Математика для чайников. Матрицы и основные действия над ними. Умножение матриц

30.09.2019

В этой теме будут рассмотрены такие операции, как сложение и вычитание матриц, умножение матрицы на число, умножение матрицы на матрицу, транспонирование матрицы. Все обозначения, которые используются на данной странице, взяты из предыдущей темы .

Сложение и вычитание матриц.

Суммой $A+B$ матриц $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=a_{ij}+b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Аналогичное определение вводят и для разности матриц:

Разностью $A-B$ матриц $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=a_{ij}-b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Пояснение к записи $i=\overline{1,m}$: показать\скрыть

Запись "$i=\overline{1,m}$" означает, что параметр $i$ изменяется от 1 до m. Например, запись $i=\overline{1,5}$ говорит о том, что параметр $i$ принимает значения 1, 2, 3, 4, 5.

Стоит обратить внимание, что операции сложения и вычитания определены только для матриц одинакового размера. Вообще, сложение и вычитание матриц - операции, ясные интуитивно, ибо означают они, по сути, всего лишь суммирование или вычитание соответствующих элементов.

Пример №1

Заданы три матрицы:

$$ A=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \end{array} \right)\;\; B=\left(\begin{array} {ccc} 10 & -25 & 98 \\ 3 & 0 & -14 \end{array} \right); \;\; F=\left(\begin{array} {cc} 1 & 0 \\ -5 & 4 \end{array} \right). $$

Можно ли найти матрицу $A+F$? Найти матрицы $C$ и $D$, если $C=A+B$ и $D=A-B$.

Матрица $A$ содержит 2 строки и 3 столбца (иными словами - размер матрицы $A$ равен $2\times 3$), а матрица $F$ содержит 2 строки и 2 столбца. Размеры матрицы $A$ и $F$ не совпадают, поэтому сложить их мы не можем, т.е. операция $A+F$ для данных матриц не определена.

Размеры матриц $A$ и $B$ совпадают, т.е. данные матрицы содержат равное количество строк и столбцов, поэтому к ним применима операция сложения.

$$ C=A+B=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \end{array} \right)+ \left(\begin{array} {ccc} 10 & -25 & 98 \\ 3 & 0 & -14 \end{array} \right)=\\= \left(\begin{array} {ccc} -1+10 & -2+(-25) & 1+98 \\ 5+3 & 9+0 & -8+(-14) \end{array} \right)= \left(\begin{array} {ccc} 9 & -27 & 99 \\ 8 & 9 & -22 \end{array} \right) $$

Найдем матрицу $D=A-B$:

$$ D=A-B=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \end{array} \right)- \left(\begin{array} {ccc} 10 & -25 & 98 \\ 3 & 0 & -14 \end{array} \right)=\\= \left(\begin{array} {ccc} -1-10 & -2-(-25) & 1-98 \\ 5-3 & 9-0 & -8-(-14) \end{array} \right)= \left(\begin{array} {ccc} -11 & 23 & -97 \\ 2 & 9 & 6 \end{array} \right) $$

Ответ : $C=\left(\begin{array} {ccc} 9 & -27 & 99 \\ 8 & 9 & -22 \end{array} \right)$, $D=\left(\begin{array} {ccc} -11 & 23 & -97 \\ 2 & 9 & 6 \end{array} \right)$.

Умножение матрицы на число.

Произведением матрицы $A_{m\times n}=(a_{ij})$ на число $\alpha$ называется матрица $B_{m\times n}=(b_{ij})$, где $b_{ij}=\alpha\cdot a_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Попросту говоря, умножить матрицу на некое число - означает умножить каждый элемент заданной матрицы на это число.

Пример №2

Задана матрица: $ A=\left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right)$. Найти матрицы $3\cdot A$, $-5\cdot A$ и $-A$.

$$ 3\cdot A=3\cdot \left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right) =\left(\begin{array} {ccc} 3\cdot(-1) & 3\cdot(-2) & 3\cdot 7 \\ 3\cdot 4 & 3\cdot 9 & 3\cdot 0 \end{array} \right)= \left(\begin{array} {ccc} -3 & -6 & 21 \\ 12& 27 & 0 \end{array} \right).\\ -5\cdot A=-5\cdot \left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right) =\left(\begin{array} {ccc} -5\cdot(-1) & -5\cdot(-2) & -5\cdot 7 \\ -5\cdot 4 & -5\cdot 9 & -5\cdot 0 \end{array} \right)= \left(\begin{array} {ccc} 5 & 10 & -35 \\ -20 & -45 & 0 \end{array} \right). $$

Запись $-A$ есть сокращенная запись для $-1\cdot A$. Т.е., чтобы найти $-A$ нужно все элементы матрицы $A$ умножить на (-1). По сути, это означает, что знак всех элементов матрицы $A$ изменится на противоположный:

$$ -A=-1\cdot A=-1\cdot \left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right)= \left(\begin{array} {ccc} 1 & 2 & -7 \\ -4 & -9 & 0 \end{array} \right) $$

Ответ : $3\cdot A=\left(\begin{array} {ccc} -3 & -6 & 21 \\ 12& 27 & 0 \end{array} \right);\; -5\cdot A=\left(\begin{array} {ccc} 5 & 10 & -35 \\ -20 & -45 & 0 \end{array} \right);\; -A=\left(\begin{array} {ccc} 1 & 2 & -7 \\ -4 & -9 & 0 \end{array} \right)$.

Произведение двух матриц.

Определение этой операции громоздко и, на первый взгляд, непонятно. Поэтому сначала укажу общее определение, а потом подробно разберем, что оно означает и как с ним работать.

Произведением матрицы $A_{m\times n}=(a_{ij})$ на матрицу $B_{n\times k}=(b_{ij})$ называется матрица $C_{m\times k}=(c_{ij})$, для которой каждый элемент $c_{ij}$ равен сумме произведений соответствующих элементов i-й строки матрицы $A$ на элементы j-го столбца матрицы $B$: $$c_{ij}=\sum\limits_{p=1}^{n}a_{ip}b_{pj}, \;\; i=\overline{1,m}, j=\overline{1,n}.$$

Пошагово умножение матриц разберем на примере. Однако сразу стоит обратить внимание, что перемножать можно не все матрицы. Если мы хотим умножить матрицу $A$ на матрицу $B$, то сперва нужно убедиться, что количество столбцов матрицы $A$ равно количеству строк матрицы $B$ (такие матрицы часто называют согласованными ). Например, матрицу $A_{5\times 4}$ (матрица содержит 5 строк и 4 столбца), нельзя умножать на матрицу $F_{9\times 8}$ (9 строк и 8 столбцов), так как количество столбцов матрицы $A$ не равно количеству строк матрицы $F$, т.е. $4\neq 9$. А вот умножить матрицу $A_{5\times 4}$ на матрицу $B_{4\times 9}$ можно, так как количество столбцов матрицы $A$ равно количеству строк матрицы $B$. При этом результатом умножения матриц $A_{5\times 4}$ и $B_{4\times 9}$ будет матрица $C_{5\times 9}$, содержащая 5 строк и 9 столбцов:

Пример №3

Заданы матрицы: $ A=\left(\begin{array} {cccc} -1 & 2 & -3 & 0 \\ 5 & 4 & -2 & 1 \\ -8 & 11 & -10 & -5 \end{array} \right)$ и $ B=\left(\begin{array} {cc} -9 & 3 \\ 6 & 20 \\ 7 & 0 \\ 12 & -4 \end{array} \right)$. Найти матрицу $C=A\cdot B$.

Для начала сразу определим размер матрицы $C$. Так как матрица $A$ имеет размер $3\times 4$, а матрица $B$ имеет размер $4\times 2$, то размер матрицы $C$ таков: $3\times 2$:

Итак, в результате произведения матриц $A$ и $B$ мы должны получить матрицу $C$, состоящую из трёх строк и двух столбцов: $ C=\left(\begin{array} {cc} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{array} \right)$. Если обозначения элементов вызывают вопросы, то можно глянуть предыдущую тему: "Матрицы. Виды матриц. Основные термины" , в начале которой поясняется обозначение элементов матрицы. Наша цель: найти значения всех элементов матрицы $C$.

Начнем с элемента $c_{11}$. Чтобы получить элемент $c_{11}$ нужно найти сумму произведений элементов первой строки матрицы $A$ и первого столбца матрицы $B$:

Чтобы найти сам элемент $c_{11}$ нужно перемножить элементы первой строки матрицы $A$ на соответствующие элементы первого столбца матрицы $B$, т.е. первый элемент на первый, второй на второй, третий на третий, четвертый на четвертый. Полученные результаты суммируем:

$$ c_{11}=-1\cdot (-9)+2\cdot 6+(-3)\cdot 7 + 0\cdot 12=0. $$

Продолжим решение и найдем $c_{12}$. Для этого придётся перемножить элементы первой строки матрицы $A$ и второго столбца матрицы $B$:

Аналогично предыдущему, имеем:

$$ c_{12}=-1\cdot 3+2\cdot 20+(-3)\cdot 0 + 0\cdot (-4)=37. $$

Все элементы первой строки матрицы $C$ найдены. Переходим ко второй строке, которую начинает элемент $c_{21}$. Чтобы его найти придётся перемножить элементы второй строки матрицы $A$ и первого столбца матрицы $B$:

$$ c_{21}=5\cdot (-9)+4\cdot 6+(-2)\cdot 7 + 1\cdot 12=-23. $$

Следующий элемент $c_{22}$ находим, перемножая элементы второй строки матрицы $A$ на соответствующие элементы второго столбца матрицы $B$:

$$ c_{22}=5\cdot 3+4\cdot 20+(-2)\cdot 0 + 1\cdot (-4)=91. $$

Чтобы найти $c_{31}$ перемножим элементы третьей строки матрицы $A$ на элементы первого столбца матрицы $B$:

$$ c_{31}=-8\cdot (-9)+11\cdot 6+(-10)\cdot 7 + (-5)\cdot 12=8. $$

И, наконец, для нахождения элемента $c_{32}$ придется перемножить элементы третьей строки матрицы $A$ на соответствующие элементы второго столбца матрицы $B$:

$$ c_{32}=-8\cdot 3+11\cdot 20+(-10)\cdot 0 + (-5)\cdot (-4)=216. $$

Все элементы матрицы $C$ найдены, осталось лишь записать, что $C=\left(\begin{array} {cc} 0 & 37 \\ -23 & 91 \\ 8 & 216 \end{array} \right)$. Или, если уж писать полностью:

$$ C=A\cdot B =\left(\begin{array} {cccc} -1 & 2 & -3 & 0 \\ 5 & 4 & -2 & 1 \\ -8 & 11 & -10 & -5 \end{array} \right)\cdot \left(\begin{array} {cc} -9 & 3 \\ 6 & 20 \\ 7 & 0 \\ 12 & -4 \end{array} \right)=\left(\begin{array} {cc} 0 & 37 \\ -23 & 91 \\ 8 & 216 \end{array} \right). $$

Ответ : $C=\left(\begin{array} {cc} 0 & 37 \\ -23 & 91 \\ 8 & 216 \end{array} \right)$.

Кстати сказать, зачастую нет резона расписывать подробно нахождение каждого элемента матрицы-результата. Для матриц, размер которых невелик, можно поступать и так:

Стоит также обратить внимание, что умножение матриц некоммутативно. Это означает, что в общем случае $A\cdot B\neq B\cdot A$. Лишь для некоторых типов матриц, которые именуют перестановочными (или коммутирующими), верно равенство $A\cdot B=B\cdot A$. Именно исходя из некоммутативности умножения, требуется указывать как именно мы домножаем выражение на ту или иную матрицу: справа или слева. Например, фраза "домножим обе части равенства $3E-F=Y$ на матрицу $A$ справа" означает, что требуется получить такое равенство: $(3E-F)\cdot A=Y\cdot A$.

Транспонированной по отношению к матрице $A_{m\times n}=(a_{ij})$ называется матрица $A_{n\times m}^{T}=(a_{ij}^{T})$, для элементов которой $a_{ij}^{T}=a_{ji}$.

Попросту говоря, для того, чтобы получить транспонированную матрицу $A^T$, нужно в исходной матрице $A$ заменить столбцы соответствующими строками по такому принципу: была первая строка - станет первый столбец; была вторая строка - станет второй столбец; была третья строка - станет третий столбец и так далее. Например, найдем транспонированную матрицу к матрице $A_{3\times 5}$:

Соответственно, если исходная матрица имела размер $3\times 5$, то транспонированная матрица имеет размер $5\times 3$.

Некоторые свойства операций над матрицами.

Здесь предполагается, что $\alpha$, $\beta$ - некоторые числа, а $A$, $B$, $C$ - матрицы. Для первых четырех свойств я указал названия, остальные можно назвать по аналогии с первыми четырьмя.

  1. $A+B=B+A$ (коммутативность сложения)
  2. $A+(B+C)=(A+B)+C$ (ассоциативность сложения)
  3. $(\alpha+\beta)\cdot A=\alpha A+\beta A$ (дистрибутивность умножения на матрицу относительно сложения чисел)
  4. $\alpha\cdot(A+B)=\alpha A+\alpha B$ (дистрибутивность умножения на число относительно сложения матриц)
  5. $A(BC)=(AB)C$
  6. $(\alpha\beta)A=\alpha(\beta A)$
  7. $A\cdot (B+C)=AB+AC$, $(B+C)\cdot A=BA+CA$.
  8. $A\cdot E=A$, $E\cdot A=A$, где $E$ - единичная матрица соответствующего порядка.
  9. $A\cdot O=O$, $O\cdot A=O$, где $O$ - нулевая матрица соответствующего размера.
  10. $\left(A^T \right)^T=A$
  11. $(A+B)^T=A^T+B^T$
  12. $(AB)^T=B^T\cdot A^T$
  13. $\left(\alpha A \right)^T=\alpha A^T$

В следующей части будет рассмотрена операция возведения матрицы в целую неотрицательную степень, а также решены примеры, в которых потребуется выполнение нескольких операций над матрицами.

New Page 1

Матричное исчисление для чайников. Урок 1 . Понятие матрицы.

Матричное исчисление (или матричная алгебра) - это раздел математики, который изучает матрицы. Матрицы присутствуют во многих расчетных задачах, например, решение систем линейных уравнений (когда их много), в задачах оптимизации и так далее. Поэтому очень важно знать и понимать этот раздел математики. Итак, сначала мы познакомимся с самим понятием матрицы.

Матрица - это просто таблица чисел. Сама обычная таблица. У нее есть строки и столбцы. Но есть еще и научное определение матрицы, его тоже надо знать. а звучит оно вот так: "Пусть дано некоторое числовое поле K. Тогда прямоугольную таблицу чисел из поля K :

будем называть матрицей ".

Тут использовано еще одно, может быть, незнакомое вам понятие - числовое поле. Давайте и с ним определимся. Итак, числовое поле - это любая совокупность чисел, в пределах которой выполнимы и однозначны четыре операции: сложение, вычитание, умножение и деление на число, отличное от нуля. Таким образом, к числовому полю принадлежать все нормальные числа, колесные, кстати, тоже (см. также циклы уроков и )). А вот если кто-нибудь изобретет какие-нибудь "экзотические" числа, для которых не будет хотя бы одного однозначно выполнимого из перечисленных четырех математических операций, то уже нельзя будет сказать, что эти числа принадлежат к числовому полю.

Если говорить простыми словами, то матрицей считается только таблица чисел, а также любых других математических объектов, которые можно нормально складывать, вычитать, умножать и делить. А вот если в таблицу поместить нечто, что нельзя, к примеру, складывать, то это будет уже не матрица. Дело в том, что над матрицами тоже можно делать некоторые математические действия, которые сводятся к действиям над входящими в матрицу числами. А если в матрице будут не числа, а невесть что, например, строки, или какие-нибудь экзотические объекты, то над такой таблицей мы уже не сможем произвести те математические операции, которые можем делать над матрицей.

Итак, давайте еще раз обсудим, что может быть внутри матрицы, а что нет. Могут быть числа, комплексные (так как их можно складывать, вычитать и делить). Могут быть функции и математические выражение, если результатом их вычисления будет число (или комплексное число). Действительно, если у нас есть некая функция и есть некая функция , результат вычисления которых "нормальное" число, то кто нам машет совершить операцию , или, например, ?

Числа n и m - это размеры матрицы, если они одинаковые, то такая матрица называется квадратной . В этом случае число n, равное m, называется порядком матрицы. В общем случае, когда m и n не равны, матрица называется прямоугольной . Числа, входящие в матрицу, называются элементами матрицы .

Рассмотрим, как матрица обозначается. В самом начале урока я показал общее обозначение матрицы. Существует еще упрощенное: , где i=1,2,3...m, j=1,2,3,... n. При двухиндексном обозначении элементов матрицы всегда первый индекс показывает номер строки, а второй - номер столбца.

Матрицу также обозначают одной буквой, например, A. Если A - это квадратная матрица порядка n, то можно записать

У квадратной матрицы может быть определитель. Определитель матрицы обозначают или . До определителей мы еще доберемся, сейчас я лишь вкратце скажу, что это такое. Итак, определитель (или детерминант) - это многочлен, комбинирующий элементы квадратной матрицы таким образом, что его значение сохраняется при транспонировании и линейных комбинациях строк или столбцов. Под транспонированием понимается "переворачивание" матрицы - строки становятся столбцами, а столбцы строками.

Существуют также особые виды матрицы, которые могут иметь отдельные обозначает. В частности, прямоугольную матрицу вида:

или, говоря иными словами, матрицу, состоящую из одного столбца, принято обозначать вот так . Такая матрица называется столбцевой . Матрица бывает также и строчной :

Обозначается она вот так:

Если все элементы квадратной матрицы, кроме главной диагонали, равны нулю:

То такая матрица называется диагональной . Обозначается она вот так.

Занятие № 1. Матрицы. Операции над матрицами.

1. Что называется матрицей.

2. Какие две матрицы называются равными.

3. Какая матрица называется квадратной, диагональной, единичной.

4. Как выполнить операции сложения матриц и умножение матрицы на число.

5. Для каких матриц вводится операция умножения и правило ее выполнения.

6. Какие преобразования над матрицами являются элементарными.

7. Какую матрицу называют канонической.

Типовые примеры Действия над матрицами

Задача № 1. Даны матрицы

Найти матрицу D=
(1)

Решение. По определению произведения матрица на число получаем:

D=

Задача № 2 . Найти произведение АВ двух квадратных матриц:

Решение. Обе матрицы являются квадратными матрицами 2-го порядка. Такие матрицы можно умножить, используя формулу

Формула (2) имеет следующий смысл: чтобы получить элемент матрицы С = АВ, стоящий на пересечении строки истолбца нужно взять сумму произведений элементов-ой строки матрицы А на соответствующие элементы-го столбца матрицы В.

В соответствии с формулой (2) найдем:

Следовательно, произведение С = АВ будет иметь вид:

Задача № 3. Найти произведение АВ и ВА матриц:

Решение. Согласно формуле (2),элементы матриц АВ и ВА будут иметь вид:

Вывод: Сравнивая матрицы АВ и ВА и пользуясь определением равенства матриц, делаем вывод, что АВВА, т. е. умножение матриц не подчиняется переместительному закону.

Задача № 4 (устно). Даны матрицы
Существуют ли произведения (в скобках даны правильные ответы): АВ (да), ВА (нет), АС (да), СА (нет), АВС (нет), АСВ (да), СВА (нет).

Задача № 5. Найти произведение АВ и ВА двух матриц вида:

Решение. Приведенные матрицы вида
следовательно, существуют произведения АВ и ВА данных матриц, которые будут иметь вид:

Задача № 6 . Найти произведение АВ матриц:

Ответ:

Задачи для самостоятельного решения:

    Даны матрицы

Найти матрицу D=2А-4В+3С.

2. Найти произведения АВ и ВА квадратных матриц:

    Найти произведение матриц:

    Найти произведение матриц:



7. Найти произведение матриц:

8.Найти матрицу: В=6А 2 +8А, если
.

9. Дана матрица
.Найти все матрицы В, перестановочные с матрицей А.

10. Доказать, что если А - диагональная матрица и все элементы ее главной диагонали различны между собой, то любая матрица, перестановочная с А, тоже диагональная.

Занятие 2. Определители квадратных матриц и их вычисление. Обратная матрица.

Для усвоения практического материала нужно ответить на следующие теоретические вопросы:

    Что называется определителем n-го порядка? Правила вычисления приn=1,2,3.

    Свойства определителей.

    Какая матрица называется невырожденной?

    Какая матрица называется единичной?

    Какая матрица называется обратной по отношению к данной?

    Что является необходимым и достаточным условием для существования обратной матрицы?

    Сформулировать правило нахождения обратной матрицы.

    Ранг матрицы. Правила нахождения.

Типовые примеры Вычисление определителей

Задача № 1. Вычислить определитель
:

а) по правилу треугольника;

б) с помощью разложения по первой строке;

в) преобразованием, используя свойства определителей.

в)

Задача № 2 . Найти минор и алгебраическое дополнение элементаa 23 определителя
и вычислить его разложением по элементам строки или столбца.

Решение.

М 23
; А 23

Задача № 3. Вычислить определитель с помощью разложения по 2 строке:

Ответ:

Задача № 4. Решить уравнение

Задача № 5. Вычислить определитель 4-го порядка разложением по элементам строки или столбца:

Матрицы, познакомьтесь с ее основными понятиями. Определяющими элементами матрицы являются ее диагонали - и побочная. Главная начинается с элемента в первом ряду, первом столбце и продолжается до элемента последнего столбца, последнего ряда (то есть идет слева направо). Побочная же диагональ начинается наоборот в первом ряду, но последнем столбце и продолжается до элемента, имеющего координаты первого столбца и последнего ряда (идет справа налево).

Для того чтобы перейти к следующим определениям и алгебраическим операциям с матрицами, изучите виды матриц. Самые простые из них - это квадратная, единичная, нулевая и обратная. В совпадает число столбцов и строк. Транспонированная матрица, назовем ее В, получается из матрицы А, путем замены столбцов на строки. В единичной все элементы главной диагонали - единицы, а другие - нули. А в нулевой даже элементы диагоналей нулевые. Обратная матрица - это та, на которую исходная матрица приходит к единичному виду.

Также матрица может быть симметрична относительно главной или побочной осей. То есть элемент, имеющий координаты а(1;2), где 1 - это номер строки, а 2 - столбца, равен а(2;1). А(3;1)=А(1;3) и так далее. Матрицы согласованными - это те, где количество столбцов одной равно количеству строк другой (такие матрицы можно перемножать).

Главные действия, которые можно совершить с матрицами - это сложение, умножение и нахождение определителя. Если матрицы одинакового размера, то есть имеют равное количество строк и столбцов, то их можно сложить. Складывать необходимо элементы, стоящие на одинаковых местах в матрицах, то есть а (m;n) сложите с в (m;n), где m и n - это соответствующие координаты столбца и строки. При сложении матриц действует главное правило обычного арифметического сложения - при перемене мест слагаемых сумма не меняется. Таким образом, если вместо простого элемента а стоит выражение а+в, то его можно сложить в элементом с другой соразмерной матрицы по правилам а+(в+с)= (а+в)+с.

Умножать можно согласованные матрицы, которым дано выше. При этом получается матрица, где каждый элемент - это сумма попарно перемноженных элементов строки матрицы А и столбца матрицы В. При перемножении очень важен порядок действий. m*n не равно n*m.

Также одно из главных действий - это нахождение . Еще его называют детерминантом и обозначают так: det. Эта величина определяется по модулю, то есть никогда не бывает отрицательной. Легче всего найти детерминант у квадратной матрицы 2х2. Для этого необходимо перемножить элементы главной диагонали и вычесть из них перемноженные элементы побочной диагонали.

Математическая матрица – это таблица упорядоченных элементов. Размеры этой таблицы определяются по количеству строк и столбцов в ней. Что касается решения матриц, то им называют огромное количество операций, которые производятся над этими самыми матрицами. Математики различают несколько видов матриц. Для некоторых из них действуют общие правила по решению, а для других не действуют. Например, если матрицы имеют одинаковую размерность, то их можно сложить, а если они согласовываются между собой, то их можно перемножить. Обязательно для решения любой матрицы необходимо найти детерминант. Кроме того, матрицы подвергаются транспонированию и нахождению в них миноров. Итак, давайте рассмотрим, как решать матрицы.

Порядок решения матриц

Сначала записываем заданные матрицы. Считаем сколько в них строк и столбцов. Если количество строк и столбцов одинаковое, то такая матрица называется квадратной. Если каждый элемент матрицы оказался равен нулю, то такая матрица нулевая. Следующее, что мы делаем, это находим главную диагональ матрицы. Элементы такой матрицы находятся от правого нижнего угла до левого верхнего. Вторая же диагональ в матрице является побочной. Теперь необходимо произвести транспонирование матрицы. Чтобы это сделать, необходимо заменить в каждой из двух матриц элементы строк на соответствующие элементы столбцов. Например, элемент под а21 окажется элементом а12 или же наоборот. Таким образом, после этой процедуры должна появиться совершенно иная матрица.

Если матрицы имеют совершенно одинаковую размерность, то их можно запросто сложить. Чтобы это сделать, мы берем первый элемент первой матрицы а11 и складываем его с подобным элементом второй матрица b11. То, что получится в результате, записываем на ту же позицию, только уже в новую матрицу. Теперь аналогичным образом складываем все остальные элементы матрицы, пока не получится новая совершенно иная матрица. Посмотрим еще несколько способов, как решать матрицы.

Варианты действий с матрицами

Также мы можем определить, являются ли согласованными матрицы. Для этого нам нужно сравнить количество строк в первой матрице с количеством столбцов второй матрицы. В случае если они оказываются равными, можно их перемножить. Чтобы это сделать, мы попарно умножаем элемент строки одной матрицы на аналогичный элемент столбца другой матрицы. Только после этого можно будет посчитать сумму получившихся произведений. Исходя из этого, начальный элемент той матрицы, которая должна получиться в результате будет равен g11 = а11* b11 + а12*b21 + а13*b31 + … + а1m*bn1. После того как будет выполнено сложение и умножение всех произведений, вы сможете заполнить итоговую матрицу.

Также можно при решении матриц найти их детерминант и определитель для каждой. Если матрица квадратная и имеет размерность 2 на 2, то определитель можно найти как разницу всех произведений элементов главной и побочной диагоналей. Если матрица уже трехмерная, то определитель можно будет найти, применив следующую формулу. D = а11* а22*а33 + а13* а21*а32 + а12* а23*а31 - а21* а12*а33 - а13* а22*а31 - а11* а32*а23.

Чтобы найти минор заданного элемента, нужно вычеркнуть столбец и строку, там, где находится этот элемент. После этого найдите детерминант данной матрицы. Он и будет соответствующим минором. Подобный метод решающих матриц был разработан еще несколько десятилетий тому назад для того, чтобы повысить достоверность результата путем разделения проблемы на подпроблемы. Таким образом, решать матрицы не так уж сложно, если вы знаете основные математические действия.



© dagexpo.ru, 2024
Стоматологический сайт