Методы решения многокритериальных задач. Свертка критериев. Обоснование решений методами свертки

21.09.2019

Из презентаций

здесь x – альтернатива из множества Парето

fi (x ) – оценка альтернативы x по i -му критерию

Ci – коэффициенты относительной важности критериев

Использование линейной свертки

Это задачи, связанные с критериями

суммарного ущерба или прибыли ,

дохода ,

денежных или временных затрат

по годам планирования или по этапам

жизненного цикла экономических информационных систем и т. п.,

т.е. там, где допускается, что низкая ценность одной частной характеристики результата компенсируется высокой ценностью другой

Квадратичная свертка

При решении практических задач ЛПР, как правило, ранжирует критерии в соответствии со своими предпочтениями. В этом случае в качестве интегрального критерия используются различные виды сверток

, линейная свертка ,

здесь x – альтернатива из множества W;

f i (x) – оценка альтернативы x по i-му критерию;

с i – весовые коэффициенты, с которыми оценки альтернатив входят в интегральный критерий. с i – коэффициенты значимости, или коэффициенты относительной важности критериев.

Коэффициенты с i можно найти, например, из специально организованной экспертизы: m экспертов должны расставить (ранжировать) критерии по важности:ранг 1 присвоить самому важному критерию и т.д. Пусть r ij – ранг, который присвоил j-ый экперт i-му критерию. Чтобы получить числовую оценку, введем новый коэффициент

.

Тогда коэффициент значимости i-го критерия с точки зрения j-го эксперта:

Обобщенные коэффициенты получим, усреднив оценки экспертов.

Пусть g j – компетентность j-го эксперта, тогда

.

Еще один метод назначения коэффициентов относительной важности основан на внесении предпочтений во множество критериев. Он состоит в следующем.

Пусть удается количественно выразить отношения предпочтения между критериями: критерий f i предпочтительнее критерия f j в h раз: . Тогда коэффициенты относительной важности этих критериев связаны между собой линейным уравнением C i =hC j . Это следует из теоремы:

Th. Если , то C i =hC j , C i >0, åC i =1.

Решая систему линейных уравнений, получим искомые коэффициенты.

Пример. Пусть варианты некоторой системы оцениваются по четырем критериям с пятибалльной шкалой. Значения критериевf i (х) даны в табл.13.

Пусть известно, что , f 2 ~ f 3 , .

Решение . Составим систему линейных уравнений для определения коэффициентов C i :

C 1 =1,5C 2 ; C 2 =C 3 ; C 3 =C 4 ; C 1 +C 2 +C 3 +C 4 =1;

Отсюда следует, что C 1 =3/8; C 2 =2/8; C 3 =2/8; C 4 =1/8.

В табл. 13 приведены значения интегрального критерия «Линейная свертка ».

Таблица 13

Оценки вариантов по критериям

f 1 f 2 f 3 f 4
Х1 Х2 Х3 Х4 Х5 Х6 2 5 4 5 5 3 4 3 3 2 5 5 4 3 4 4 3 4 4 4 4 3 3 4 3/8*2+2/8*5+2/8*4+1/8*5=29/8 32/8 28/8 30/8 29/8 28/8

По этому критерию лучшая альтернатива – Х 2 .

Задачи, в которых выполняются условия для использования линейной свертки, часто встречаются в практике. Это задачи, связанные с критериями суммарного ущерба или прибыли, дохода, денежных или временных затрат по годам планирования или по этапам жизненного цикла экономических информационных систем и т. п., т.е. там, где допускается, что низкая ценность одной частной характеристики результата компенсируется высокой ценностью другой.

Свертка может быть не только линейной , но и квадратичной :

,

сверткой порядка t :

,

Величина t, стоящая в показателе степени, отражает допустимую степень компенсации малых значений одних равноценных критериев большими значениями других. Чем больше значение t, тем больше степень возможной компенсации.

Например, при , т.е. когда недопустима никакая компенсация и требуется выравнивание значений всех критериев (равномерное «подтягивание» значение всех критериев к их наилучшему уровню), интегральный критерий приобретает вид

.

Если t →0, т.е. требуется обеспечение примерно одинаковых уровней значений отдельных частных критериев, то интегральный критерий имеет вид

мультипликативная функция.

При t=1 имеем линейную свертку, при t=2 – квадратичную.

В задачах планирования ударов «по узкому месту» допустима компенсация увеличения одного из критериев сколь угодно большим уменьшением остальных, т.е. , тогда интегральный критерий можно использовать в виде

.

Используя в качестве интегрального критерия свертку, выбирают в качестве лучшей ту альтернативу, для которой F(x) имеет максимальное значение .

Замечание . Входящие в интегральный критерий целевые функции имеют разную размерность и выражены в разных шкалах. Поэтому необходимо предварительно выразить все оценки в одной однородной шкале. Целесообразно использовать для этого следующий прием

,

где f i * (x) оценка альтернативы x по i-му критерию в «родной» шкале, f i max и f i min максимальное и минимальное значения альтернатив по i -му критерию. Полученные оценки принадлежат отрезку и являются дробными, что не всегда удобно для расчетов. Поэтому можно, умножив все оценки по соответствующим критериям на наименьшее общее кратное, перейти в целочисленную шкалу. Сдвиг по шкале на общую для каждого из критериев величину позволит избавиться от отрицательных оценок.


Вариант8,19 Методы решения МКЗ при равнозначных критериях

Другая очень распространенная группа методов скаляризации векторной задачи математического программирования - свертка критериев.

Существует большое количество разных видов сверток . Теоретически все они базируются на подходе, связанном с понятием функции полезности лица, принимающего решение.

При данном подходе предполагается, что лицо, принимающее решение, всегда имеет функцию полезности, независимо от того, может ли лицо, принимающее решение задать ее в явном виде (т.е. дать ее математическое описание). Эта функция отображает векторы критериев на действительную прямую так, что большее значение на этой прямой соответствует более предпочтительному вектору критериев. Смысл разных сверток состоит в том, чтобы из нескольких критериев получить один «коэффициент качества» (сводный критерий), приближенно моделируя таким образом неизвестную (не заданную в явном виде) функцию полезности лица, принимающего решение. Наиболее популярной сверткой является метод взвешенных сумм с точечным оцениванием весов. При этом задается вектор весовых коэффициентов критериев, характеризующий относительную важность того или иного критерия:

A = {ak ,k = 1~K}. (64)

Весовые коэффициенты обычно используются в нормированном виде и удовлетворяют равенству:

X ak = 1, ak > 0, Vk е K , (65)

т.е. предполагается, что весовые коэффициенты неотрицательны. Каждый критерий умножается на свой весовой коэффициент, а затем все взвешенные критерии суммируются и образуют взвешенную целевую функцию, значение которой интерпретируются как «коэффициент качества» полученного решения. Полученная скаляризованная функция максимизируется на допустимой области ограничений.

Получается однокритериальная (скалярная) задача математического программирования:

F0 = max X af (X). (66)

В результате решения данной задачи получается точка оптимума X0.

Основным достоинством данной свертки является то, что с ней связаны классические достаточные и необходимые условия оптимальности по Парето (теоремы Карлина).

Теорема Карлина 1.

В выпуклой задаче многокритериальной оптимизации точка X0 е S оптимальна по Парето, если существует вектор весовых коэффициентов A0 = {a° > 0, k = 1,K}, для которого выполняется соотношение:

X«Оf0(X0) = maxX«0h (X). (67)

Теорема Карлина 2.

Если в выпуклой задаче многокритериальной оптимизации точка X0 е S Парето-оптимальна, то существует вектор весовых коэффициентов A0 = {a° > 0, к = 1,К}, для которого выполняется соотношение:

X«0f^X°) = maxX«0fk (X). (68)

«h (X) =ma„xXakJkк=1 40eS к =1

Согласно данным теоремам, данную свертку можно использовать для получения Парето-оптимальных точек.

Примером данной свертки может служить итоговый рейтинг надежности банка Кромонова, полученный как аддитивная свертка ряда коэффициентов.

Достоинством данного метода является то, что он согласно теореме Карлина генерирует Парето-оптимальные точки. Однако ему присущ целый ряд фундаментальных недостатков. Во-первых, неявная функция полезности лица, принимающего решения, как правило, нелинейна, поэтому «истинные» веса критериев (т.е. такие веса, при которых градиент взвешенное целевой функции совпадает по направлению в градиентом функции полезности) будут меняться от точки к точке, поэтому можно говорить лишь о локально подходящих весах, кроме того, часто лицо, принимающее решение вообще не может задать весовые коэффициенты. Во-вторых, далеко не всегда потеря качества по одному из критериев компенсируется приращением качества по другому. Поэтому полученное решение, оптимальное в смысле единого суммарного критерия, может характеризоваться низким качеством по ряду частных критериев и быть поэтому абсолютно неприемлемым. В-третьих, полученное решение часто бывает неустойчиво, т. е. малым приращениям весовых коэффициентов соответствуют большие приращения целевых функций. В-четвертых, свертка критериев разной физической природы не позволяет интерпретировать значение взвешенной целевой функции. В-пятых, значительные затруднения могут возникнуть в случае сильной корреляции между критериями.

Некоторые из вышеперечисленных недостатков могут быть скорректированы. Так, в случае разной физической (экономической) природы критериев возможна их нормализация и последующая свертка нормализованных критериев. Чтобы исключить неприемлемо низкие значения отдельных критериев, можно наложить дополнительные ограничения на эти критерии.

Другим методом борьбы с данным недостатком - неприемлемо низкими значениями отдельных критериев при хорошем значении суммарного критерия - является применение сверток не аддитивного, а мультипликативного вида:

F0 = max П (af (X))Рк. (69)

Однако данная свертка не получила большого распространения ввиду того, что существуют аналогичные, но более перспективные виды сверток.

Так, существует свертка вида: (70)

minF0 =X| f (X)V

fк Наиболее широкое применение данная свертка получила при p = 2, которая трактуется как минимизация суммы квадратов относительных отклонений функционалов от своих достижимых оптимальных значений. Данная точка в случае равноценности критериев показывает решение, наиболее близкое к недостижимой «идеальной» точке (в которой все критерии принимают свое максимальное значение). Однако данной свертке также свойственен следующий распространенный недостаток: «хорошее» значение сводного критерия достигается ценой низких значений некоторых частных критериев.

Мультипликативные свёртки

Рассмотрим мультипликативную свёртку с нормирующими множителями:

где j - нормирующие множители.

Мультипликативная свёртка основывается на постулате: "низкая оценка хотя бы по одному критерию влечет за собой низкое значение функции полезности". Действительно, если вы выбираете торт, и он - несвежий, то это обстоятельство никак не может быть компенсировано его красотой или ценой.

Посмотрим, какие результаты даст мультипликативная свёртка с весовыми коэффициентами:

где j - нормирующие множители,

вj - весовые коэффициенты.

Итоги отражены в таблице:

Оптимальной стратегией снова является А3.

В конце еще раз напомним непременное правило: перед тем, как применять какую-либо свёртку нужно автоматически всегда выделять множество Парето. И именно для множества Парето применять свёртки. Иначе вы или ваша программа будете выполнять лишнюю ненужную работу.

Многокритериальный выбор на языке бинарных отношений

До этого были рассмотрены случаи, когда все критерии оценивали все альтернативы. Все альтернативы можно было сравнить друг с другом по каждому критерию. А что делать, если не все альтернативы будут оценены всеми критериями? В таком случае появятся альтернативы, не сравнимые между собой по некоторым критериям. Рассмотрим такой случай на нашем примере (уберем из него некоторые оценки):

При таком условии альтернативы можно сравнить между собой лишь попарно. Такие попарные сравнения называются бинарными отношениями . Обозначается бинарное отношение (на примере критерия Байеса из нашей таблицы) А1RА2 - альтернатива А1 лучше альтернативы А2.

Дадим математически точное определение бинарных отношений.

Бинарным отношением на множестве? называется произвольное подмножество R множества? Х? , где? Х? - это множество всех упорядоченных пар (ai ;aj) , где ai , aj ? . #

Бинарные отношения очень удобно изображать наглядно. Представим четыре стратегии из нашего примера в виде точек на плоскости. Если имеем, что какая-то альтернатива лучше другой, то проведем стрелку от лучшей альтернативы к худшей. На примере критерия Байеса из нашей таблицы имеем А1RА2 , поэтому на плоскости проведем стрелку от точки А1 к точке А2. Аналогичным образом поступим со всеми начальными данными из таблицы. Заметим, что бинарные отношения не исключают отношения элемента с самим собой. На рисунке такое бинарное отношение будет задаваться петлёй со стрелкой. В результате получим следующую картину:

Подобные фигуры называются ориентированными графами . Точки - это вершины графа, стрелки между точками - это дуги графа.

Дадим математически точное определение графа.

Графом называется пара (Е, е), где Е - непустое конечное множество элементов (вершин), е - конечное (возможно и пустое) множество пар элементов из Е (множество дуг). #

Две вершины, соединенные дугой, называются смежными вершинами. Дуга, соединяющая две вершины, называется инцидентной этим вершинам. Две вершины, соединенные дугой, называются инцидентными этой дуге.

Как же произвести выбор наилучшего элемента из имеющихся альтернатив (наилучшей вершины графа)? Для этого сначала необходимо определить, что же будет являться наилучшей вершины (наилучшими вершинами) графа. На этот счет имеются две исторически сложившиеся в теории графов точки зрения.

1)Максимальным элементом множества? по бинарному отношению R называется такой элемент х? , что у? выполняется отношение хRy .

Иначе говоря, максимальный элемент множества должен быть "лучше" каждого элемента этого множества. Не исключается и то, что он может быть "лучше" самого себя, кроме этого максимальный элемент может быть одновременно и "хуже" какого-либо элемента этого множества. Слова "лучше" и "хуже" не совсем верно передают смысл бинарных отношений.

Для графов понятие максимальный элемент - это вершина, из которой исходят стрелки во все остальные вершины графа. Например, на рис. 1 максимальным элементом будет вершина А1 - из неё выходят стрелки во все остальные вершины графа.

2)Оптимальным по Парето элементом множества? по бинарному отношению R называется такой элемент х? , что у? для которого выполнялось бы отношение уRх.

Иначе говоря, оптимальный по Парето элемент множества - это такой элемент, "лучше" которого в рассматриваемом множестве нет.

Для графов понятие оптимальный по Парето элемент - это вершина, в которую не входит ни одна стрелка. Например, на рис. 1 оптимальным по Парето элементом будет вершина А1 - в неё не входит ни одна стрелка.

Видим, что два разных подхода к определению наилучшего элемента в нашем примере дали одинаковый результат. Но такое бывает не всегда.

Рассмотрим несколько примеров.

У графа на рис. 2 максимальным элементом будет вершина А1 - из неё выходят стрелки во все остальные вершины графа. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 3 максимальным элементом будет также вершина А1 - из неё выходят стрелки во все остальные вершины графа. Заметим: то, что в неё входит стрелка из вершины А4 , по определению совершенно не важно. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 4 максимальными элементами будут вершины А1 и А4 - из них выходят стрелки во все остальные вершины графа. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 5 максимального элемента нет. Оптимальными по Парето элементами будут вершины А1 и А4 - в них не входит ни одна стрелка.

Отметим очевидные особенности.

У графа либо нет максимальных элементов, либо есть.

Оптимальными по Парето элементами могут быть несколько вершин графа, либо таковых может не быть.

В графе не может один (или одни) элемент быть максимальным, а другой (или другие) элемент быть оптимальным по Парето.

Итак, если имеется задача многокритериального выбора, описанная на языке бинарных отношений, то её удобно представить наглядно в виде графа. Однако такое удобство хорошо для небольшого количества вершин (альтернатив). Если вершин довольно много, то вся наглядность пропадает и легко можно запутаться. В таком случае граф удобно представить в виде матрицы смежности или матрицы инцидентности.

Матрица смежности вершин графа - это квадратная матрица размера m x m (m - это количество вершин) с элементами:

По матрицам смежности искать максимальные элементы и элементы, оптимальные по Парето - одно удовольствие! Максимальные элементы - это те, чьи строки состоят из всех единиц (кроме себя самих - там может быть как нуль, так и единица). А оптимальные по Парето элементы - это те, чьи столбцы состоят из всех нулей.

Матрица инцидентности графа - это матрица, строки которой соответствуют вершинам, а столбцы - дугам. При этом предполагается, что граф не должен иметь петель.

Элементы матрицы инцидентности будут такими:

Видим, что каждый столбец должен содержать одну единицу и одну минус единицу, остальные элементы столбцов - нули. То есть каждая дуга из одной вершины выходит и в другую вершину входит.

Налицо также очевидна закономерность: максимальные элементы - это те, чьи строки содержат единиц на одну меньше, чем количество строк (вершин), а оптимальные по Парето элементы - это те, чьи строки не содержат минус единиц.

Используя замечательные особенности матриц смежности и инцидентности графов, не составит большого труда разрабатывать компьютерные программы по принятию решений для задач выбора, описанных на языке бинарных отношений.

Многокритериальная задача выбора формулируется в следующем виде. Дано множество допустимых альтернатив, каждая из которых оценивается множеством критериев.

Требуется определить наилучшую альтернативу. При ее решении основная трудность состоит в неоднозначности выбора наилучшего решения. Для ее устранения используются две группы методов. В методах первой группы стремятся сократить число критериев, для чего вводят дополнительные предположения, относящиеся к процедуре ранжирования критериев и сравнения альтернатив. В методах второй группы стремятся сократить число альтернатив в исходном множестве, исключив заведомо плохие альтернативы.

К методам первой группы относятся метод свертки, метод главного критерия, метод пороговых критериев, метод расстояния. Следует отметить, что строгое обоснование этих методов отсутствует и их применение определяется условиями задачи и предпочтением ЛПР.

Метод свертки состоит в замене исходных критериев (их называют также локальными или частными) Kj одним общим критерием K. Эта операция называется сверткой или агрегированием частных критериев. Метод целесообразно применять, если по условиям задачи частные критерии можно расположить по убыванию важности так, что важность каждой пары соседних критериев различается не сильно, либо, если альтернативы имеют существенно различающиеся оценки по разным критериям. Наиболее часто используются следующие виды сверток: аддитивная, мультипликативная, расстояние до идеала.

Алгоритм метода линейной свертки

  • 1. Определяем коэффициенты важности (веса для каждой функции). Для этого используем метод пропорциональных коэффициентов.
  • 2. заменяем знаки функций, для того чтобы перейти от задачи минимизации к задаче максимизации.
  • 3. Выполнить нормировку критериев по формуле.

4. Строим функцию взвешенной аддитивной свертки и исследуем ее.

Решение

Используя пропорциональный метод, определим коэффициенты важности.

В многокритериальных задачах, когда из первоначальной постановки не удается выделить критерий, преобладающий по важности над другими - главный критерий, довольно часто критерии искусственно комбинируют посредством агрегирующей функции, с параметрами - весовыми коэффициентами, назначаемыми каждому критерию согласно его относительной важности. Этот подход часто называют скаляризацией или сверткой векторного критерия. А получающуюся при этом параметризованную функцию, сводящую исходную многокритериальную задачу к однокритериальной, - обобщенным, агрегированным, глобальным критерием или суперкритерием. Наиболее широко распространенным видом обобщенного критерия является линейная свертка, когда глобальный критерий представляется в виде суммы (иногда произведения) частных критериев, умноженных на соответствующие весовые коэффициенты.

При применении этого способа определенные трудности вызывает правильный выбор весовых коэффициентов, проблематична интерпретация получаемых результатов. Использовать рассмотренный прием образования обобщенного критерия имеет смысл только в тех случаях, когда интерес представляет сумма отдельных критериальных функций. В общем же случае происходит просто замена одних неопределенностей другими, замаскированная математическими выкладками .

Существуют также случаи, когда довольно проблематично назначить каждому критерию определенный весовой коэффициент, соответствующий его важности относительно остальных. Тогда прибегают к свертке критериев где весовые коэффициенты не отражают относительной важности критериев, а изменяясь в определенных пределах, способствуют тем самым локализации точек в множестве Парето. При этом еще больше возрастает роль ЛПР, т.к. при выборе весовых коэффициентов он руководствуется в основном собственным опытом и интуицией, что также требует от него определенной квалификации.

Неоднократно отмечались ошибки и противоречия, которые делает человек при назначении весов критериев. Достаточно обстоятельный обзор различных методов назначения весов подводит к выводу, что не существует корректных методов решения человеком этой задачи. Такое поведение человека при решении многокритериальных зада является повторяющимся и устойчивым.

Имеются результаты экспериментов, из которых следует, что человек назначает веса критериев с существенными ошибками по сравнению с объективно известными, что назначаемые веса противоречат его непосредственным оценкам альтернатив и т.д. Хотя дискуссия о возможности использования весов в методах принятия решений еще продолжается, полученных данных уже достаточно, чтобы считать эту операцию достаточно сложной для ЛПР .

Суммируя сказанное можно сделать следующий вывод. Метод сверток применялся и применяется наиболее часто, но имеет труднопреодолимые недостатки :

  • - не всегда потеря качества по одному критерию компенсируется приращением по другому. «Оптимальное» по свертке решение может характеризоваться низким качеством некоторых частных критериев и в связи с этим будет неприемлемым;
  • - не всегда можно задать веса критериев. Зачастую известна лишь сопоставимая важность критериев, иногда нет никакой информации о важности;
  • - результат сильно зависит от предпочтений ЛПР, который чаще всего назначает веса, исходя из интуитивного представления о сравнительной важности критериев;
  • - величина функции цели, полученная по свертке, не имеет никакого физического смысла;
  • - многократный запуск алгоритма по свертке может давать только несколько различных точек Парето (или одну и ту же) даже в случае, когда в действительности этих точек очень много;
  • - данный подход не способен генерировать истинные Парето-оптимальные решения в условиях невыпуклых поисковых пространств, что является серьезным препятствием при решении многих практических задач.

Итак, для решения любой многокритериальной задачи необходимо учитывать сведения об относительной важности частных критериев.

В некоторых многокритериальных задачах частные критерии строго упорядочены по важности так, что следует добиваться приращения более важного критерия за счет любых потерь по всем остальным менее важным критериям. Но в большинстве случаев возникает ситуация, когда выделить главный или упорядочить критерии по важности не удается. Тогда зачастую прибегают к свертке критериев в обобщенный критерий. Применение данного подхода к формированию множества Парето, также как методов последовательных уступок и выделения основного частного критерия, связано с рядом возникающих при этом трудностей, что ставит вопрос о целесообразности использования подобных подходов и необходимости разработки методов, лишенных их недостатков.

К тому же, характерной чертой, объединяющей 3 рассмотренных подхода, является то, что в каждом из них задача многокритериальной оптимизации сводится к одной или нескольким задачам однокритериальной оптимизации.

Таким образом, теряется суть решаемой задачи, ее отличительная особенность - одновременный учет многих критериев. А сами методы должны работать многократно, чтобы сгенерировать множество точек Парето с тем, чтобы дальше выполнить оценку решения, значительно увеличивая затрачиваемые при этом вычислительные ресурсы.



© dagexpo.ru, 2024
Стоматологический сайт