращения, т.е. некомпланарен, то вращение на угол породит однополостный гиперболоид (см. разд. 6-4 и 6-7).

Рис. 6-1 Цилиндрическая поверхность вращения. (а) Схема построения; (b) результат.

Рис. 6-2 Коническая поверхность вращения. (а) Схема построения; (b) результат.

Рис. 6-3 Диск в качестве поверхности вращения. (а) Схема построения; (b) результат.

Рис. 6-4 Поверхность вращения из замкнутой ломаной. (a) Схема построения; (b) результат.

Рис. 6-5 Бипараметрическая поверхность вращения.

Для создания поверхностей вращения могут быть также использованы замкнутые и незамкнутые ломаные. На рис. 6-4 представлен конус с цилиндрическим отверстием.

Параметрическое уравнение точки на поверхности вращения можно получить, если вспомнить, что параметрическое уравнение вращаемого объекта, например

есть функция одного параметра . Вращение вокруг оси приводит к тому, что координаты зависят также от угла поворота. Таким образом, точка на поверхности вращения определяется двумя параметрами и . Как показано на рис. 6-5, это бипараметрическая функция.

Для рассматриваемого частного случая, т. е. вращения вокруг оси объекта, расположенного в плоскости , уравнение поверхности записывается

Заметим, что здесь координата не меняется. В качестве иллюстрации приведем пример.

Пример 6-1 Простая поверхность вращения

Рассмотрим отрезок с концами и , лежащий в плоскости . Вращение отрезка вокруг оси породит коническую поверхность. Определим на поверхности координаты точки с параметрами , .

Параметрическое уравнение отрезка, соединяющего и , имеет вид

с декартовыми координатами

.

Используя уравнение (6-1), получим точку на поверхности вращения

.

Вращение плоских кривых также порождает поверхности вращения. Как показано на рис. 6-6а, сфера получается в результате вращения вокруг оси расположенной в плоскости полуокружности, центрированной относительно начала координат. Вспомнив параметрическое уравнение окружности (см. разд. 4-5)

получим параметрическое уравнение сферы

Рис. 6-6 Поверхности вращения. (а) Сфера; (b) эллипсоид.

Если вместо окружности подставить параметрическое уравнение центрированного полуэллипса, расположенного в плоскости , получится эллипсоид вращения. Напомнив параметрическое уравнение полуэллипса (см. разд. 4-6)

получим для любой точки эллипсоида следующее параметрическое уравнение:

При уравнение (6-3) превращается в уравнение (6-2) для сферы. Эллипсоид вращения показан на рис. 6-66.

Если ось вращения не проходит через центр окружности или эллипса, то в результате вращения получается тор с сечением в виде окружности или эллипса, соответственно. Параметрическое уравнение эллипса на плоскости с центром, не совпадающим с началом координат, выглядит так

где - это , - координаты центра эллипса, тогда параметрическое уравнение для любой точки тора имеет вид:

где , . Если , то уравнение (6-4) задает тор с сечением в виде окружности. Если , то получится тор с сечением в виде эллипса. На рис. 6-7 представлены оба типа торов.

Рис. 6-7 Торы. (а) С сечением в виде окружности; (b) с сечением в виде эллипса.

Параболоид вращения получается при вращении параметрической параболы (см. разд. 4-7)

Гиперболоид вращения получается при вращении параметрической гиперболы

вокруг оси . Параметрическая поверхность задается уравнением

Примеры показаны на рис. 6-8.

Для создания поверхности вращения можно использовать любую параметрическую кривую, например кубический сплайн, параболический сплайн, кривую Безье и В-сплайн. На рис. 6-9 изображена поверхность вращения, созданная из относительно простого параболического сплайна. На рис. 6-10 изображен бокал, созданный как поверхность вращения с помощью незамкнутого В-сплайна.

Рис. 6-8 Поверхности вращения. (а) Параболоид; (b) гиперболоид.

Рис. 6-9 Поверхность вращения из параболически интерполированной кривой. (а) Создание кривой; (b) поверхность.

Заметим, что бокал имеет как внутреннюю, так и внешнюю стороны. Вращение производится относительно оси .

Рис. 6-10 В-сплайн поверхность вращения. (а) Вершины ломаной; (b) В-сплайн; (с) поверхность.

Напомним, что в матричной форме параметрическая пространственная кривая (см. уравнения (5-27), (5-44), (5-67) и (5-94)) задается следующим образом:

,

где , и - соответственно матрица параметров, матрица функций смешивания и геометрическая матрица. Таким образом, в общей форме матричное уравнение поверхности вращения записывается в виде:

, (6-7)

где представляет вклад вращения вокруг оси на угол . Для частного случая вращения вокруг оси имеем:

. (6-8)

Эти методы иллюстрируются в следующем примере.

Пример 6-2 Поверхность вращения, созданная по параболической кривой

Рассмотрим параболическую кривую, заданную точками , , , . Будем вращать эту кривую вокруг оси на угол , чтобы получить поверхность вращения. Найдем на поверхности точку с параметрами , .

Из уравнений (6-7) и (6-8) получим параметрическое уравнение поверхности вращения

,

где , , и задаются уравнениями (5-44), (5-52) и (5-53) соответственно.

Конкретнее,

.

Рис. 6-11 Поверхность вращения вокруг произвольной оси.

Результаты изображены на рис. 6-9. Такая поверхность может быть результатом разработки кубка или даже газового канала двигателя или ракетного сопла.

Предыдущие результаты были получены путем вращения точки, отрезка, ломаной или кривой вокруг координатной оси, а именно вокруг оси . К более общему случаю поворота вокруг произвольной оси в пространстве поверхность вращения, полученную в более удобной локальной системе координат, можно свести с помощью переносов и поворотов, приводящих поверхность в нужное положение.

На рис. 6-11 показана параметрическая кривая , повернутая вокруг произвольной оси в пространстве, проходящей через точки и и направленной от к . После того как поверхность создана в удобной системе координат для приведения поверхности вращения в нужное положение, нужно совершить следующие действия:

1. Перенести точку в начало координат.

2. Выполнить повороты, необходимые для совмещения осей и (см. разд. 5-9).

3. Повернуть вокруг оси на угол для совмещения осей и .

Эти три шага необходимы только для того, чтобы найти обратное преобразование, размещающее поверхность вращения в нужном месте в трехмерном пространстве. Получив поверхность вращения вокруг оси , приведем ее в нужное положение в пространстве:

1. Сдвинуть по оси , чтобы переместить центр поверхности вращения в нужное положение на оси .

2. Применить к поверхности вращения преобразование, обратное к суммарному преобразованию поворотов.

3. Применить к поверхности вращения обратный перенос точки .

Точка на поверхности вращения тогда задается уравнением:

где , , задаются уравнениями (3-22)-(3-24). задается уравнением (3-8), и матрица задается в форме уравнения (6-7) с геометрической матрицей , представленной в однородных координатах. теперь является матрицей , заданной в виде

. (6-10)

Данный метод иллюстрируется на следующем примере.

Пример 6-3 Поверхность вращения вокруг произвольной оси

Найдем координаты точки с параметрами , на поверхности вращения, образованной вращением эллипса с главной осью, наклоненной относительно оси вращения. Ось вращения проходит через центр эллипса и лежит в плоскости эллипса. Угол наклона . Полуоси эллипса , . Ось проходит через точки и . Центр эллипса находится в точке .

Формальное дифференцирование уравнения (6-7) дает параметрические производные для поверхности вращения. А именно, производная в осевом направлении равна

а производная в радиальном направлении

, (6-12)

где штрих обозначает соответствующее дифференцирование.

Нормаль к поверхности задается векторным произведением параметрических производных, т.е.

Если перемещение образующей линии представляет собой вращение вокруг некоторой неподвижной прямой (оси), то образованная в этом случае поверхность называется поверхностью вращения .

Образующая линия может быть плоской или пространственной кривой, а также прямой. Каждая точка образующей линии при вращении вокруг оси описывает окружность, которая располагается в плоскости перпендикулярной оси вращения (рис. 42).

Эти окружности называются параллелями . Следовательно, плоскости, перпендикулярные оси, пересекают поверхность вращения по параллелям . Линия пересечения поверхности вращения плоскостью Σ , проходящей через ось, называется меридианом .

Меридиан, который является результатом пересечения поверхности вращения с плоскостью уровня, называетсяглавным . Проекция главного меридиана на плоскость, которой параллельна плоскость уровня, является очерковой линией соответствующей проекции поверхности вращения.

М

Рис. 42 Элементы поверхности вращения

ножество всех параллелей или меридианов представляет собой непрерывныйкаркас поверхности вращения. Через каждую точку поверхности проходит одна параллель и один меридиан. Проекции точки располагаются на соответствующих проекциях параллели или меридиана. Задать точку на поверхности или построить вторую проекцию точки, если одна задана, можно при помощи параллели или меридиана, которые проходят через эту точку.

При проектировании различных инженерных сооружений, машин и механизмов наибольшее распространение получили поверхности, образующиеся вращением прямой линии и кривых второго порядка.

Вращением прямой линии образуются:

цилиндр вращения , если прямая l параллельна оси i (рис. 43 а );

конус вращения , если прямая l пересекает ось i (рис. 43 б );

однополостный гиперболоид , если прямая l скрещивается с осью i (рис. 43 в ).

Рис. 43 Линейчатые поверхности вращения

К поверхностям вращения, образованным вращением кривых второго порядка вокруг оси относятся:

сфера образуется вращением окружности вокруг ее диаметра (рис. 44 а );

эллипсоид вращения образуется вращением эллипса вокруг большой или малой оси (44 б , в );

тор образуется вращением окружности вокруг внешней оси (рис. 44 г );

Рис. 44 Поверхности вращения второго порядка

параболоид вращения образуется вращением параболы вокруг ее оси (рис. 44 д );

однополостный гиперболоид вращения образуется вращением гиперболы вокруг ее мнимой оси. Эта поверхность образуется также вращением прямой (рис. 44 е ).

Каналовые и циклические поверхности

Каналовой называют поверхность, образованную непрерывным каркасом замкнутых плоских сечений, определенным образом ориентированных в пространстве. Площади этих сечений могут оставаться постоянными или монотонно изменяться в процессе перехода от одного сечения к другому. На рис. 45 приведены два изображения каналовой поверхности. В инженерной практике наибольшее распространение получили два способа ориентирования плоскостей образующих:

– параллельно какой-либо плоскости – каналовые поверхности с плоскостью параллелизма ;

– перпендикулярно к направляющей линии – прямые каналовые поверхности .

Каналовая поверхность может быть использована для создания переходных участков между двумя поверхностями типа трубопроводов, имеющих:

– различную форму, но одинаковую площадь нормального сечения;

– одинаковую форму, но различные площади сечения;

– различную форму и различные площади поперечных сечений.

Циклическую поверхность можно рассматривать как частный случай каналовой поверхности. Она образуется с помощью окружности, центр которой перемещается по криволинейной направляющей. В процессе движения радиус окружности монотонно меняется. Пример циклической поверхности показан на рис. 46.

Трубчатая поверхность относится к группе нелинейчатых поверхностей с образующей постоянного вида и является частным случаем циклической и каналовой поверхностей. Она обладает свойствами, присущими этим видам поверхностей. У циклической поверхности она позаимствовала форму образующей, а у каналовой – закон движения этой образующей. На рис. 47 приведен пример трубчатой поверхности.



© dagexpo.ru, 2024
Стоматологический сайт