Линза френеля, которая всегда с собой. Оптика. Объектив. Линза Френеля. Самодельный LCD проектор для домашнего кинотеатра Где в быту найти линзу френеля

22.06.2020

Линза Френеля

Создание параллельного пучка света линзой Френеля (находится в центре).

Ли́нза Френе́ля - сложная составная линза . Состоит не из цельного шлифованного куска стекла со сферической или иными поверхностями (как обычные линзы), а из отдельных примыкающих друг к другу концентрических колец небольшой толщины, которые в сечении имеют форму призм специального профиля. Предложена Огюстеном Френелем .

Эта конструкция обеспечивает малую толщину (а следовательно, и вес) линзе Френеля даже при большой угловой апертуре . Сечения колец у линзы строятся таким образом, что сферическая аберрация линзы Френеля невелика, лучи от точечного источника, помещённого в фокусе линзы, после преломления в кольцах выходят практически параллельным пучком (в кольцевых линзах Френеля).

Линзы Френеля бывают кольцевыми и поясными . Кольцевые направляют световой поток в каком-либо одном направлении. Поясные линзы посылают свет от источника по всем направлениям в определённой плоскости.

Диаметр линзы Френеля может составлять от единиц сантиметров до нескольких метров.

Применение

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Линза Френеля" в других словарях:

    линза Френеля - ступенчатая линза — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы ступенчатая линза EN Fresnel lens … Справочник технического переводчика

    У этого термина существуют и другие значения, см. Линза (значения). Двояковыпуклая линза Линза (нем. Linse, от лат. … Википедия

    Сложная составная линза, применяемая в маячных и сигнальных фонарях. Предложена О. Ж. Френелем. Состоит не из цельного шлифованного куска стекла со сферич. или иными поверхностями, как обычные линзы, а из отд. примыкающих друг к другу концентрич … Физическая энциклопедия

    ФРЕНЕЛЯ - (1) дифракция (см.) сферической световой волны, при рассмотрении которой нельзя пренебречь кривизной поверхности падающей и дифрагировавшей (либо только дифрагировавшей) волн. В центре дифракционной картины от круглого непрозрачного диска всегда… … Большая политехническая энциклопедия

    Участки, на к рые разбивают поверхность фронта световой волны для упрощения вычислений при определении амплитуды волны в заданной точке про странства. Метод Ф. з. используется при рассмотрении задач о дифракции волн в соответствии с Гюйгенса… … Физическая энциклопедия

    Оптическое стекло, служащее для концентрации светового потока, исходящего от лампы, в узкий, почти цилиндрический пучок. Для этого светящаяся нить лампы д. б. установлена точно в фокусе Л., а размеры нити возможно меньшие. Л. бывают гладкие и… … Технический железнодорожный словарь

    Поперечное сечение линзы Френеля и обычной линзы Линза Френеля сложная составная линза. Состоит не из цельного шлифованного куска стекла со сферической или иными поверхностями, как обычные линзы, а из отдельных примыкающих друг к другу… … Википедия

    Сложная составная линза, применяемая в маячных и сигнальных фонарях. Предложена О. Ж. Френелем (См. Френель). Состоит не из цельного шлифованного куска стекла со сферическими или иными поверхностями, как обычные линзы, а из отдельных… … Большая советская энциклопедия

    Плоско выпуклая линза Линза (нем. Linse, от лат. lens чечевица) обычно диск из прозрачного однородного материала, ограниченный двумя полированными поверхностями сферическими или плоской и сферической. В настоящее время всё чаще применяются и т. н … Википедия

Один из создателей волновой теории света, выдающийся французский физик Огюстен Жан Френель родился в маленьком городке близ Парижа в 1788 году. Он рос болезненным мальчиком. Учителя считали его бестолковым: в восьмилетнем возрасте не умел читать и с трудом мог запомнить урок. Однако в средней школе у Френеля проявились замечательные способности к математике, особенно к геометрии. Получив инженерное образование, он с 1809 года участвовал в проектировании и строительстве дорог и мостов в разных департаментах страны. Однако его интересы и возможности были гораздо шире простой инженерной деятельности в провинциальной глуши. Френель хотел заниматься наукой; особенно его интересовала оптика, теоретические основы которой только-только начали складываться. Он исследовал поведение световых лучей, проходящих сквозь узкие отверстия, огибающих тонкие нити и края пластинок. Объяснив особенности возникающих при этом картин, Френель в 1818-1819 годах создал свою теорию оптической интерференции и дифракции - явлений, возникающих по причине волновой природы света.

В начале XIX века европейские морские государства решили совместными усилиями усовершенствовать маяки - важнейшие навигационные устройства того времени. Во Франции для этой цели была создана специальная комиссия, и работать в ней ввиду богатого инженерного опыта и глубокого знания оптики пригласили Френеля.

Свет маяка должен быть виден далеко, поэтому маячный фонарь поднимают на высокую башню. А чтобы собрать его свет в лучи, фонарь нужно поместить в фокус либо вогнутого зеркала, либо собирающей линзы, причём довольно большой. Зеркало, конечно, можно сделать любого размера, но оно даёт только один луч, а свет маяка должен быть виден отовсюду. Поэтому на маяках ставили порой полтора десятка зеркал с отдельным фонарём в фокусе каждого зеркала. Вокруг одного фонаря можно смонтировать несколько линз, но сделать их необходимого - большого - размера практически невозможно. В стекле массивной линзы неизбежно будут неоднородности, она потеряет форму под действием собственной тяжести, а из-за неравномерного нагрева может лопнуть.
Нужны были новые идеи, и комиссия, пригласив Френеля, сделала правильный выбор: в 1819 году он предложил конструкцию составной линзы, лишённую всех недостатков, присущих линзе обычной. Френель рассуждал, вероятно, так. Линзу можно представить в виде набора призм, которые преломляют параллельные световые лучи - отклоняют их на такие углы, что после преломления они сходятся в точке фокуса. Значит, вместо одной большой линзы можно собрать конструкцию в виде тонких колец из отдельных призм треугольного сечения.

Френель не только рассчитал форму профилей колец, он также разработал технологию и проконтролировал весь процесс их создания, нередко исполняя обязанности простого рабочего (подчинённые оказались крайне неопытными). Его усилия дали блестящий результат. «Яркость света, которую даёт новый прибор, удивила моряков», - писал Френель друзьям. И даже англичане - давние конкуренты французов на море - признали, что конструкции французских маяков оказались самыми лучшими. Их оптическая система состояла из восьми квадратных линз Френеля со стороной 2,5 м, имевших фокусное расстояние 920 мм.

С тех пор прошло 190 лет, но конструкции, предложенные Френелем, остаются непревзойдённым техническим устройством, и не только для маяков и речных бакенов. В виде линз Френеля до недавнего времени делали стёкла различных сигнальных фонарей, автомобильных фар, светофоров, деталей лекционных проекторов. И уж совсем недавно появились лупы в виде линеек из прозрачного пластика с еле заметными круговыми бороздками. Каждая такая бороздка - миниатюрная кольцевая призма; а все вместе они образуют собирающую линзу, которая может работать и как лупа, увеличивая предмет, и как объектив фотоаппарата, создавая перевёрнутое изображение. Такая линза способна собрать свет Солнца в маленькое пятнышко и поджечь сухую доску, не говоря уж о листке бумаги (особенно чёрной).

Линза Френеля может быть не только собирающей (положительной), но и рассеивающей (отрицательной) - для этого нужно кольцевые призмы-бороздки на куске прозрачного пластика сделать другой формы. Причём отрицательная френелевская линза с очень коротким фокусным расстоянием имеет широкое поле зрения, в нём в уменьшенном виде помещается кусок пейзажа, в два-три раза больший, чем охватывает невооружённый глаз. Такие «минусовые» пластинки-линзы используют вместо панорамных зеркал заднего вида в больших автомобилях типа микроавтобусов и универсалов.

Грани миниатюрных призмочек можно покрыть зеркальным слоем - скажем, напылив алюминий. Тогда линза Френеля превращается в зеркало, выпуклое или вогнутое. Изготовленные с использованием нанотехнологий, такие зеркала применяют в телескопах, работающих в рентгеновском диапазоне. А отштампованные в гибком пластике зеркала и линзы для видимого света настолько просты в изготовлении и дёшевы, что их выпускают буквально километрами в виде лент для оформления витрин или штор для ванных комнат.
Были попытки использовать линзы Френеля при создании плоских объективов для фотоаппаратов. Но на пути конструкторов встали трудности технического характера. Белый свет в призме разлагается в спектр; то же происходит и в миниатюрных призмочках линзы Френеля. Поэтому она имеет существенный недостаток - так называемую хроматическую аберрацию. Из-за неё на краях изображений предметов появляется радужная кайма. В хороших объективах кайму ликвидируют, ставя дополнительные линзы. Так же можно было бы поступить и с френелевской линзой, но плоского объектива тогда уже не получится.

Френелевская линза-линейка фокусирует солнечные лучи не хуже, а даже лучше (потому что она больше) обычной стеклянной линзы. Солнечные лучи, собранные ею, мгновенно прожигают сухую сосновую доску.

Огюстен Френель вошёл в историю науки и техники не только и не столько благодаря изобретению своей линзы. Его исследования и созданная на их основе теория окончательно подтвердили волновую природу света и разрешили важнейшую проблему физики того времени - нашли причину прямолинейного распространения света. Работы Френеля легли в основу современной оптики. Попутно он предсказал и объяснил несколько парадоксальных оптических явлений, которые тем не менее несложно проверить и теперь.

Давний спор исследователей о природе света - волновая она или корпускулярная - в общих чертах разрешился в конце XVII века, когда Христиан Гюйгенс издал свой «Трактат о свете» (1690). Гюйгенс считал, что каждая точка пространства (в его описании - эфира), через которую проходит световая волна, становится источником вторичных волн. Поверхность, их огибающая, - это распространяющийся волновой фронт. Принцип Гюйгенса решал задачи отражения и преломления света, но не смог объяснить хорошо известное явление - его прямолинейное распространение. Парадоксальным образом причиной этого было то, что Гюйгенс не рассматривал отступления от прямолинейности - дифракцию света (огибание препятствий) и его интерференцию (сложение волн).

Этот недостаток восполнил в 1818-1819 годах Огюстен Френель, инженер по образованию и физик по интересам. Он дополнил принцип Гюйгенса процессом интерференции вторичных волн (введённых Гюйгенсом чисто формально, то есть для удобства расчётов, без физического содержания). За счёт их сложения и возникает фронт результирующей волны, реальная поверхность, на которой волна имеет заметную интенсивность.

Поскольку все вторичные волны порождены одним источником, они имеют одинаковые фазы, то есть когерентны. Френель предложил мысленно разбить поверхность сферической волны, идущей из одной точки О, на зоны такого размера, чтобы разность расстояний от краёв соседних зон до некой выбранной точки F были равны λ/2. Лучи, исходящие из соседних зон, в точку F придут в противофазе и при сложении ослабят друг друга до полного исчезновения.

Обозначив амплитуду колебаний световой волны, пришедшей из зоны m как Sm, суммарное значение амплитуды колебаний в точке F

S = S0-S1+S2-S3+S4+...+Sm=S0-(S1-S2)-(S3-S4)-...-(Sm-1-Sm)

Поскольку S0>S1>S2>S3>S4... выражения в скобках положительны и S меньше, чем S0. Но насколько меньше? Расчёты суммы знакопеременного ряда, которые провёл американский физик Роберт Вуд, показывают, что S=S0/2±Sm/2. А поскольку вклад дальней зоны чрезвычайно мал, интенсивность света дальних зон, поступая в противофазе, уменьшает действие центральной зоны в два раза.
Поэтому, если центральную зону закрыть маленьким диском, освещённость в центре тени не изменится: туда за счёт дифракции попадёт свет из следующих зон. Увеличивая размер диска и последовательно закрывая следующие зоны, можно убедиться в том, что в центре тени будет оставаться яркое пятно. Это теоретически доказал в 1818 году Симеон Дени Пуассон и посчитал свидетельством ошибочности теории Френеля. Однако эксперименты, которые проделали Доменик Араго и Френель, пятно обнаружили. С тех пор оно называется пятном Пуассона.

Для успеха опыта необходимо, чтобы края диска точно совпадали с границами зон. Поэтому на практике используют миниатюрный шарик от подшипника, наклеенный на стекло.

Ещё один парадокс волновых свойств света. Поставим на пути луча экран с маленьким отверстием. Если его размер равен диаметру центральной зоны Френеля, освещённость за экраном будет больше, чем без него. Но если размер отверстия охватит и вторую зону, свет от неё придёт в противофазе, и при сложении со светом из центральной зоны волны взаимно уничтожатся. Увеличивая диаметр отверстия, можно уменьшить освещённость за ним до нуля!

Итак, суммарная амплитуда всей сферической волны меньше, чем амплитуда, создаваемая одной центральной зоной. А поскольку площадь центральной зоны меньше 1 мм2, получается, что световой поток идёт в виде очень узкого луча, то есть прямолинейно. Так теория Френеля с волновой точки зрения объяснила закон прямолинейного распространения света.

Хорошим примером, иллюстрирующим метод Френеля, служит опыт с его зонной пластинкой, которая работает как собирающая линза.

На большом листе бумаги нарисуем ряд концентрических кругов с радиусами, пропорциональными корням квадратным из чисел натурального ряда (1, 2, 3, 4...). При этом площади всех получившихся колец будут равны площади центрального круга. Зальём тушью кольца через одно, причём неважно, оставить ли центральную зону светлой или сделать её чёрной. Получившуюся чёрно-белую кольцевую структуру сфотографируем с большим уменьшением. На негативе получится зонная пластинка Френеля. Диаметр её центральной зоны определяет формула D=0,95√λF, где λ - длина волны света, F - фокусное расстояние линзы-пластинки. При λ=0,64 мкм (красный свет) и F=1 м D≈0,8 мм. Если центральную зону такой пластинки навести на яркую лампочку, то вся она начнёт светиться подобно собирающей линзе. Если её скомбинировать с окуляром из слабой линзы, получится подзорная труба, способная дать резкое изображение нити накаливания лампочки. А из двух зонных пластинок можно построить телескоп по схеме Галилея (объектив - пластинка с большим фокусным расстоянием, окуляр - с малым). Он даёт прямое изображение, как театральный бинокль.

Из всего изложенного становится понятно, как малое отверстие может играть роль объектива, именуемого стенопом или пинхолом. Оно соответствует центральной зоне фазовой пластинки Френеля. Именно поэтому стеноп не имеет никаких аберраций, кроме хроматической, - ведь сквозь неё лучи проходят без искажений.

Световая волна, прошедшая сквозь зонную пластинку, даёт результирующую амплитуду S=S0+S2+S4+... - в два раза большую, чем свободная волна: зонная пластинка работает как собирающая линза. Ещё больший эффект получится, если не задерживать свет чётных зон, а изменить его фазу на обратную. Интенсивность света при этом возрастает в четыре раза.

Такую пластинку в 1898 году изготовил Роберт Вуд покрыв стекло слоем лака и сняв его с нечётных зон, так что разность хода лучей в них составляла λ/2. Стеклянную пластинку, покрытую лаком, он поместил на вращающийся столик. Резец - им служила граммофонная игла - срезал слои лака, для внешних зон было достаточно одного прохода иглы, а на внутренних игла двигалась по узкой спирали, последовательно снимая несколько сливающихся бороздок. Диаметр зон и их ширину контролировали в микроскоп.

Интересно было бы попробовать сделать такую пластинку, используя диск проигрывателя.

Напоследок ещё один парадокс волновой оптики. Как уже говорилось, совершенно неважно, прозрачна центральная зона или нет. Это значит, что роль объектива-стенопа (или пинхола) может играть не только маленькое отверстие, но и крошечный шарик, диаметр которого равен размеру центральной зоны Френеля.

Сергей Транковский.
Журнал «Наука и жизнь», №5-2009.

Не так давно я заметил автомобиль на заднем стекле которого была наклеена непонятная линза небольших размеров, я не придал этому значения, но в голове отложилось. Потом еще раз увидел тоже самое, но на минивэне, и как на радость хозяин стол рядом со своим автомобилем, на мой вопрос - что это такое, последовал ответ линза Френеля. очень рекомендую, мол сильно выручает. Давайте поближе посмотрим, что это за приспособление и почему оно действительно может влегкую заменить парктроник.

✔ ХАРАКТЕРИСТИКИ
Габаритные размеры: 200мм х 250мм
Толщина: 1мм
Материал: оптический акрил
Отрицательное фокусное расстояние: -300 мм
Угол обзора: вверх 13º, стороны 25º, вниз 27º
Применение: значительно увеличивает угол обзора; крепится на заднем стекле микроавтобусов, универсалов, паркетников, джипов, фургонов; на боковом стекле грузовиков.
✔ УПАКОВКА И КОМПЛЕКТАЦИЯ
Прибыла в обычном целлофановом кульке.

Внутри которого находилась картонная упаковка.

На обратной части которого расписываются характеристики и схематически отображен принцип работы линзы.

Внутри, что бы линза не поцарапалась продавец аккуратно завернул ее в бумажку.

Вначале, когда первый раз берешь в руки этот кусок прозрачного пластика и не понятно, что оно же такое. С одной стороны, пластик идеально гладкий, а с другой немного с наcечками.

Для этого обратимся к википедии, в которой четко описано, что такое линза Френеля.
Ли́нза Френе́ля - сложная составная линза. Образована совокупностью отдельных концентрических колец относительно небольшой толщины, примыкающих друг к другу. Сечение каждого из колец имеет форму треугольника, одна из сторон которого криволинейна и это сечение представляет собой элемент сечения сплошной сферической линзы. Предложена Огюстеном Френелем.

Эта конструкция обеспечивает малую толщину (а следовательно, и вес) линзе Френеля даже при большой угловой апертуре. Сечения колец у линзы строятся таким образом, что сферическая аберрация линзы Френеля невелика, лучи от точечного источника, помещённого в фокусе линзы, после преломления в кольцах выходят практически параллельным пучком (в кольцевых линзах Френеля). №1 обычная линза, а №2 линза Френеля в разрезе.

Этот эффект отлично видно на этой фотографии. Присутствуют небольшие «наросты»

Сама линза изготовлена из акрила, достаточно прочная, порвать не пробовал, но сгибов и активного растирания пузырьков под ней не боится.

В нижней части надпись Rearguard, ну а на верхней TOP, что бы не перепутали в процессе «наклейки» в авто.

Размер линзы составляет 20см х 25см. Скорее всего есть и больше, но мне кажется, это оптимальный вариант.


✔ ПРИНЦИП ДЕЙСТВИЯ
Если объект находится по центру линзы, то он кажется меньше и дальше, чем есть на самом деле.

Обеты по бокам линзы, так же попадают в фокус линзы.



Линза полностью прозрачная и обзору никак не мешает.

✔ УСТАНОВКА В АВТО
Имеем обычное авто, хетчбек.

Аккуратно протираем стекло с внутренней стороны начисто.

Разгоняем все пупырышки с помощью тряпочки.

Вот так выглядит законченный вариант.

Вот в 30-40 сантиметрах от бампера стоит небольшой автомобильный огнетушитель. И тут и суслик есть и видно его.

Вот так все выглядит в зеркале заднего вида.

✔ ЛИНЗА ФРЕНЕЛЯ ТЕСТЫ В АВТО
Обратите внимание насколько видно бигборд расположенный вдалеке.

Линзу можно переклеивать почти бесконечное количество раз, смачиваем, прижимаем и выгоняем пузыри.

Заезжаю в туннель, камера немного не четко передает фото, но автомобиль видно хорошо.

А теперь обратите внимание, автомобиль почти в слепой зоне, а в линзе его еще видно полностью.

Немного панорамы.



Обратите внимание насколько много «места» показывает линза за авто.

«Таврия» уже входит в слепую зону, а в линзе она еще полностью отображается.



Проведем небольшой тест, за автомобилем я ставлю уже известный по фотке выше, небольшой огнетушитель, который и не видно, но бампер порвать сможет.

И вот так его видно в линзе. На самом деле когда это происходит в движении то видно намного лучше, так как объект просто начинает придвигаться, а не стоит на месте.

Вот, например, с примерно 3 метров, уточню в заднее стекло я его еще не вижу, а через боковые зеркала при солнечной засветке, объект легко проворонить, из-за небольших размеров.



Ну вот так выглядел мой двор до установки линзы.

И вот так расширился мой кругозор благодаря ей.


Будь в - видео всегда выходят быстрее!

Не ожидал я что этот кусок пластика окажется таким полезным автомобиле. Пропали слепые зоны практически полностью, ни один парктроник не видит столбик, а тут все прекрасно видно даже с 50 сантиметров. Владельцам минивенов и универсалов крайне рекомендую. Хорошо подойдет как оригинальный подарок автомобилисту и самому себе. Даже супруга уже хвалит и паркуется почти вплотную к стене гаража, не боясь повредить задний бампер. Откровенно жалею, что не купил эту штуку пару лет назад, когда задом наехал на бетонный блок, который упорно не видно в зеркала, бампер под замену и покраску и цена вопроса была не 4$…
А главная ее ценность, простота установки и полное безразличие воров, которые довольно часто выковыривают камеры заднего вида.

Представляет собой конструкцию из примыкающих друг к другу концентрических колец, которую придумал физик Огюстен Френель. Линза такой формы изначально использовалась в осветительных системах, экранах проекционных телевизоров, линзовых антеннах, датчиках движения и др. Это один из первых приборов, основанных на принципе дифракции света. Сегодня существует линза Френеля для чтения, хобби и прочих вариантов бытового использования. Бывают даже карманные варианты, которые удобно брать с собой.

Если вы интересуетесь увеличительной оптикой, вас наверняка заинтересует Линза Френеля. Купить в Москве ее можно у нас. Мы предлагаем низкие цены и только качественные товары. Чтобы сделать заказ, просто отправьте товар в корзину. По всем интересующим вопросам обращайтесь к нашим консультантам по телефону.

Линза Френеля Kromatech гибкая"Линейка", арт. 23149ac204

Бифокальная гибкая линза с удобной разметкой-шкалой по краям. Увеличение основной линзы – 3х, дополнительной – 6х. Размер – 19 х 6,5 см. Цвет рукоятки – синий, белый, красный, розовый, зеленый (уточняйте при покупке).

102,00 руб

Что такое линза Френеля?

Из-за маленькой сферической аберрации, преломленные световые лучи выходят практически единым параллельным пучком. То есть линзу можно представить как набор тонких колец из отдельных призм треугольного сечения, преломляющих параллельные лучи и отклоняют под таким углом, что после преломления они сойдутся в единой фокусной точке.

Бывает не только собирающая или положительная линза, но и рассеивающая (отрицательная). В отрицательной кольцевые призмы-бороздки сделаны другой формы. За счет короткого фокусного расстояние поле зрения – широкое и в нем может в уменьшенном виде поместиться участок изображения в 2-3 раза больший, чем можно охватить невооруженным глазом.

История создания

В начале 19 века во Франции была собрана комиссия, задачей работы которой было усовершенствование конструкции маяков. В то время маяк являлся незаменимым навигационным устройством, поэтому в их улучшении были заинтересованы морские европейские государства.

Чтобы свет маяка был виден на большом расстоянии, фонарь нужно не только разместить на высокой башне, но и собрать его свет в лучи. Для этого свет помещался в фокусе вогнутого зеркала или большой собирающей линзы, но у этих способов был ряд недостатков. С помощью зеркала получается лишь один луч, а так как свет должен быть виден везде, приходилось устанавливать множество зеркал с отдельными фонарями в каждом. Если отмести вариант с зеркалами, вокруг одного фонаря можно установить несколько линз, размер которых должен быть весьма внушительным. Массивная линза может попросту потерять форму или лопнуть от нагрева, а также велика вероятность неоднородности материала.

Для изящного решения этой проблемы в комиссию был приглашен выдающийся французский физик Огюст Жан Френель. Им в 1819г была предложена составная линза, исключающая недостатки обычной: это легкая конструкция в виде тонких колец из отдельных призм треугольного сечения. Френелем не только была рассчитана идеальная форма. Он разработал технологию создания, проконтролировал производство и порой даже сам выступал в роли рабочего. Результат был блестящим, а полученная яркость света впечатлила моряков. Так французские маяки стали лучшими, что было признано даже давними морскими конкурентами – англичанами.

Применение устройства

Непревзойденное устройство, созданное почти 200 лет назад, до их пор остается актуальным. Оно используется не только в маяках, но и для изготовления фар, сигнальных фонарей, деталей проекторов, светофоров. Небольшой вес позволяет встраивать ее в качестве детали переносных осветительных приборов.

Существует и множество вариантов этого удивительного изобретения, которые предназначены для бытового использования. Например, линза Френеля для чтения, сделанная из легкого прозрачного пластика с практически невидимыми круглыми бороздами. Эти приспособления бывают любой формы, многие из них даже можно сгибать.

Достаточно популярна парковочная линза Френеля, которая используется вместо панорамного зеркала заднего вида в автомобиле. В виде тонкого покрытия она наклеивается на заднее стекло и тем самым дает широкий угол обзора, уменьшая визуальную «мертвую зону». Это сделано с целью безопасности, удобства парковки задним ходом, контроля над прицепом или буксиром.

Покрытые алюминиевым зеркальным слоем грани призм могут использоваться в телескопах с рентгеновским диапазоном. Подобные зеркала и линзы изготавливаются очень активно: например, из гибкого пластика их можно выпускать чуть ли не километрами и затем использовать для дизайнерских задумок.

Линза Френеля бывает настольная и с подсветкой, по аналогии с любыми другими увеличительными приборами для домашнего использования. Она пригодится для небольшого (в 2-2,5 крат) увеличения изображения мелких деталей в процессе занятий рукоделием или хобби.

Многими путешественниками также используется линза Френеля. Цена и вес достаточно скромные, поэтому такой девайс всегда можно прихватить с собой. Зачем она нужна в путешествии? Эта линза может собрать солнечный свет в небольшое пятнышко, способное разжечь огонь из сухих материалов – бумаги, досок. Некоторые опытные туристы приспосабливают ее для нагревания небольших количеств воды в полевых условиях.

ЛИНЗА ФРЕНЕЛЯ

В предыдущем разделе мы определились, что для освещения нашей LCD панели необходима линза Френеля, или "френель". Линза названа по имени ее изобретателя, французского физика Огюстена Жана Френеля. Первоначально использовалась в маяках. Основное свойство френели в том, что она легкая, плоская и тонкая, но при этом обладает всеми свойствами обычной линзы. Френель состоит из концентрических канавок треугольного профиля. Шаг канавок сопоставим с высотой их профиля. Таким образом, получается, что каждая канавка является как бы частью обычной линзы.

Нужно отметить, что в проекторе вместо одной френели используется пара. Если тебе попадется френель от оверхед-проектора, обрати внимание, что она с обеих сторон гладкая, т.е. на самом деле состоит из двух френелей, обращенных ребристыми поверхностями друг к другу и склеенных по периметру.

Зачем использовать две френели и можно ли обойтись одной?

Взгляни на схему и все станет ясно.

Если использовать только одну френель, необходимо, чтобы лампа находилась примерно в двойном фокусе. Лучи от лампы будут также сходиться примерно в двойном фокусе. Минимальное фокусное расстояние у доступных френелей составляет 220 мм. Это означает, что конструкцию придется сильно удлинить. Но самое главное -- при таком расстоянии от лампы до френели эффективный телесный угол лампы оказывается очень мал.

При использовании 2 френелей от обоих недостатков удается избавиться. Источник света располагается чуть ближе фокусного расстояния от левой френели, а она формирует "мнимый" источник за пределами двойного фокусного расстояния правой френели. После прохождения правой френели лучи будут сходится между фокусом и двойным фокусом.

Вернемся к нашей оптической схеме из предыдущего раздела (имеем в виду, что у нас две френели, хотя нарисована одна):

Помнишь, я говорил, что эта схема упрощена? Если бы все было так, как нарисовано, объектив нам был бы не нужен. Каждый луч от источника света проходил бы через единственную точку френели, затем через единственную точку на матрице и летел бы себе дальше, пока не наткнется на экран и не сформирует на нем точку нужного цвета. Для точечного источника и идеальной матрицы это было бы верно. Теперь добавляем реализма - неточечный источник.

В виду того, что у нас в качестве источника света используется лампа, т.е. светящееся тело вполне определенных, конечных размеров, реальная схема прохождения лучей будет выглядеть следующим образом:

1-й этап построения - левая френель формирует "мнимое изображение" электрической дуги лампы. Оно необходимо нам, чтобы правильно построить ход лучей через правую френель.

2-й этап построения - забываем про наличие левой линзы и строим ход лучей для правой линзы, как если бы "мнимое" изображение было реальным.

3-й этап - отбрасываем все лишнее и объединяем две схемы.

Нетрудно догадаться, что именно в той точке, где формируется изображение дуги лампы, нам и нужно установить объектив. Изображение дуги при этом несет в себе информацию о цвете каждого пикселя матрицы, через которую прошел свет (на рисунке не показана).

Какое фокусное расстояние должно быть у френелей?

Френель, обращенная к лампе, берется максимально короткофокусной для большего угла охвата. Фокусное расстояние второй френели должно быть на 10-50% больше фокусного расстояния объектива (1-2 см расстояние от френели до матрицы, сама матрица находится между фокусом и двойным фокусом объектива, в зависимости от расстояния от объектива до экрана). Фактически на рынке наиболее распространены френели с 2 значениями фокусных расстояний: 220 мм и 330 мм.

При выборе фокусного расстояния френелей нужно обращать внимание на тот факт, что, в отличие от обычных линз, френели капризны к углу падения света. Поясню двумя схемами:

Каприз заключается в том, что лучи, падающие на рифленую поверхность френели, должны быть параллельны оптической оси (или иметь минимальное отклонение от нее). В противном случае эти лучи "улетают вникуда". На левой схеме источник света находится приблизительно в фокусе левой линзы, поэтому лучи между линзами идут почти параллельно оптической оси и в итоге сходятся приблизительно в фокусе второй линзы. На правой схеме источник света расположен гораздо ближе фокусного расстояния, поэтому часть лучей попадает на нерабочие поверхности правой линзы. Этот эффект тем больше, чем больше расстояние от фокуса до источника и чем больше диаметр линзы.

1. Линзы должны размещаться рифлеными сторонами друг к другу, а не наоборот.

2. Источник света желательно располагать как можно ближе к фокусу первой линзы, и как следствие:

3. Возможности по перемещению источника света для регулировки точки схождения пучка в объектив ограничены всего несколькими сантиметрами, иначе - потрея яркости картинки по краям и появление муара.

Какого размера должны быть френели?

Из какого материала должны быть френели?

Наиболее доступны в настоящий момент френели из оптического акрила (оргстекла, иначе говоря). Они имеют отличную прозрачность и немного эластичны. Для нашей цели этого достаточно, учитывая, что качество френелей АБСОЛЮТНО НЕ ВЛИЯЕТ на резкость и геометрию картинки (только на яркость).

Как обращаться с френелями?

1. Не оставляй отпечатков пальцев на рифленой стороне френели. Тщательно мой руки с мылом перед любыми операциями над френелями. Лучше всего с момента покупки и до окончания экспериментов обернуть френели полиэтиленовой пленкой для упаковки продуктов.

2. Если отпечатки на рифленой стороне все-таки появились, НЕ ПЫТАЙСЯ их стереть. Никакие моющие средства (в т.ч. средства для мытья окон на основе нашатыря) не помогают, т.к. не проникают достаточно глубоко. Наружные ребра канавок при этом слегка скругляются, а между канавками забиваются частички от салфетки/ваты, используемой для протирки. В итоге френель начинает рассеивать лучи. Лучше оставить с отпечатками. Гладкую сторону протирать можно, но только будучи уверенным, что моющее средство не попадет на рифленую сторону.

3. Следи за температурным режимом. Не допускай нагрева френелей выше 70 градусов. При 90 градусах линзы начинают плыть, а пучок света теряет форму. Лично я запорол один комплект линз из-за этого. Для контроля температуры используй тестер с термопарой. Продается в любом радиомагазине.

ОБЪЕКТИВ

Что такое объектив и зачем он нужен, думаю, ты понял. Самое главное правильно его выбрать, а, выбрав, найти, где купить:) Для выбора нам необходимо знать 4 основные характеристики:

Количество линз

В принципе объективом может служит и одна линза, например лупа. Однако чем дальше от центра картинки, тем хуже будет ее качество. Появятся сферические искажения (абберации), хроматические абберации (за счет разных углов преломления лучей различных длин волн белая точка, например, превращается в кусочек радуги), потеря резкости. Поэтому для достижения максимального качества картинки используются ахроматические объективы из 3 или более линз. Такие использовались в эпидиаскопах, старых фотокамерах, аппаратах для аэрофотосъемки и т.п. В оверхед-проекторах также используются трехлинзовые объективы, но такие модели проекторов дороже, чем модели с однолинзовыми объективами.

Фокусное расстояние

От фокусного расстояния объектива зависит, на каком расстоянии от исходного объекта (матрицы) его нужно расположить и какого размера изображение на экране ты получишь. Чем больше фокусное расстояние, тем меньше размер экрана, тем дальше от экрана можно разместить проектор, тем длиннее корпус проектора. И наоборот.

Угол зрения

Показывает, какого размера исходное изображение может охватить объектив, сохраняя приемлемую яркость, резкость (разрешающую способность) и т.п. "Приемлемое" - понятие растяжимое. Если для аэрофотообъектива в паспорте указан угол зрения, например, 30 градусов, это может означать, что реально он охватит и 50 градусов, но резкость по краям для аэрофотосъемки уже не годится, зато для нашего проектора, где не нужна большая разрешающая способность, вполне подойдет.

Светосила и относительное отверстие

Относительное отверстие, если упрощенно -- отношение диаметра объектива к его фокусному расстоянию. Обозначается в виде дроби, например 1:5,6, где 5,6 - "диафрагменное число". Если у нас есть объектив с диаметром внутренней линзы 60 мм и фокусным расстоянием 320 мм, его относительное отверстие будет равно 1:5,3. Чем больше относительное отверстие (меньше диафрагменное число), тем больше светосила объектива - способность передавать яркость объекта - и тем обычно хуже резкость/разрешающая способность.

Каким должно быть относительное отверстие?

Относительное отверстие можно найти, зная диаметр линз и фокусное расстояние. Применительно к нашей оптической схеме можно сказать, что диаметр линз объектива должен быть не меньше размера изображения дуги лампы, формируемого френелями. Иначе часть света лампы будет потеряна.

Тут настало время сделать еще одно уточнение к нашей оптической схеме.

Очевидно, что матрица рассеивает проходящие сквозь нее лучи. Т.е. каждый луч, попадающий на матрицу, выходит из нее уже в виде пучка лучей с различным угловым отклонением. В итоге изображение дуги лампы в плоскости объектива оказывается "расплывчатым", увеличивается в размерах, однако продолжает нести в себе информацию о цветах пикселей матрицы.

Наша задача - собрать это "расплывчатое изображение дуги" объективом полностью.

Отсюда вывод: относительное отверстие объектива должно быть таким, чтобы собрать изображение лампы, но не более того.

Какими должны быть фокусное расстояние и угол зрения?

Эти параметры определяются размером исходного изображения (матрицы), расстояния от объектива до экрана и размером желаемого изображения на экране.

F объектива=L*(d/(d+D)), где

L-расстояние до экрана

d-диагональ матрицы

D-диагональ экрана

Вот калькулятор для расчетов (содранный с www.opsci.com , слегка адаптированный и переведенный на понятный язык)



© dagexpo.ru, 2024
Стоматологический сайт