Квадратная гипербола. Гипербола и ее каноническое уравнение

21.09.2019

Гипербола и парабола

Переходим ко второй части статьи о линиях второго порядка , посвященной двум другим распространённым кривым – гиперболе и параболе . Если вы зашли на данную страницу с поисковика либо ещё не успели сориентироваться в теме, то рекомендую сначала изучить первый раздел урока, на котором мы рассмотрели не только основные теоретические моменты, но и познакомились с эллипсом . Остальным же читателям предлагаю существенно пополнить свои школьные знания о параболе и гиперболе. Гипербола и парабола – это просто? …Не дождётесь =)

Гипербола и её каноническое уравнение

Общая структура изложения материала будет напоминать предыдущий параграф. Начнём с общего понятия гиперболы и задачи на её построение.

Каноническое уравнение гиперболы имеет вид , где – положительные действительные числа. Обратите внимание, что в отличие от эллипса , здесь не накладывается условие , то есть, значение «а» может быть и меньше значения «бэ».

Надо сказать, довольно неожиданно… уравнение «школьной» гиперболы и близко не напоминает каноническую запись. Но эта загадка нас ещё подождёт, а пока почешем затылок и вспомним, какими характерными особенностями обладает рассматриваемая кривая? Раскинем на экране своего воображения график функции ….

У гиперболы две симметричные ветви.

У гиперболы две асимптоты .

Неплохой прогресс! Данными свойствами обладает любая гипербола, и сейчас мы с неподдельным восхищением заглянем в декольте этой линии:

Пример 4

Построить гиперболу, заданную уравнением

Решение : на первом шаге приведём данное уравнение к каноническому виду . Пожалуйста, запомните типовой порядок действий. Справа необходимо получить «единицу», поэтому обе части исходного уравнения делим на 20:

Здесь можно сократить обе дроби, но оптимальнее сделать каждую из них трёхэтажной :

И только после этого провести сокращение:

Выделяем квадраты в знаменателях:

Почему преобразования лучше проводить именно так? Ведь дроби левой части можно сразу сократить и получить . Дело в том, что в рассматриваемом примере немного повезло: число 20 делится и на 4 и на 5. В общем случае такой номер не проходит. Рассмотрим, например, уравнение . Здесь с делимостью всё печальнее и без трёхэтажных дробей уже не обойтись:



Итак, воспользуемся плодом наших трудов – каноническим уравнением :

Как построить гиперболу?

Существует два подхода к построению гиперболы – геометрический и алгебраический.
С практической точки зрения вычерчивание с помощью циркуля... я бы даже сказал утопично, поэтому гораздо выгоднее вновь привлечь на помощь нехитрые расчёты.

Целесообразно придерживаться следующего алгоритма, сначала готовый чертёж, потом комментарии:

1) Прежде всего, находим асимптоты . Если гипербола задана каноническим уравнением , то её асимптотами являются прямые . В нашем случае: . Данный пункт обязателен! Это принципиальная особенность чертежа, и будет грубой ошибкой, если ветви гиперболы «вылезут» за свои асимптоты.

2) Теперь находим две вершины гиперболы , которые расположены на оси абсцисс в точках . Выводится элементарно: если , то каноническое уравнение превращается в , откуда и следует, что . Рассматриваемая гипербола имеет вершины

3) Ищем дополнительные точки. Обычно хватает 2-3-х. В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для 1-ой координатной четверти. Методика точно такая же, как и при построении эллипса . Из канонического уравнения на черновике выражаем:

Уравнение распадается на две функции:
– определяет верхние дуги гиперболы (то, что нам надо);
– определяет нижние дуги гиперболы.

Напрашивается нахождение точек с абсциссами :

4) Изобразим на чертеже асимптоты , вершины , дополнительные и симметричные им точки в других координатных четвертях. Аккуратно соединим соответствующие точки у каждой ветви гиперболы:

Техническая трудность может возникнуть с иррациональным угловым коэффициентом , но это вполне преодолимая проблема.

Отрезок называют действительной осью гиперболы,
его длину – расстоянием между вершинами;
число называют действительной полуосью гиперболы;
число мнимой полуосью .

В нашем примере: , и, очевидно, если данную гиперболу повернуть вокруг центра симметрии и/или переместить, то эти значения не изменятся .

Определение гиперболы. Фокусы и эксцентриситет

У гиперболы, точно так же, как и у эллипса , есть две особенные точки , которые называются фокусами . Не говорил, но на всякий случай, вдруг кто неверно понимает: центр симметрии и точки фокуса, разумеется, не принадлежат кривым .

Общая концепция определения тоже похожа:

Гиперболой называют множество всех точек плоскости, абсолютное значение разности расстояний до каждой из которых от двух данных точек – есть величина постоянная, численно равная расстоянию между вершинами этой гиперболы: . При этом расстояние между фокусами превосходит длину действительной оси: .

Если гипербола задана каноническим уравнением , то расстояние от центра симметрии до каждого из фокусов рассчитывается по формуле: .
И, соответственно, фокусы имеют координаты .

Для исследуемой гиперболы :

Разбираемся в определении. Обозначим через расстояния от фокусов до произвольной точки гиперболы:

Сначала мысленно передвигайте синюю точку по правой ветви гиперболы – где бы мы ни находились, модуль (абсолютное значение) разности между длинами отрезков будет одним и тем же:

Если точку «перекинуть» на левую ветвь, и перемещать её там, то данное значение останется неизменным.

Знак модуля нужен по той причине, что разность длин может быть как положительной, так и отрицательной. Кстати, для любой точки правой ветви (поскольку отрезок короче отрезка ). Для любой точки левой ветви ситуация ровно противоположная и .

Более того, ввиду очевидного свойства модуля безразлично, что из чего вычитать.

Удостоверимся, что в нашем примере модуль данной разности действительно равен расстоянию между вершинами. Мысленно поместите точку в правую вершину гиперболы . Тогда: , что и требовалось проверить.

Гипербола – это множество точек плоскости, разница расстояний которых от двух заданных точек, фокусов, есть постоянная величина и равна .

Аналогично эллипсу фокусы размещаем в точках , (см. рис. 1).

Рис. 1

Видно из рисунка, что могут быть случаи и title="Rendered by QuickLaTeX.com" height="16" width="65" style="vertical-align: -4px;"> title="Rendered by QuickLaTeX.com" height="16" width="65" style="vertical-align: -4px;"> , тогда согласно определению

Известно, что в треугольнике разница двух сторон меньше третьей стороны, поэтому, например, с у нас получается:

Поднесём к квадрату обе части и после дальнейших преобразований найдём:

где . Уравнение гиперболы (1) – это каноническое уравнение гиперболы.

Гипербола симметрична относительно координатных осей, поэтому, как и для эллипса, достаточно построить её график в первой четверти, где:

Область значения для первой четверти .

При у нас есть одна из вершин гиперболы . Вторая вершина . Если , тогда из (1) – действительных корней нет. Говорят, что и – мнимые вершины гиперболы. Из соотношением получается, что при достаточно больших значениях есть место ближайшего равенства title="Rendered by QuickLaTeX.com" height="27" width="296" style="vertical-align: -7px;"> title="Rendered by QuickLaTeX.com" height="27" width="296" style="vertical-align: -7px;"> . Поэтому прямая есть линией, расстояние между которой и соответствующей точкой гиперболы направляется к нулю при .

Форма и характеристики гиперболы

Исследуем уравнение (1) форму и расположение гиперболы.

  1. Переменные и входят в уравнение (1) в парных степенях. Поэтому, если точка принадлежит гиперболе, тогда и точки также принадлежат гиперболе. Значит, фигура симметрична относительно осей и , и точки , которая называется центром гиперболы.
  2. Найдём точки пересечения с осями координат. Подставив в уравнение (1) получим, что гипербола пересекает ось в точках . Положив получим уравнение , у которого нет решений. Значит, гипербола не пересекает ось . Точки называются вершинами гиперболы. Отрезок = и называется действительной осью гиперболы, а отрезок – мнимой осью гиперболы. Числа и называются соответственно действительной и мнимой полуосями гиперболы. Прямоугольник, созданный осями и называется главным прямоугольником гиперболы.
  3. С уравнения (1) получается, что , то есть . Это означает, что все точки гиперболы расположены справа от прямой (правая ветвь гиперболы) и левая от прямой (левая ветвь гиперболы).
  4. Возьмём на гиперболе точку в первой четверти, то есть , а поэтому . Так как 0" title="Rendered by QuickLaTeX.com" height="31" width="156" style="vertical-align: -12px;"> 0" title="Rendered by QuickLaTeX.com" height="31" width="156" style="vertical-align: -12px;"> , при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> , тогда функция монотонно возрастает при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> . Аналогично, так как при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> , тогда функция выпуклая вверх при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> .

Асимптоты гиперболы

Есть две асимптоты гиперболы. Найдём асимптоту к ветви гиперболы в первой четверти, а потом воспользуемся симметрией. Рассмотрим точку в первой четверти, то есть . В этом случае , , тогда асимптота имеет вид: , где

Значит, прямая – это асимптота функции . Поэтому в силу симметрии асимптотами гиперболы есть прямые .

За установленными характеристиками построим ветвь гиперболы, которая находится в первой четверти и воспользуемся симметрией:

Рис. 2

В случае, когда , то есть гипербола описывается уравнением . В этой гиперболе асимптоты, которые и есть биссектрисами координатных углов .

Примеры задач на построение гиперболы

Пример 1

Задача

Найти оси, вершины, фокусы, ексцентриситет и уравнения асимптот гиперболы. Построить гиперболу и её асимптоты.

Решение

Сведём уравнение гиперболы к каноническому виду:

Сравнивая данное уравнение с каноническим (1) находим , , . Вершины , фокусы и . Ексцентриситет ; асмптоты ; Строим параболу. (см. рис. 3)

Написать уравнение гиперболы:

Решение

Записав уравнение асимптоты в виде находим отношение полуосей гиперболы . По условию задачи следует, что . Поэтому Задачу свели к решению системы уравнений:

Подставляя во второе уравнение системы, у нас получится:

откуда . Теперь находим .

Следовательно, у гиперболы получается такое уравнение:

Ответ

.

Гипербола и её каноническое уравнение обновлено: Июнь 17, 2017 автором: Научные Статьи.Ру

Гипербола - это плоская кривая второго порядка, которая состоит из двух отдельных кривых, которые не пересекаются.
Формула гиперболы y = k/x , при условии, что k не равно 0 . То есть вершины гиперболы стремятся к нолю, но никогда не пересекаются с ним.

Гипербола - это множество точек плоскости, модуль разности расстояний которых от двух точек, называемых фокусами, есть величина постоянная.

Свойства:

1. Оптическое свойство: свет от источника, находящегося в одном из фокусов гиперболы, отражается второй ветвью гиперболы таким образом, что продолжения отраженных лучей пересекаются во втором фокусе.
Иначе говоря, если F1 и F2 фокусы гиперболы, то касательная в любой точки X гиперболы является биссектрисой угла ∠F1XF2.

2. Для любой точки, лежащей на гиперболе, отношение расстояний от этой точки до фокуса к расстоянию от этой же точки до директрисы есть величина постоянная.

3. Гипербола обладает зеркальной симметрией относительно действительной и мнимой осей , а также вращательной симметрией при повороте на угол 180° вокруг центра гиперболы.

4. Каждая гипербола имеет сопряженную гиперболу , для которой действительная и мнимая оси меняются местами, но асимптоты остаются прежними.

Свойства гиперболы:

1) Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу ). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.

2) Ветви гиперболы имеют две асимптоты, определяемые уравнениями

3) Наряду с гиперболой (11.3) можно рассмотреть так называемую сопряженную гиперболу, определяемую каноническим уравнением

для которой меняются местами действительная и мнимая ось с сохранением тех же асимптот.

4) Эксцентриситет гиперболы e > 1.

5) Отношение расстояния r i от точки гиперболы до фокуса F i к расстоянию d i от этой точки до отвечающей фокусу директрисы равно эксцентриситету гиперболы.

42. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F 1 и F 2 этой плоскости, называемых фокусами , есть величина постоянная.

Выведем каноническое уравнение гиперболы по аналогии с выводом уравнения эллипса, пользуясь теми же обозначениями.

|r 1 - r 2 | = 2a , откуда Если обозначить b ² = c ² - a ², отсюда можно получить

- каноническое уравнение гиперболы . (11.3)

Геометрическое место точек, для которых отношение расстояния до фокуса и до заданной прямой, называемой директрисой, постоянно и больше единицы, называется гиперболой. Заданная постоянная называется эксцентриситетом гиперболы

Определение 11.6. Эксцентриситетом гиперболы называется величина е = с / а.

Эксцентриситет:

Определение 11.7. Директрисой D i гиперболы, отвечающей фокусу F i , называется прямая, расположенная в одной полуплоскости с F i относительно оси Оу перпендикулярно оси Ох на расстоянии а / е от начала координат.

43.Случай сопряжённой,вырожденной гиперболы (НЕ ПОЛНОСТЬЮ)

Каждая гипербола имеет сопряженную гиперболу , для которой действительная и мнимая оси меняются местами, но асимптоты остаются прежними. Это соответствует замене a и b друг на друга в формуле, описывающей гиперболу. Сопряженная гипербола не является результатом поворота начальной гиперболы на угол 90°; обе гиперболы различаются формой.

Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной . Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными .


Здравствуйте, дорогие студенты вуза Аргемоны! Приветствую вас на очередной лекции по магии функций и интегралов.

Сегодня мы поговорим о гиперболе. Начнём от простого. Самый простой вид гиперболы:

Эта функция, в отличии от прямой в её стандарных видах, имеет особенность. Как мы знаем, знаменатель дроби не может равняться нулю, потому что на ноль делить нельзя.
x ≠ 0
Отсюда делаем вывод, что областью определения является вся числовая прямая, кроме точки 0: (-∞; 0) ∪ (0; +∞).

Если х стремится к 0 справа (записывается вот так: х->0+), т.е. становится очень-очень маленьким, но при этом остаётся положительным, то у становится очень-очень большим положительным (y->+∞).
Если же х стремится к 0 слева (x->0-), т.е. становится по модулю тоже очень-очень маленьким, но остаётся при этом отрицательным, то у также будет отрицательным, но по модулю будет очень большим (y->-∞).
Если же х стремится в плюс бесконечность (x->+∞), т.е. становится очень большим положительным числом, то у будет становиться всё более и более меньшим положительным числом, т.е. будет стремиться к 0, оставаясь всё время положительным (y->0+).
Если же х стремится в минус бесконечность (x->-∞), т.е. становится большим по модулю, но отрицательным числом, то у будет тоже отрицательным всегда числом, но маленьким по модулю (y->0-).

У, как и х, не может принимать значения 0. Он только к нулю стремится. Поэтому множество значений такое же, как и область определения: (-∞; 0) ∪ (0; +∞).

Исходя из этих рассуждений, можно схематически нарисовать график функции

Видно, что гипербола состоит из двух частей: одна находится в 1-м координатном углу, где значения х и у положительные, а вторая часть — в третьем координатном углу, где значения х и у отрицательные.
Если двигаться от -∞ к +∞, то мы видим, что функция наша убывает от 0 до -∞, потом происходит резкий скачок (от -∞ до +∞) и начинается вторая ветка функции, которая тоже убывает, но от +∞ до 0. То есть, эта гипербола убывающая.

Если совсем чуть-чуть изменить функцию: воспользоваться магией минуса,

(1")

То функция чудесным образом переместится из 1 и 3 координатных четвертей во 2-ю и 4-ю четверти и станет возрастающей.

Напомню, что функция является возрастающей , если для двух значений х 1 и х 2 ,таких, что х 1 <х 2 , значения функции находятся в том же отношении f(х 1) < f(х 2).
И функция будет убывающей , если f(х 1) > f(х 2) для тех же значений х.

Ветви гиперболы приближаются к осям, но никогда их не пересекают. Такие линии, к которым приближается график функции, но никогда их не пересекает, называются ассимптотой данной функции.
Для нашей функции (1) ассимптотами являются прямые х=0 (ось OY, вертикальная ассимптота) и у=0 (ось OX, горизонтальная ассимптота).

А теперь давайте немного усложним простейшую гиперболу и посмотрим, что произойдёт с графиком функции.

(2)

Всего-то добавили константу "а" в знаменатель. Добавление какого-то числа в знаменатель в качестве слагаемого к х означает перенос всей "гиперболической конструкции" (вместе с вертикальной ассимптотой) на (-a) позиций вправо, если а — отрицательное число, и на (-а) позиций влево, если а — положительное число.

На левом графике к х добавляется отрицательная константа (а<0, значит, -a>0), что вызывает перенос графика вправо, а на правом графике — положительная константа (a>0), благодаря которой график переносится влево.

А какая магия может повлиять на перенос "гиперболической конструкции" вверх или вниз? Добавление константы-слагаемой к дроби.

(3)

Вот теперь вся наша функция (обе веточки и горизонтальная ассимптота) поднимется на b позиций вверх, если b — положительное число, и опустится на b позиций вниз, если b — отрицательное число.

Обратите внимание, что ассимптоты передвигаются вместе с гиперболой, т.е. гиперболу (обе её ветки) и обе её ассимптоты надо обязательно рассматривать как неразрывную конструкцию, которая едино передвигается влево, вправо, вверх или вниз. Очень приятное ощущение, когда одним добавлением какого-то числа можно заставлять функцию целиком двигаться в любую сторону. Чем не магия, овладеть которой можно очень легко и направлять её по своему усмотрению в нужную сторону?
Кстати, так управлять можно движением любой функции. На следующих уроках мы это умение будем закреплять.

Перед тем как задать вам домашнее задание, я хочу обратить ваше внимание ещё вот на такую функцию

(4)

Нижняя веточка гиперболы перемещается из 3-го координатного угла вверх — во второй, в тот угол, где значение у положительное, т.е. эта веточка отражается симметрично относительно оси ОХ. И теперь мы получаем чётную функцию.

Что значит "чётная функция"? Функция называется чётной , если выполняется условие: f(-x)=f(x)
Функция называется нечётной , если выполняется условие: f(-x)=-f(x)
В нашем случае

(5)

Всякая чётная функция симметрична относительно оси OY, т.е. пергамент с рисунком графика можно сложить по оси OY, и две части графика точно совпадут друг с другом.

Как видим, эта функция тоже имеет две ассимптоты — горизонтальную и вертикальную. В отличие от рассмотренных выше функций, эта функция является на одной своей части возрастающей, на другой — убывающей.

Попробуем поруководить теперь этим графиком, прибавляя константы.

(6)

Вспомним, что прибавление константы в качестве слагаемого к "х" вызывает перемещение всего графика (вместе с вертикальной ассимптотой) по горизонтали, вдоль горизонтальной ассимптоты (влево или вправо в зависимости от знака этой константы).

(7)

А добавление константы b в качестве слагаемого к дроби вызывает перемещение графика вверх или вниз. Всё очень просто!

А теперь попробуйте сами поэкспериментировать с такой магией.

Домашнее задание 1.

Каждый берёт для своих экспериментов две функции: (3) и (7).
а=первой цифре вашего ЛД
b=второй цифре вашего ЛД
Попробуйте добраться до магии этих функций, начиная с простейшей гиперболы, как я это делала на уроке, и постепенно добавляя свои константы. Функцию (7) уже можете моделировать, исходя из конечного вида функции (3). Укажите области определения, множество значений, ассимптоты. Как ведут себя функции: убывают, возрастают. Чётные — нечётные. В общем, попробуйте провести такое же исследование, как было на уроке. Возможно, вы найдете что-то ещё, о чём я забыла рассказать.

Кстати, обе ветки самой простейшей гиперболы (1) симметричны относительно биссектрисы 2 и 4 координатных углов. А теперь представьте, что гипербола стала вращаться вокруг этой оси. Получим вот такую симпатичную фигуру, которой можно найти применение.

Задание 2 . Где можно использовать данную фигуру? Попробуйте нарисовать фигуру вращения для функции (4) относительно её оси симметрии и порассуждайте, где такая фигура может найти применение.

Помните, как мы в конце прошлого урока получили прямую с выколотой точкой? И вот последнее задание 3 .
Построить график вот такой функции:


(8)

Коэффициенты a, b — такие же, как в задании 1.
с=третьей цифре вашего ЛД или a-b, если ваше ЛД двузначное.
Небольшая подсказка: сначала полученную после подстановки цифр дробь надо упростить, и затем вы получите обычную гиперболу, которую и надо построить, но в конце надо учесть область определения исходного выражения.

Гиперболой называется геометрическое место точек, для которых разность расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина; указанная разность берется по абсолютному значению и обозначается обычно через 2а, Фокусы гиперболы обозначают буквами F 1 и F 2 , расстояние между ними - через 2с. По определению гиперболы 2а

Пусть дана гипербола. Если оси декартовой прямоугольной системы координат выбраны так, что фокусы данной гиперболы располагаются на оси абсцисс симметрично относительно начала координат, то в этой системе координат уравнение гиперболы имеет вид

х 2 /a 2 + y 2 /b 2 = 1, (1)

где b = √(с 2 - а 2). Уравнение вида (I) называется каноническим уравнением гиперболы При указанном выборе системы координат оси координат являются осями симметрии гиперболы, а начало координат -ее центром симметрии (рис. 18). Оси симметрии гиперболы называются просто ее осями, центр симметрии-центром гиперболы. Гипербола пересекает одну из своих осей; точки пересечения называются вершинами гиперболы. На рис. 18 вершины гиперболы суть точки А" и А.

Прямоугольник со сторонами 2а и 2b, расположенный симметрично относительно осей гиперболы и касающийся ее в вершинах, называется основным прямоугольником гиперболы.

Отрезки длиной 2а и 2b, соединяющие середины сторон основного прямоугольника гиперболы, также называют ее осями. Диагонали основного прямоугольника (неограниченно продолженные) являются асимптотами гиперболы; их уравнения суть:

y = b/a x, y = - b/a x

Уравнение

X 2 /a 2 + y 2 /b 2 = 1 (2)

определяет гиперболу, симметричную относительно координатных осей с фокусами на оси ординат; уравнение (2),как и уравнение (1), называется каноническим уравнением гиперболы; в этом случае постоянная разность расстояний от произвольной точки гиперболы до фокусов равна 2b.

Две гиперболы, которые определяются уравнениями

x 2 /a 2 - y 2 /b 2 = 1, - x 2 /a 2 + y 2 /b 2 = 1

в одной и той же системе координат, называются сопряженными.

Гипербола с равными полуоясми (а = b) называется равносторонней,; ее каноническое уравнение имеет вид

х 2 - у 2 = а 2 или - х 2 + у 2 = а 2 .

где а - расстояние от центра гиперболы до ее вершины, называется эксцентриситетом гиперболы. Очевидно, для любой гиперболы ε > 1. Если М(х; у) - произвольная точка гиперболы, то отрезки F 1 М и F 2 M (см. рис. 18) называются фокальными радиусами точки М. Фокальные радиусы точек правой ветви гиперболы вычисляются по формулам

r 1 = εх + а, r 2 = εх - а,

фокальные радиусы точек левой ветви - по формулам

r 1 = -εх - а, r 2 = -εх + а

Если гипербола задана уравнением (1), то прямые, определяемые уравнениями

x = -a/ε, x = a/ε

называются ее директрисами (см. рис. 18). Если гипербола задана уравнением (2), то директрисы определяются уравнениями

x = -b/ε, x = b/ε

Каждая директриса обладает следующим свойством: если r - расстояние от произвольной точки гиперболы до некоторого фокуса, d - расстояние от той же точки до односторонней с этим фокусом директрисы, то отношение r/d есть постоянная величина, равная эксцентриситету гиперболы:

515. Составить уравнение гиперболы, фокусы которой расположены на оси абсцисс симметрично относительно начала координат, зная, кроме того, что:

1) ее оси 2а = 10 и 2b = 8;

2) расстояние между фокусами 2с = 10 и ось 2b = 8;

3) расстояние между фокусами 2с = 6 и эксцентриситет ε = 3/2;

4) ось 2а = 16 и эксцентриситет ε = 5/4;

5) уравнения асимптот у = ±4/3х и расстояние между фокусами 2с = 20;

6) расстояние между директрисами равно 22 2/13 и расстояние между фокусами 2с = 26; 39

7) расстояние между директрисами равно 32/5 и ось 2b = 6;

8) расстояние между директрисами равно 8/3 и эксцентриситет ε = 3/2;

9) уравнения асимптот у = ± 3/4 х и расстояние между директрисами равно 12 4/5.

516. Составить уравнение гиперболы, фокусы которой расположены на оси ординат симметрично относительно начала координат, зная, кроме того, что:

1) ее полуоси а = 6, b = 18 (буквой а мы обозначаем полуось гиперболы, расположенную на оси абсцисс);

2) расстояние между фокусами 2с = 10 и эксцеитриситет ε = 5/3; оч и. 12

3) уравнения асимптот у = ±12/5х и расстояние между вершинами равно 48;

4) расстояние между директрисами равно 7 1/7 и эксцентриситет ε = 7/5;

5) уравнения асимптот у = ± 4/3x и расстояние между директрисами равно 6 2/5.

517. Определить полуоси а и b каждой из следующих гипербол:

1) x 2 /9 - y 2 /4 = 1; 2) x 2 /16 - y 2 = 1; 3) x 2 - 4y 2 = 16;

4) x 2 - y 2 = 1; 5) 4x 2 - 9y 2 = 25; 6) 25x 2 -16y 2 = 1;

7) 9x 2 - 64y 2 = 1.

518. Дана гипербола 16x 2 - 9y 2 = 144. Найти: 1) полуоси а и b; 2) фокусы; 3) эксцентриситет; 4) уравнения асимптот; 5) уравнения директрис.

519. Дана гипербола 16x 2 - 9у 2 = -144. Найти: 1) полуоси a и b; 2) фокусы; 3) эксцентриситет; 4) уравнения асимптот; 5) уравнения директрис.

520. Вычислить площадь треугольника, образованного асимптотами гиперболы x 2 /4 - y 2 /9 = 1 и прямой 9x + 2y - 24 = 0.

521. Установить, какие линии определяются следующими уравнениями:

1) y = +2/3√(x 2 - 9); 2) y = -3√(x 2 + 1)

3) x = -4/3√(y 2 + 9); 4) +2/5√(x 2 + 25)

522. Дана точка M 1 (l0; - √5) на гиперболе - x 2 /80 - y 2 /20 = 1. Составить уравнения прямых, на которых лежат фокальные радиусы точки M 1 .

523. Убедившись, что точка M 1 (-5; 9/4) лежит на гилерболе x 2 /16 - y 2 /9 = 1, определить фокальные радиусы точки M 1 .

524. Эксцентриситет гиперболы ε = 2, фокальный ра-диус ее точки М, проведенный из некоторого фокуса, равен 16. Вычислить расстояние от точки М до односторонней с этим фокусом директрисы.

525. Эксцентриситет гиперболы ε = 3, расстояние от точки, М гиперболы до директрисы равно 4. Вычислить расстояние от точки М до фокуса, одностороннего с этой директрисой.

526. Эксцентриситет гиперболы ε = 2, центр ее лежит в начале координат, один из фокусов F(12; 0). Вычислить расстояние от точки M 1 гиперболы с абсциссой, равной 13, до директрисы, соответствующей заданному фокусу.

527. Эксцентриситет гиперболы ε = 3/2, центр ее лежит в начале координат, одна из директрис дана уравнением х = -8. Вычислить расстояние от точки M 1 гиперболы с абсциссой, равной 10, до фокуса, соответствующего заданной директрисе.

528. Определить точки гиперболы - x 2 /64 - y 2 /36 = 1, расстояние которых до правого фокуса равно 4,5.

529. Определить точки гиперболы x 2 /9 - y 2 /16 = 1, расстояние которых до левого фокуса равно 7.

530. Через левый фокус гиперболы x 2 /144 - y 2 /25 = 1 про-веден перпендикуляр к ее оси, содержащей вершины. Определить расстояния от фокусов до точек пересечения этого перпендикуляра с гиперболой.

531. Пользуясь одним циркулем, построить фокусы гиперболы x 2 /16 - y 2 /25 = 1 (считая, что оси координат изображены и масштабная единица задана).

532. Составить уравнение гиперболы, фокусы которой лежат на оси абсцисс симметрично относительно начала координат, если даны:

1) точки М 1 (6; -1) и М 2 (-8; 2√2) гиперболы;

2) точка M 1 (-5; 3) гиперболы и эксцентриситет ε = √2;

3) точка M 1 (9/2;-l) гиперболы и уравнения асимптот у = ± 2.3х;

4) точка M 1 (-3 ; 5.2) гиперболы и уравнения директрис х = ± 4/3;

5) уравнения асимптот у = ±-3/4х и уравнения директрис х = ± 16/5

533. Определить эксцентриситет равносторонней гиперболы.

534. Определить эксцентриситет гиперболы, если отрезок между ее вершинами виден из фокусов сопряженной гиперболы под углом в 60°.

535. Фокусы гиперболы совпадают с фокусами эллипса x 2 /25 + y 2 /9 = 1. Составить уравнение гиперболы, если ее эксцентриситет ε = 2.

536. Составить уравнение гиперболы, фокусы которой лежат в вершинах эллипса x 2 /100 + y 2 /64 = 1, а директрисы проходят через фокусы этого эллипса.

537. Доказать, что расстояние от фокуса гиперболы x 2 /a 2 - y 2 /b 2 = 1 до ее асимптоты равно b.

538. Доказать что произведение расстояний от любой точки гиперболыx x 2 /a 2 - y 2 /b 2 = 1 до двух ее асимптот есть величина постоянная, равная a 2 b 2 /(a 2 + b 2)

539. Доказать, что площадь параллелограмма, ограниченного асимптотами гиперболы x 2 /a 2 - y 2 /b 2 = 1 и прямыми, проведенными через любую ее точку параллельно асимптотам, есть величина постоянная, равная ab/2.

540. Составить уравнение гиперболы, если известны ее полуоси а и b, центр С(х 0 ;у 0) и фокусы расположены на прямой: 1) параллельной оси Ох; 2) параллельной оси Оу.

541. Установить, что каждое из следующих уравнений определяет гиперболу, и найти координаты ее центра С, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис:

1) 16x 2 - 9у 2 - 64x - 54у - 161 =0;

2) 9x 2 - 16у 2 + 90x + 32y - 367 = 0;

3) 16x 2 - 9у 2 - 64x - 18у + 199 = 0.

542. Установить, какие линии определяются следующими уравнениями:

1) у = - 1 + 2/3√(x 2 - 4x - 5);

2) у = 7- 3/2√(х 2 - 6х + 13);

3) x = 9 - 2√(y 2 + 4y + 8);

4) Х = 5 + 3/4√(y 2 + 4y - 12).

Изобразить эти линии на чертеже.

543. Составить уравнение гиперболы, зная, что:

1) расстояние между ее вершинами равно 24 и фокусы суть F 1 (-10;2), F 2 (16; 2);

2) фокусы суть F 1 (3;4), F 2 (-3; -4) и расстояние между директрисами равно 3,6;

3) угол между асимптотами равен 90° и фокусы суть F 1 (4; -4), F 1 (- 2;2).

544. Составить уравнение гиперболы, если известны ее эксцентриситет ε = 5/4, фокус F (5; 0) и уравнение соответствующей директрисы 5х - 16 = 0.

545. Составить уравнение гиперболы, если известны ее эксцентриситет е - фокус F(0; 13) и уравнение соответствующей директрисы 13y - 144 = 0.

546. Точка А (-3; - 5) лежит на гиперболе, фокус которой F (-2;-3), а соответствующая директриса дана уравнением x + 1 = 0. Составить уравнение этой гиперболы.

547. Составить уравнение гиперболы, если известны ее эксцентриситет ε = √5, фокус F(2;-3) и уравнение соответствующей директрисы Зх - у + 3 = 0.

548. Точка M 1 (1; 2) лежит на гиперболе, фокус которой F(-2; 2), а соответствующая директриса дана уравнением 2х - у - 1 = 0. Составить уравнение этой гиперболы.

549. Дано уравнение равносторонней гиперболы х 2 - у 2 = а 2 . Найти ее уравнение в новой системе, приняв за оси координат ее асимптоты.

550. Установив, что каждое из следующих уравнений определяет гиперболу, найти для каждой из них центр, полуоси, уравнения асимптот и построить их на чертеже: 1) ху = 18; 2) 2ху - 9 = 0; 3) 2ху + 25 = 0.

551. Найти точки пересечения прямой 2x - y - 10 = 0 и гиперболы х 2 /20 - y 2 /5 = 1.

552. Найти точки пересечения прямой 4х - 3y - 16 = 0 и гиперболы х 2 /25 - y 2 /16 = 1.

553. Найти точки пересечения прямой 2x - y + 1 = 0 и гиперболы х 2 /9 - y 2 /4 = 1.

554. В следующих случаях определить, как расположена прямая относительно гиперболы: пересекает ли, касается или проходит вне ее:

1) x - y - 3 = 0, х 2 /12 - y 2 /3 = l;

2) x - 2y + 1 = 0, х 2 /16 - y 2 /9 = l;

555. Определить, при каких значениях m прямая y = 5/2x + m

1) пересекает гиперболу x 2 /9 - y 2 /36 = 1; 2) касается ее;

3) проходит вне этой гиперболы.

556. Вывести условие, при котором прямая у = kx + m касается гиперболы х 2 /a 2 - y 2 /b 2 = 1.

557. Составить уравнение касательной к гиперболе х 2 /a 2 - y 2 /b 2 = 1 в ее точке Af, (*,; #i).

558. Доказать, что касательные к гиперболе, про-веденные в концах одного и того же диаметра, параллельны.

559. Составить уравнения касательных к гиперболе х 2 /20 - y 2 /5 = 1, перпендикулярных к прямой 4x + Зy - 7 = 0.

560. Составить уравнения касательных к гиперболе x 2 /16 - y 2 /64 = 1, параллельных прямой 10x - 3y + 9 = 0.

561. Провести касательные к гиперболе x 2 /16 - y 2 /8 = - 1 параллельно прямой 2x + 4y - 5 = 0 и вычислить расстояние d между ними.

562. На гиперболе x 2 /24- y 2 /18 = 1 найти точку М 1 , ближайшую к прямой Зx + 2y + 1 = О, и вычислить расстояние d от точки M x до этой прямой.

563. Составить уравнение касательных к гиперболе х 2 - y 2 = 16, проведенных из точки A(- 1; -7).

564. Из точки С(1;-10) проведены касательные к гиперболе x 2 /8 - y 2 /32 = 1. Составить уравнение хорды, соединяющей точки касания.

565. Из точки Р(1; -5) проведены касательные к гиперболе x 2 /3 - y 2 /5 = 1. Вычислить расстояние d от точки Р до хорды гиперболы, соединяющей точки касания.

566. Гипербола проходит через точку А(√6; 3) и касается прямой 9x + 2у - 15 == 0. Составить уравнение этой гиперболы при условии, что ее оси совпадают с осями координат.

567. Составить уравнение гиперболы, касающейся двух прямых: 5x - 6y - 16 = 0, 13x - 10y - 48 = 0, при условии, что ее оси совпадают с осями координат.

568. Убедившись, что точки пересечения эллипса x 2 /3 - y 2 /5 = 1 и гиперболы x 2 /12 - y 2 /3 = 1 являются вершинами прямоугольника, составить уравнения его сторон.

569. Даны гиперболы x 2 /a 2 - y 2 /b 2 = 1 и какая-нибудь ее касательная: Р - точка пересечения касательной с осью Ox, Q - проекция точки касания на ту же ось. Доказать, что ОР OQ = а 2 .

570. Доказать, что фокусы гиперболы расположены по разные стороны от любой ее касательной.

571. Доказать, что произведение расстояний от фокусов до любой касательной к гиперболе x 2 /a 2 - y 2 /b 2 = 1 есть величина постоянная, равная b 2 .

572. Прямая 2x - y - 4 == 0 касается гиперболы, фокусы которой находятся в точках F 1 (-3; 0) и F 2 (3;0). Составить уравнение этой гиперболы.

573. Составить уравнение гиперболы, фокусы кото-рой расположены на оси абсцисс симметрично относительно начала координат, если известны уравнение касательной к гиперболе 15x + 16y - 36 = 0 и расстояние между ее вершинами 2а = 8.

574. Доказать, что прямая, касающаяся гиперболы в некоторой точке М, составляет равные углы с фокальными радиусами F 1 M, F 2 M и проходит внутри угла F 1 MF 2 . Х^

575. Из правого фокуса гиперболы x 2 /5 - y 2 /4 = 1 под углом α(π

576. Доказать, что эллипс и гипербола, имеющие общие фокусы, пересекаются под прямым углом.

577. Коэффициент равномерного сжатия плоскости к оси Ох равен 4/3 . Определить уравнение линии, в которую при этом сжатии преобразуется гипербола x 2 /16 - y 2 /9 = 1. Указание. См. задачу 509.

578. Коэффициент равномерного сжатия плоскости к оси Оу равен 4/5. Определить уравнение линии, в которую при этом сжатии преобразуется гипербола x 2 /25 - y 2 /9 = 1.

579. Найти уравнение линии, в которую преобразуется гипербола х 2 - у 2 = 9 при двух последовательных равномерных сжатиях плоскости к координатным осям, если коэффициенты равномерного сжатия плос- кости к осям Ох и Оу соответственно равны 2/3 и 5/3.

580. Определить коэффициент q равномерного сжатия плоскости к оси Ох, при котором гипербола - x 2 /25 - y 2 /36 = 1 преобразуется в гиперболу x 2 /25 - y 2 /16 = 1.

581. Определить коэффициент q равномерного сжатия плоскости к оси Оу, при котором гипербола x 2 /4 - y 2 /9 = 1 преобразуется в гиперболу x 2 /16 - y 2 /9 = 1.

582. Определить коэффициенты q 1 и q 2 двух последовательных равномерных сжатий плоскости к осям Ох и Оу, при которых гипербола x 2 /49 - y 2 /16 = 1 преобразуется в гиперболу x 2 /25 - y 2 /64 = 1.



© dagexpo.ru, 2024
Стоматологический сайт