Математические модели простейших систем массового обслуживания. Типовые математические модели

21.09.2019

Система Эрланга
В качестве показателей эффективности СМО с отказами будем рассматривать:
А - абсолютную пропускную способность СМО, т.е. среднее число заявок, обслуживаемых в единицу времени;
Q - относительную пропускную способность, т.е. среднюю долю пришедших заявок, обслуживаемых системой;
P отк. - вероятность отказа, т.е. того, что заявка покинет СМО необслуженной;
- среднее число занятых каналов (для многоканальной системы).
Одноканальная система с отказами . Рассмотрим задачу.
Имеется один канал, на который поступает поток заявок с интенсивностью λ. Поток обслуживаний имеет интенсивность μ 1 . Найти предельные вероятности состояний системы и показатели ее эффективности.
Система S (СМО) имеет два состояния: S 0 - канал свободен, S 1 - канал занят. Размеченный граф состояний представлен на рис. 6.

Рис. 6
В предельном, стационарном режиме система алгебраических уравнений для вероятностей состояний имеет вид.
(18)
т.е. система вырождается в одно уравнение. Учитывая нормировочное условие p 0 +p 1 =1, найдем из (18) предельные вероятности состояний
(19)
которые выражают среднее относительное время пребывания системы в состоянии S 0 (когда канал свободен) и S 1 (когда канал занят), т.е. определяют соответственно относительную пропускную способность Q системы и вероятность отказа P отк:
(20)
(21)
Абсолютную пропускную способность найдем, умножив относительную пропускную способность Q на интенсивность потока отказов
(22)
Задача 5. Известно, что заявки на телефонные переговоры в телевизионном ателье поступают с интенсивностью λ, равной 90 заявок в час, а средняя продолжительность разговора по телефону об. =2 мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.
Решение. Имеем λ=90 (1/ч), об. =2 мин. Интенсивность потока обслуживании μ=1/ об =1/2=0,5 (1/мин)=30 (1/ч). По (20) относительная пропускная способность СМО (Q=30/(90+30)=0,25, т.е. в среднем только 25% поступающих заявок осуществят переговоры по телефону. Соответственно вероятность отказа в обслуживании составит Р отк. =0,75 (см. (21)). Абсолютная пропускная способность СМО по (29) ,A=90∙0,25=22,5, т.е. в среднем в час будут обслужены 22,5 заявки на переговоры. Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.
Многоканальная система с отказами . Рассмотрим классическую задачу Эрланга.
Имеется n каналов, на которые поступает поток заявок с интенсивностью λ. Поток обслуживаний имеет интенсивность μ. Найти предельные вероятности состояний системы и показатели ее эффективности.
Система S (СМО) имеет следующие состояния (нумеруем их по числу заявок, находящихся в системе): S 0 , S 1 , S 2 , …, S k , …, S n , где S k - состояние системы, когда в ней находится k заявок, т.е. занято k каналов.
Граф состояний СМОсоответствует процессу гибели и размножения и показан на рис. 7.

Рис. 7
Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью λ. Интенсивность же потока обслуживаний, переводящих систему из любого правого состояния в соседнее левое состояние, постоянно меняется в зависимости от состояния. Действительно, если СМО находится в состоянии S 2 (два канала заняты), то она может перейти в состояние. S 1 (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживании будет 2μ. Аналогично суммарный поток обслуживаний, переводящий СМО из состояния S 3 (три канала заняты) в S 2 . будет иметь интенсивность Зμ, т.е. может освободиться любой из трех каналов и т.д.
В формуле (16) для схемы гибели и размножения получим для предельной вероятности состояния
(23)
где членыразложения будут представлять собой коэффициенты приp 0 в выражениях для предельных вероятностей p 1 , p 2 , …, p k , …, p n . Величина
(24)
называется приведенной интенсивностью потока заявок или интенсивностью нагрузки канала. Она выражает среднее число заявок, приходящее за среднее время обслуживания одной заявки. Теперь
(25) есть не что иное, как интенсивность потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем μ заявок (в единицу времени), то среднее число занятых каналов
(30)
или, учитывая (29), (24):
(31)

Рассмотрим многоканальную систему массового обслуживания (всего каналов n), в которую поступают заявки с интенсивностью λ и обслуживаются с интенсивностью μ. Заявка, прибывшая в систему, обслуживается, если хотя бы один канал свободен. Если все каналы заняты, то очередная заявка, поступившая в систему, получает отказ и покидает СМО. Пронумеруем состояния системы по числу занятых каналов:

  • S 0 – все каналы свободны;
  • S 1 – занят один канал;
  • S 2 – занято два канала;
  • S k – занято k каналов;
  • S n – все каналы заняты.
Очевидно, что система переходит из состояния в состояние под действием входного потока заявок. Построим граф состояния для данной системы массового обслуживания.

Рис. 7.24
На рисунке 6.24 изображен граф состояний, в котором S i – номер канала; λ – интенсивность поступления заявок; μ – соответственно интенсивность обслуживания заявок. Заявки поступают в систему массового обслуживания с постоянной интенсивностью и постепенно занимают один за другим каналы; когда все каналы будут заняты, то очередная заявка, прибывшая в СМО, получит отказ и покинет систему.
Определим интенсивности потоков событий, которые переводят систему из состояния в состояние при движении как слева направо, так и справа налево по графу состояний.
Например, пусть система находится в состоянии S 1 , т. е. один канал занят, поскольку на его входе стоит заявка. Как только обслуживание заявки закончится, система перейдет в состояние S 0 .
Например, если заняты два канала, то поток обслуживания, переводящий систему из состояния S 2 в состояние S 1 будет вдвое интенсивнее: 2-μ; соответственно, если занято k каналов, интенсивность равна k-μ.

Процесс обслуживания является процессом гибели и размножения. Уравнения Колмогорова для этого частного случая будут иметь следующий вид:

(7.25)
Уравнения (7.25) называются уравнениями Эрланга .
Для того, чтобы найти значения вероятностей состояний Р 0 , Р 1 , …, Р n , необходимо определить начальные условия:
Р 0 (0) = 1, т. е. на входе системы стоит заявка;
Р 1 (0) = Р 2 (0) = … = Р n (0) = 0, т. е. в начальный момент времени система свободна.
Проинтегрировав систему дифференциальных уравнений (7.25), получим значения вероятностей состояний Р 0 (t ), Р 1 (t ), … Р n (t ).
Но гораздо больше нас интересуют предельные вероятности состояний. При t → ∞ и по формуле, полученной при рассмотрении процесса гибели и размножения, получим решение системы уравнений (7.25):

(7.26)
В этих формулах отношение интенсивности λ / μ к потоку заявок удобно обозначить ρ .Эту величину называют приведенной интенсивностью потока заявок, то есть среднее число заявок, приходящих в СМО за среднее время обслуживания одной заявки.

С учетом сделанных обозначений система уравнений (7.26) примет следующий вид:

(7.27)
Эти формулы для вычисления предельных вероятностей называются формулами Эрланга .
Зная все вероятности состояний СМО, найдем характеристики эффективности СМО, т. е. абсолютную пропускную способность А , относительную пропускную способность Q и вероятность отказа Р отк.
Заявка, поступившая в систему, получит отказ, если она застанет все каналы занятыми:

.
Вероятность того, что заявка будет принята к обслуживанию:

Q = 1 – Р отк,
где Q – средняя доля поступивших заявок, обслуживаемых системой, или среднее число заявок обслуженных СМО в единицу времени, отнесенное к среднему числу поступивших за это время заявок:

A=λ·Q=λ·(1-P отк)
Кроме того, одной из важнейших характеристик СМО с отказами является среднее число занятых каналов . В n -канальной СМО с отказами это число совпадает со средним числом заявок, находящихся в СМО.
Среднее число заявок k можно вычислить непосредственно через вероятности состояний Р 0 , Р 1 , … , Р n:

,
т. е. находим математическое ожидание дискретной случайной величины, которая принимает значение от 0 до n с вероятностями Р 0 , Р 1 , …, Р n .
Еще проще выразить величину k через абсолютную пропускную способность СМО, т.е. А. Величина А – среднее число заявок, которые обслуживаются системой в единицу времени. Один занятый канал обслуживает за единицу времени μ заявок, тогда среднее число занятых каналов

СМО с отказами (задача Эрланга)

Рассматривается N-канальная СМО с отказами:

λобслуживания

Любая заявка может быть обслужена любым свободным каналом. Если все каналы заняты, заявка немедленно получает отказ в обслуживании и покидает систему (теряется). Интенсивности входных и выходных потоков:

Считаем, что в этой системе имеются следующие потоки событий:

1) поступление заявок на вход СМО из источника заявок G;

2) обслуживание заявок в каналах.

1) интенсивность потока поступающих заявок характеризуется λ

2) интенсивность обслуживания одним каналом:

- мат.ожидание длительности обслуживания

Т.о. входной поток с интенсивностью λ и поток обслуживания с интенсивностью µ распределены по экспоненциальному закону и следовательно данные потоки являются простейшими, а сами процессы в системе Марковскими. Представим граф схему переходов для этого случая:

Состояния СМО в данном случае нумеруются по числу заявок, находящихся в СМО (в силу отсутствия очереди состояния, в котором находится система, совпадает с числом занятых каналов)

S0 - все каналы свободны, система свободна

S1 - занят один канал

Sk - заняты k каналов, остальные (n-k) свободны

Sn - заняты все n каналов


Из состояния Si-1 всегда с интенсивностью входного потока λ система переходит в следующее состояние Si, т.е. в данном случае будет заняе еще один канал и интенсивность перехода в следующее состояние равно интенсивности входного потока λ. Интенсивность обратного перехода возрастает с ростом числа параллельно работающих каналов. Чем больше их работает, тем интенсивнее процесс их освобождения. Для простейших потоков имеем:

Данная схема называется схемой гибели и размножения. Такое название происходит от того, что связаны соседние состояния. Математический аппарат - это Марковский процесс, с дискретными состояниями и непрерывным временем. Для заданной СМО матрица интенсивностей Λ имеет вид:


Пользуясь матрицей Λ запишем уравнения, которые позволяют рассчитать вероятности пребывания системы в каждом из указанных состояний. Распределение вероятностей P0,P1,…,Pn по состояниям S0,…,Sn определяется как решение системы дифференциальных уравнений.

Ниже будут рассмотрены примеры простейших систем массового обслуживания (СМО). Понятие «простейшие» не означает «элементарные». Математические модели этих систем применимы и успешно используются в практических расчетах.

Одноканальная смо с отказами

Дано : система имеет один канал обслуживания, на который поступает простейший поток заявок с интенсивностью. Поток обслуживаний имеет интенсивность. Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО и вероятность того, что заявка, пришедшая в момент времени t, получит отказ.

Система при любом t > 0 может находиться в двух состояниях:S 0 – канал свободен;S 1 – канал занят. Переход изS 0 вS 1 связан с появлением заявки и немедленным началом ее обслуживания. Переход изS 1 вS 0 осуществляется, как только очередное обслуживание завершится (рис.4).

Рис.4. Граф состояний одноканальной СМО с отказами

Выходные характеристики (характеристики эффективности) этой и других СМО будут даваться без выводов и доказательств.

Абсолютная пропускная способность (среднее число заявок, обслуживаемых в единицу времени):

где – интенсивность потока заявок (величина, обратная среднему промежутку времени между поступающими заявками -);

–интенсивность потока обслуживаний (величина, обратная среднему времени обслуживания )

Относительная пропускная способность (средняя доля заявок, обслуживаемых системой):

Вероятность отказа (вероятность того, что заявка покинет СМО необслуженной):

Очевидны следующие соотношения: и.

Пример . Технологическая система состоит из одного станка. На станок поступают заявки на изготовление деталей в среднем через 0,5 часа. Среднее время изготовления одной детали равно. Если при поступлении заявки на изготовление детали станок занят, то она (деталь) направляется на другой станок. Найти абсолютную и относительную пропускную способности системы и вероятность отказа по изготовлению детали.

Т.е. в среднем примерно 46 % деталей обрабатываются на этом станке.

.

Т.е. в среднем примерно 54 % деталей направляются на обработку на другие станки.

N – канальная смо с отказами (задача Эрланга)

Это одна из первых задач теории массового обслуживания. Она возникла из практических нужд телефонии и была решена в начале 20 века датским математиком Эрлангом.

Дано : в системе имеетсяn – каналов, на которые поступает поток заявок с интенсивностью. Поток обслуживаний имеет интенсивность. Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО; вероятность того, что заявка, пришедшая в момент времениt , получит отказ; среднее число заявок, обслуживаемых одновременно (или, другими словам, среднее число занятых каналов).

Решение . Состояние системыS (СМО) нумеруется по максимальному числу заявок, находящихся в системе (оно совпадает с числом занятых каналов):

    S 0 – в СМО нет ни одной заявки;

    S 1 – в СМО находится одна заявка (один канал занят, остальные свободны);

    S 2 – в СМО находится две заявки (два канала заняты, остальные свободны);

    S n – в СМО находитсяn – заявок (всеn – каналов заняты).

Граф состояний СМО представлен на рис. 5

Рис.5 Граф состояний для n – канальной СМО с отказами

Почему граф состояний размечен именно так? Из состояния S 0 в состояниеS 1 систему переводит поток заявок с интенсивностью(как только приходит заявка, система переходит изS 0 вS 1). Если система находилась в состоянииS 1 и пришла еще одна заявка, то она переходит в состояниеS 2 и т.д.

Почему такие интенсивности у нижних стрелок (дуг графа)? Пусть система находится в состоянии S 1 (работает один канал). Он производитобслуживаний в единицу времени. Поэтому дуга перехода из состоянияS 1 в состояниеS 0 нагружена интенсивностью. Пусть теперь система находится в состоянииS 2 (работают два канала). Чтобы ей перейти вS 1 , нужно, чтобы закончил обслуживание первый канал, либо второй. Суммарная интенсивность их потоков равнаи т.д.

Выходные характеристики (характеристики эффективности) данной СМО определяются следующим образом.

Абсолютная пропускная способность :

где n – количество каналов СМО;

–вероятность нахождения СМО в начальном состоянии, когда все каналы свободны (финальная вероятность нахождения СМО в состоянии S 0);

Рис.6. Граф состояний для схемы «гибели и размножения»

Для того, чтобы написать формулу для определения , рассмотрим рис.6

Граф, представленный на этом рисунке, называют еще графом состояний для схемы «гибели и размножения». Напишем сначала для общую формулу (без доказательства):

Кстати, остальные финальные вероятности состояний СМО запишутся следующим образом.

S 1 , когда один канал занят:

Вероятность того, что СМО находится в состоянии S 2 , т.е. когда два канала заняты:

Вероятность того, что СМО находится в состоянии S n , т.е. когда все каналы заняты.

Теперь для n – канальной СМО с отказами

Относительная пропускная способность:

Напомним, что это средняя доля заявок, обслуживаемых системой. При этом

Вероятность отказа :

Напомним, что это вероятность того, что заявка покинет СМО необслуженной. Очевидно, что .

Среднее число занятых каналов (среднее число заявок, обслуживаемых одновременно):

Рассмотрим -канальную СМО с отказами. Будем нумеровать состояния системы по числу занятых каналов (или, что в данном случае то же, по числу заявок, связанных с системой). Состояния будут:

Все каналы свободны,

Занят ровно один канал, остальные свободны,

Заняты ровно k каналов, остальные свободны,

Заняты все каналов.

Граф состояний СМО представлен на рис. 5.3. Разметим граф, т. е. проставим у стрелок интенсивности соответствующих потоков событий.

По стрелкам слева направо систему переводит один и тот же поток - ноток заявок с интенсивностью к. Если система находится в состоянии (занято k каналов) и пришла новая заявка, система переходит (перескакивает) в состояние

Определим интенсивности потоков событий, переводящих систему по стрелкам справа налево.

Пусть система находится в состоянии 5, (занят один канал). Тогда, как только закончится обслуживание заявки, занимающей этот канал, система перейдет в значит, поток событий, переводящий систему по стрелке имеет интенсивность Очевидно, если обслуживанием занято два канала, а не один, поток обслуживание переводящий систему но стрелке будет вдвое интенсивнее если занято k каналов в k раз интенсивнее Проставим соответствующие интенсивности у стрелок, ведущих справа налево.

Из рис. 5.3 видно, что процесс, протекающий в СМО, представляет собой частный случай процесса гибели и размножения, рассмотренного нами в § 8 гл. 4.

Пользуясь общими правилами, можно составить уравнения Колмогорова для вероятностей состояний:

Уравнения (4.1) называются уравнениями Эрланга. Естественными начальными условиями для их решения являются:

(в начальный момент система свободна).

Интегрирование системы уравнений (4.1) в аналитическом виде довольно сложно; на практике такие системы дифференциальных уравнений обычно решаются численно, на АВМ или ЭЦВМ. Такое решение дает нам все вероятности состояний

как функции времени.

Естественно, нас больше всего будут интересовать предел -ные вероятности состояний характеризующие установившийся режим работы СМО (при ). Для нахождения предельных вероятностей воспользуемся уже готовым решением задачи, полученным для схемы гибели и размножения в § 8 гл. 4. Согласно этому решению,

В этих формулах интенсивность потока заявок и интенсивность потока обслуживаний (для одного канала) не фигурируют по отдельности, а входят только своим отношением Обозначим это отношение

и будем называть величину р «приведенной интенсивностью» потока заявок. Физический смысл ее таков: величина представляет собой среднее число заявок, приходящих в СМО за среднее время обслуживания одной заявки.

С учетом этого обозначения, формулы (4.2) примут вид:

Формулы (4.3) называются формулами Эрланга. Они выражают предельные вероятности всех состояний системы в зависимости от параметров ( - интенсивность потока чаявок, - интенсивность обслуживания, п - число каналов СМО).

Зная все вероятности состояний

можно найти характеристики эффективности СМО: относительную пропускную способность q, абсолютную пропускную способность А и вероятность отказа .

Действительно, заявка получает отказ, если приходит в момент, когда все каналов заняты. Вероятность этого равна

Вероятность того, что заявка будет принята к обслуживанию (она же относительная пропускная способность q) дополняет Яотк до единицы:

Абсолютная пропускная способность:

Одной из важных характеристик СМО с отказами является среднее число занятых каналов (в данном случае оно совпадает со средним числом заявок, находящихся в системе). Обозначим это среднее число

Величину k можно вычислить непосредственно через вероятности по формуле:

как математическое ожидание дискретной случайной величины, принимающей значения с вероятностями Однако значительно проще выразить среднее число занятых каналов через абсолютную пропускную способность А, которую мы уже знаем. Действительно, А есть не что иное, как среднее число заявок, обслуживаемых в единицу времени-, один занятый канал обслуживает в среднем за единицу времени заявок; среднее число занятых каналов получится делением А на



© dagexpo.ru, 2024
Стоматологический сайт