Методы определения значений функций принадлежности нечеткого множества. Нечеткие множества

21.09.2019

Определение

Под нечётким множеством понимается совокупность , где X - универсальное множество, а - функция принадлежности (характеристическая функция), характеризующая степень принадлежности элемента X нечёткому множеству A.

Функция принимает значения в некотором линейно упорядоченном множестве М. Множество М называют множеством принадлежностей, часто в качестве выбирается отрезок {0,1}. Если, то нечёткое множество может рассматриваться как обычное, чёткое множество. M={0,1}.

Примеры записи нечеткого множества

Пусть E = {x1, x2, x3, x4, x5 }, M = ; A - нечеткое множество, для которого

Тогда A можно представить в виде:

A = {0,3/x1; 0/x2; 1/x3; 0,5/x4; 0,9/x5 } или

A = 0,3/x1 + 0/x2 + 1/x3 + 0,5/x4 + 0,9/x5, или

А= x1x2x3x4x5
0,3 0 1 0,5 0,9

Замечание . Здесь знак "+" не является обозначением операции

сложения, а имеет смысл объединения.

Характеристическая функция обычного множества - это функция, устанавливающая принадлежность элемента к множеству. Особенность: носит бинарный характер.

f(x)={1, x принадлежит М; 0, x не принадлежит М.

Функция принадлежности - функция, которая позволяет вычислить степень принадлежности производного элемента универсального множества к нечеткому множеству.

Степень принадлежности - это любое число из диапазона Z (например, Z=).

Чем выше степень принадлежности, тем в большей мере элемент универсального множества соответствует свойствам нечеткого множества.

Множество Z называют множеством принадлежностей. Если Z={0,1}, то нечеткое множество F может рассматриваться как обычное (четкое) множество.

2. Какие нечеткие числа называют нормальными, унимодальными и выпуклыми?

Носителем (суппортом) нечёткого множества называется множество

Supp(F)={x|f(x)>0}, для любого x принадлежащего Е.

Нечеткое множество называется пустым, если его носитель тоже пустое множество.

F=пустое множество <=> supp (F)=пустое множество, то есть f(x)=0 для любого x от Е.

Нечеткое множество является унимодальным , если mA(x)=1 лишь для одного x из E.

Элементы x из Е для которых f(x)=0,5 называются точками перехода множества F.

Высотой нечеткого множества F называется верхняя граница его функции принадлежности hgt (F) = sup x из E f(x).

Нечеткое множество F называется нормальным , если его высота равна единицы. В противном случае оно называется субнормальным.

Нормализация - это преображение субнормального нечеткого множества F в нормальное F определяется так:


F=norm (F) <=> f(x)=f(x)/hgt(F), для любого x из Е.

3. Дайте определение Нечеткие числа (L-R)-типа.

Нечеткие числа (L-R)-типа - это разновидность нечетких чисел специального вида, т.е. задаваемых по определенным правилам с целью снижения объема вычислений при операциях над ними.

Нечеткие числа и интервалы, которые наиболее часто используются для представления нечетких множеств в нечетком моделировании, являются нормальными. Однако данные выше определения нечеткого числа и нечеткого интервала слишком общие, что затрудняет их практическое использование. С вычислительной точки зрения удобно использовать более конкретные определения нечетких чисел и интервалов в форме аналитической аппроксима-ции с помощью так называемых (L-R )-функций. Получаемые в результате нечеткие числа и интервалы в форме (L-R) -функций позволяют охватить достаточно широкий класс конкрет-ных функций принадлежности. Определение 6.14. Функция L-muna (а также и R-muna), в общем случае определяется как произвольная функция L: R → и R: /R →, заданная на множестве действительных чисел, невозрастающая на подмножестве неотрицательных чисел R+ и удовлетворяющая следующим дополнительным условиям: L(-x)= L(x), R(-x)=R(x) - условие четности; (6.7) L (0)=R (0) = 1 -условие нормирования. (6.8) Примечание: Иногда в литературе можно встретить еще одно условие, которому долж-ны, по мнению некоторых авторов, удовлетворять функции (L-R )-типа: L (1) = R (1) = 0. По-скольку с одной стороны это условие существенно ограничивает класс функций (L-R )-типа, а с другой стороны, рассматриваемые ниже треугольные нечеткие числа и трапециевидные не-четкие интервалы согласуются с выполнением этого свойства, мы не будем его включать в определение функций (L-R )-типа.

Нечеткое множество - ключевое понятие нечеткой логики. Пусть Е — универсальное множество, х — элемент Е, a R — некоторое свойство. Обычное (четкое) подмножество А универ-сального множества Е, элементы которого удовлетворяют свойству R, определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) —характеристическая функция, принимающая значе-ние 1, если х удовлетворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов х из Е нет однозначного ответа «да-нет» относительно свойства R. В связи с этим нечеткое подмножество А универсаль-ного множества Е определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) характеристическая функция принадлежности (или просто функция принадлежности) , принимающая значения в некотором вполне упорядоченном множестве М (например, М = ).

Функция принадлежности указывает степень (или уровень) принадлежности элемента х подмножеству А. Множество М назы-вают множеством принадлежностей. Если М = {0, 1}, то нечеткое подмножество А может рассматриваться как обычное или четкое множество.

Примеры записи нечеткого множества

Пусть Е = {x 1 , x 2 , х з, x 4 , x 5 }, М = ; А — нечеткое множество, для которого μ A (x 1 )= 0,3; μ A (х 2 )= 0; μ A (х 3) = 1; μ A (x 4) = 0,5; μ A (х 5 )= 0,9.

Тогда А можно представить в виде

А = {0,3/x 1 ; 0/х 2 ; 1/х 3 ; 0,5/х 4 ; 0,9/х 5 },

или

А ={0,3/x 1 +0/х 2 +1/х 3 +0,5/х 4 +0,9/х 5 },

или

Замечание . Здесь знак «+» не является обозначением операции сложения, а имеет смысл объединения.

Основные характеристики нечетких множеств

Пусть М = и А — нечеткое множество с элементами из универсаль-ного множества Е и множеством принадлежностей М.

Величина называется высотой нечеткого множества А. Нечеткое множество А нормально, если его высота рав-на 1,т.е. верхняя граница его функции принадлежности равна 1 (= 1). При < 1нечеткое множество называется субнормальным.

Нечеткое множество пусто, если ∀x ϵ E μ A (x ) = 0. Непу-стое субнормальное множество можно нормализовать по формуле

Нечеткое множество унимодально, если μ A (x ) = 1 только на одном х из Е.

. Носителем нечеткого множества А является обычное под-множество со свойством μ A (x )>0, т.е. носитель А = {x /x ϵ E, μ A (x )>0}.

Элементы x ϵ E , для которых μ A (x ) = 0,5 , называются точками перехода множества А.

Примеры нечетких множеств

1. Пусть Е = {0, 1, 2, . . ., 10}, М = . Нечеткое множество «Несколько» можно определить следующим образом:

«Несколько» = 0,5/3 + 0,8/4 + 1/5 + 1/6 + 0,8/7 + 0,5/8; его характеристики: высота = 1, носитель = {3, 4, 5, 6, 7, 8}, точки перехода — {3, 8}.

2. Пусть Е = {0, 1, 2, 3,…, n ,}. Нечеткое множество «Малый» можно определить:

3. Пусть Е = {1, 2, 3, . . ., 100} и соответствует понятию «Возраст», тогда нечеткое множество «Молодой» может быть определено с помощью


Нечеткое множество «Молодой» на универсальном множестве Е" = {ИВАНОВ, ПЕТРОВ, СИДОРОВ,...} задается с помощью функции при-надлежности μ Молодой (x ) на Е = {1, 2, 3, . . ., 100} (возраст), называемой по отношению к Е" функцией совместимости, при этом:

где х — возраст СИДОРОВА.

4. Пусть Е = {ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,… } - множе-ство марок автомобилей, а Е" = — универсальное множество «Сто-имость», тогда на Е" мы можем определить нечеткие множества типа:


Рис. 1.1. Примеры функций принадлежности

«Для бедных», «Для среднего класса», «Престижные», с функциями при-надлежности вида рис. 1.1.

Имея эти функции и зная стоимости автомобилей из Е в данный момент времени, мы тем самым определим на Е" нечеткие множества с этими же названиями.

Так, например, нечеткое множество «Для бедных», заданное на уни-версальном множестве Е = { ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,...}, выглядит так, как показано на рис. 1.2.


Рис. 1.2. Пример задания нечеткого множества

Аналогично можно определить нечеткое множество «Скоростные», «Средние», «Тихоходные» и т. д.

5. Пусть Е — множество целых чисел:

Е = {-8, -5, -3, 0, 1, 2, 4, 6, 9}.

Тогда нечеткое подмножество чисел, по абсолютной величине близких к нулю, можно определить, например, так:

А = {0/-8 + 0,5/-5 + 0,6/-3 +1/0 + 0,9/1 + 0,8/2 + 0,6/4 + 0,3/6 + 0/9}.

О методах построения функций принадлежности нечет-ких множеств

В приведенных выше примерах использованы пря-мые методы, когда эксперт либо просто задает для каждого х ϵ Е значение μ А (х), либо определяет функцию совместимости. Как правило, прямые методы задания функции принадлежности ис-пользуются для измеримых понятий, таких как скорость, время, расстояние, давление, температура и т.д., или когда выделяются полярные значения.

Во многих задачах при характеристике объекта можно выде-лить набор признаков и для каждого из них определить полярные значения, соответствующие значениям функции принадлежности, 0 или 1.

Например, в задаче распознавания лиц можно выделить шкалы, приведенные в табл. 1.1.

Таблица 1.1. Шкалы в задаче распознавания лиц

x 1

высота лба

x 2

профиль носа

курносый

горбатый

длина носа

короткий

x 4

разрез глаз

цвет глаз

форма подбородка

остроконечный

квадратный

x 7

толщина губ

цвет лица

очертание лица

овальное

квадратное

Для конкретного лица А эксперт, исходя из приведенной шка-лы, задает μ A (х) ϵ , формируя векторную функцию принад-лежности { μ A (х 1 ) , μ A (х 2 ),…, μ A (х 9) }.

При прямых методах используются также групповые прямые методы, когда, например, группе экспертов предъявляют конкрет-ное лицо и каждый должен дать один из двух ответов: «этот че-ловек лысый» или «этот человек не лысый», тогда количество утвердительных ответов, деленное на общее число экспертов, дает значение μ лысый (данного лица). (В этом примере можно действо-вать через функцию совместимости, но тогда придется считать число волосинок на голове у каждого из предъявленных эксперту лиц.)

Косвенные методы определения значений функции принад-лежности используются в случаях, когда нет элементарных из-меримых свойств, через которые определяется интересующее нас нечеткое множество. Как правило, это методы попарных сравне-ний. Если бы значения функций принадлежности были нам из-вестны, например, μ A (х- i ) = ω i , i = 1, 2, ..., n ,то попарные срав-нения можно представить матрицей отношений А = { a ij }, где a ij = ω i / ω j (операция деления).

На практике эксперт сам формирует матрицу А , при этом пред-полагается, что диагональные элементы равны 1, а для элемен-тов симметричных относительно диагонали a ij = 1/a ij , т.е. если один элемент оценивается в α раз сильнее, чем другой, то этот по-следний должен быть в 1/α раз сильнее, чем первый. В общем случае задача сводится к поиску вектора ω, удовлетворяющего уравнению вида Aw = λ max w , где λ max — наибольшее собствен-ное значение матрицы А . Поскольку матрица А положительна по построению, решение данной задачи существует и является поло-жительным.

Можно отметить еще два подхода:

  • использование типовых форм кривых для задания функций принадлежности (в форме (L-R)-Типа - см. ниже) с уточнением их параметров в соответствии с данными эксперимента;
  • использование относительных частот по данным экспе-римента в качестве значений принадлежности.

Пусть Х = { x 1 , x 2 , x 3 , x 4 , x 5 } , M = ; A - нечеткое множество, для которого

A (x 1 )=0,3; A (x 2 )=0; A (x 3 )=1; A (x 4 )=0,5; A (x 5 )=0,9 .

Тогда A можно представить в виде: A = {0,3/ x 1 ; 0/ x 2 ; 1/ x 3 ; 0,5/ x 4 ; 0,9/ x 5 }, или A = 0,3/ x 1 + 0/ x 2 + 1/ x 3 + 0,5/ x 4 + 0,9/ x 5 , или таблицей (табл.1)

Таблица 1

Представление нечеткого множества А

Замечание. Здесь знак "+ " не является обозначением операции сложения, а имеет смысл объединения.

Методы построения функций принадлежности нечетких множеств

При построении функций принадлежности используются прямые и косвенные методы. При использовании прямых методов эксперт либо просто задает для каждого x Х значение  A (x ) , либо определяет функцию совместимости. Как правило, прямые методы задания функции принадлежности используются для измеримых понятий, таких как скорость, время, расстояние, давление, температура и т.д., или когда выделяются полярные значения.

Во многих задачах при характеристике объекта можно выделить набор признаков и для каждого из них определить полярные значе-ния, соответствующие значениям функции принадлежности 0 или 1.

Например в задаче распознавания лиц можно выделить следующие шкалы (табл. 2)

Таблица 2

Шкалы в задаче распознавания образов

x 1

высота лба

x 2

профиль носа

курносый

горбатый

x 3

длина носа

короткий

x 4

разрез глаз

x 5

цвет глаз

x 6

форма подбородка

остроконечный

квадратный

x 7

толщина губ

x 8

цвет лица

x 9

очертание лица

овальное

квадратное

Для конкретного лица А эксперт, исходя из приведенной шкалы, задает  A (x ) на , формируя векторную функцию принадлеж-ности { A (x 1 ) ,  A (x 2 ) ,..., A (x 9 )}.

При построении функций принадлежности используются также групповые прямые методы, когда, например, группе экспертов предъявляют конкретное лицо, и каждый должен дать один из двух ответов: «этот человек лысый » или «этот человек не лысый », тогда количество утвердительных ответов, деленное на общее число экспертов, дает значение  « лысый» (данного лица).

Введем следующие обозначения: K - количество экспертов; - мнениеk -го эксперта о наличии у элемента u j свойств нечеткого множества suppI j , k =1,…,K , i =1,…,n , j =1,…,m ,. Будем считать, что экспертные оценки бинарные, т.е. { 0,1} , где 1 (0 ) указывает на наличие (отсутствие) у элемента u j свойств нечеткого множества suppI j . По результатам опроса экспертов, степени принадлежности нечеткому множеству suppI j , j =1,…,m рассчитываются следующим образом:

, i= 1,…,n. (1)

Пример. Построить функции принадлежности значений «низкий», «средний», «высокий», используемых для лингвистической оценки переменной «рост мужчины». Результаты опроса пяти экспертов приведены в табл. 3.

Таблица 3

Результаты опроса экспертов

Значения

Эксперт 1

Эксперт 2

Эксперт 3

Эксперт 4

Эксперт 5

Результаты обработки экспертных мнений представлены в табл. 4. Числа курсивом – это количество голосов, отданных экспертами за принадлежность нечеткому множеству соответствующего элемента универсального множества. Числа обычным шрифтом – степени принадлежности, рассчитанные по формуле (1). Графики функций принадлежности показаны на рис. 6.

Таблица 4

Результаты обработки мнений экспертов

Значения

Рис. 6. Функции принадлежности нечетких множеств из примера

Косвенные методы определения значений функции принадлежности используются в случаях, когда нет элементарных измеримых свойств, через которые определяется нечеткое множество. Как правило, это методы попарных сравнений. Если бы значения функций принадлежности были нам известны, например, A (x i ) =w i , i =1,2,...,n , то попарные сравнения можно представить матрицей отношений A ={a ij }, где a ij =w i /w j (операция деления).

На практике эксперт сам формирует матрицу A , при этом предполагается, что диагональные элементы равны 1, а для элементов, симметричных относительно диагонали, a ij =1/a ij , т.е. если один элемент оценивается в  раз сильнее чем другой, то этот последний должен быть в 1/ раз сильнее, чем первый. В общем случае задача сводится к поиску вектора w , удовлетворяющего уравнению вида А w = max w , где  max - наибольшее собственное значение матрицы A . Поскольку матрица А положительна по построению, решение данной задачи существует и является положительным.

Универсум

Элементы нечеткого множества выбираются (черпаются) из универсального множества или короче универсума . Универсум включает в себя все элементы, которые можно использовать при рассмотрении множества. В частности в выше рассмотренном примере универсумом является множество

U = [ 1 2 3 4 5 6 7 8 ].

Можно сказать, что универсум является областью определения множества , следовательно, и его функции принадлежности. Тем не менее, универсум зависит от контекста, как показывает следующий пример.

Пример 1.3 (универсум) . а) множество «молодые люди» может иметь в качестве универсума всех людей, проживающих на земле. Как альтернативу универсумом можно считать людей, возраст которых лежит между 0 и 100 годами; эти люди будут представлять переменную возраст (рис. 1.3).

Множества «более или менее молодой», «очень молодой» и «не очень молодой» получены из множеств «молодой» и «старый» ;

б) множество x >>10 (x много больше 10 вольт ) может иметь как универсум все положительные результаты измерений напряжения.

Применение универсума позволяет исключить из рассмотрения ошибочные результаты измерений, например отрицательные значения для уровня воды в баке.

В том случае, когда мы имеем дело с нечисловыми переменными, например, с переменной вкус пищи , которые не могут быть измерены в отношении численного масштаба, мы не можем использовать в качестве универсума множество чисел. При этом элементы универсума должны быть взяты, как говорят, из психологического континуума(сплошной среды) ; для данного примера таким универсумом может быть {горький, соленый, кислый, сладк ий,…}.

Определение (нечеткое множество ). Если U есть набор элементов (другими словами, универсум), обозначаемых традиционно x , то нечеткое множество A в U определяется как упорядоченное множество пар:

где называется функцией принадлежности (ФП) x к A .

Каждый элемент в универсуме является членом (элементом) нечеткого множества A с некоторой степенью принадлежности, может быть и с нулевой.

ФП является просто степенью, с которой элемент x принадлежит к множеству A. ФП преобразует универсум U в интервал ,

: U ,

т.е. каждому элементу x универсума U ставит в соответствие определенное число из интервала . Если =0,8, то говорят, что элемент x i на 80% принадлежит нечеткому множеству A .

Нечеткое множество строго определяется с помощью функции принадлежности, другими словами, логика определения понятия нечеткого множества не содержит никакой нечеткости. Четкое множество является частным случаем нечеткого множества, т.е. понятие нечеткого множества является расширенным понятием, охватывающим понятие четкого множества.

Непрерывное и дискретное представления . Существуют два альтернативных представления функций принадлежности в компьютере: непрерывный и дискретный. В непрерывной форме функция принадлежности есть математическая функция, возможно программа. Функция принадлежности может быть колоколообразной (так называемая - кривая ), s- образной (называемая s-кривой ), обратная s- образной (называемая z-кривой ), треугольной или трапециидальной. На рис. 1.2 изображена как пример - кривая . В дискретной форме функция принадлежности и универсум представляют собой дискретные значения (точки) в списке (векторе). В ряде случаев удобно иметь дело с дискретными представлениями.

В соответствии с эмпирическим правилом непрерывная форма требует более быстродействующего, но с меньшей памятью АЦП, чем дискретная форма.

Пример 1.4 (непрерывная форма) . Функция косинуса может быть использована для построения различных функций принадлежности. Так s-кривая может быть описана как


, (1.3)

где a l - левая точка излома, а a r - правая точка излома кривой. z-кривая является зеркальным отражением s-кривой относительно точки (a r - a l)/2 :

. (1.4)

При этом - кривая может быть интерпретирована как комбинация s-кривой и z-кривой, тогда в интервале при условии значения функции принадлежности

одинаковы и максимальны.

На рис. 1.2 изображена - кривая, описываемая функцией

Пример 1.5 (дискретная форма) . Чтобы получить дискретное представление, эквивалентное кривой, изображенной на рис. 1.2, предположим, что универсум U = u представлен дискретными значениями, скажем такими

u = .

Занесем результаты вычислений по формулам (1.3), (1.4) и (1.5) в соответствующий список значений

или в кратком виде,

[ 0 0,04 0,31 0,69 0,96 1 ].

Кстати, символически принято нечеткое множество на универсуме записывать как множество упорядоченных пар,

для непрерывных и дискретных универсумов соответственно. Здесь символы ине имеют никакого отношения к операциям интегрирования и суммирования. Так нечеткое множество, представленное ФП на рис. 1.2, можно записать в виде

Из приведенных примеров мы видим, что конструкция нечеткого множества зависит от двух вещей: выбора подходящего универсума и выбора соответствующей функции принадлежности . Еще раз отметим, что выбор функции принадлежности является в сущности субъективным делом, из чего следует, что выбранные разными людьми функции принадлежности для одного и того же понятия (скажем, «холодный») могут значительно отличаться. Эта субъективность проистекает из неопределенной природы абстрактных понятий и не имеет ничего общего с вероятностью. Поэтому субъективность и неслучайность нечетких множеств являются главным отличием изучения нечетких множеств и теории вероятности. Последняя имеет дело с объективной трактовкой случайных событий (явлений).

Нормализация . Нечеткое множество называется нормализованным , если самое большое значение функции принадлежности, так называемая высота нечеткого множества, равно 1, Вы нормализуете нечеткое множество путем деления каждого элемента его функции принадлежности на упомянутое самое большое значение, a/max(a) . При использовании функций принадлежности различают другие параметры, в частности ядро или сердцевину (см. рисунок ниже).

Ядро или сердцевина нормализованного нечеткого множества A включает все элементы x , для которых =1. Четкое подмножество элементов, имеющих отличную от нуля степень принадлежности, называют основным (опорным) для нечеткого множества или носителем нечеткого множества. Опора или основа нечеткого множества A включает все элементы x , для которых 0.

Определение

Для пространства рассуждения и данной функции принадлежности нечёткое множество определяется как

Функция принадлежности количественно градуирует принадлежность элементов фундаментального множества пространства рассуждения нечёткому множеству . Значение означает, что элемент не включен в нечёткое множество, описывает полностью включенный элемент. Значения между и характеризуют нечётко включенные элементы.


Нечёткое множество и классическое, четкое (crisp ) множество

Классификация функций принадлежности нормальных нечетких множеств

Нечеткое множество называется нормальным, если для его функции принадлежности справедливо утверждение, что существует такой , при котором .

s

Функция принадлежности класса s определяется как:

Функция принадлежности класса π

Функция принадлежности класса π определяется через функцию класса s :

Функция принадлежности класса γ

Функция принадлежности класса γ определяется как:

Функция принадлежности класса t

Функция принадлежности класса t определяется как:

Функция принадлежности класса L

Функция принадлежности класса L определяется как:

См. также

  • Грубое множество
  • Эвентология

Внешние ссылки

Литература

  • Д. Рутковская, М. Пилиньский, Л. Рутковский. Нейронные сети, генетические алгоритмы и нечеткие системы: Пер. с польского И. Д. Рудинского. - М .:Горячая линия - Телеком, 2004. - 452 с - ISBN 5-93517-103-1

Wikimedia Foundation . 2010 .

  • Теория нечёткой меры
  • Капель

Смотреть что такое "Функция принадлежности" в других словарях:

    функция принадлежности - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN membership function … Справочник технического переводчика

    Функция и поле речи и языка в психоанализе - «ФУНКЦИЯ И ПОЛЕ РЕЧИ И ЯЗЫКА В ПСИХОАНАЛИЗЕ» («Fonction et champ de la parole et du langage en psychanalyse») программа переосмысления психоанализа, выдвинутая в 1953 франц. психиатром и психоаналитиком Жаком Лаканом. Этот текст был… … Энциклопедия эпистемологии и философии науки

    Характеристическая функция (нечёткая логика) - Функция принадлежности нечёткого множества это обобщение индикаторной (или характеристической) функции классического множества. В нечёткой логике она представляет степень принадлежности каждого члена пространства рассуждения к данному нечёткому… … Википедия

    Индикаторная функция

    Характеристическая функция множества - Индикатор, или характеристическая функция, или индикаторная функция подмножества это функция, определенная на множестве X, которая указывает на принадлежность элемента подмножеству A. Термин характеристическая функция уже занят в теории… … Википедия

    ВЫПУКЛАЯ ФУНКЦИЯ - комплексного переменногог регулярная однолистная функция в единичном круге, отображающая единичный круг на нек рую выпуклую область. Регулярная однолистная функция является В. ф. тогда и только тогда, когда при обходе любой окружности… … Математическая энциклопедия

    Нечёткое множество - Эту страницу предлагается объединить с Теория нечётких множеств … Википедия

    Нечеткие множества

    Нечеткое множество - Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control . Л. Заде расширил классическое канторовское понятие… … Википедия

    Нечёткие множества - Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control . Л. Заде расширил классическое канторовское понятие… … Википедия




© dagexpo.ru, 2024
Стоматологический сайт