Какие числа называют рациональными примеры. Что такое рациональные числа? Какие бывают еще

12.10.2019

Старшие школьники и студенты математических специальностей, вероятно, с легкостью ответят на этот вопрос. А вот тем, кто по профессии далек от этого, будет сложнее. Что же это на самом деле такое?

Сущность и обозначение

Под рациональными числами подразумевают такие, которые могут быть представлены в виде обыкновенной дроби. Положительные, отрицательные, а также ноль тоже входят в это множество. Числитель дроби при этом должен быть целым, а знаменатель - представлять собой

Это множество в математике обозначается как Q и называется "полем рациональных чисел". Туда входят все целые и натуральные, обозначающиеся соответственно как Z и N. Само же множество Q входит в множество R. Именно этой буквой обозначают так называемые вещественные или

Представление

Как уже было сказано, рациональные числа - это множество, в которое входят все целые и дробные значения. Они могут быть представлены в разных формах. Во-первых, в виде обыкновенной дроби: 5/7, 1/5, 11/15 и т. д. Разумеется, целые числа также могут быть записаны в подобном виде: 6/2, 15/5, 0/1, -10/2 и т. д. Во-вторых, еще один вид представления - десятичная дробь с конечной дробной частью: 0,01, -15,001006 и т. д. Это, пожалуй, одна из наиболее часто встречающихся форм.

Но есть еще и третья - периодическая дробь. Такой вид встречается не очень часто, но все же используется. Например, дробь 10/3 может быть записана как 3,33333... или 3,(3). При этом различные представления будут считаться аналогичными числами. Так же будут называться и равные между собой дроби, например 3/5 и 6/10. Похоже, что стало ясно, что такое рациональные числа. Но почему для их обозначения используют именно этот термин?

Происхождение названия

Слово "рациональный" в современном русском языке в общем случае несет немного другое значение. Это скорее "разумный", "обдуманный". Но математические термины близки к прямому смыслу этого В латыни "ratio" - это "отношение", "дробь" или "деление". Таким образом, название отражает сущность того, что такое рациональные числа. Впрочем, и второе значение

недалеко ушло от истины.

Действия с ними

При решении математических задач мы постоянно сталкиваемся с рациональными числами, сами не зная этого. И они обладают рядом интересных свойств. Все они следуют либо из определения множества, либо из действий.

Во-первых, рациональные числа обладают свойством отношения порядка. Это означает, что между двумя числами может существовать только одно соотношение - они либо равны друг другу, либо одно больше или меньше другого. Т. е.:

либо a = b ; либо a > b, либо a < b.

Кроме того, из этого свойства также вытекает транзитивность соотношения. То есть если a больше b , b больше c , то a больше c . На языке математики это выглядит следующим образом:

(a > b) ^ (b > c) => (a > c).

Во-вторых, существуют арифметические действия с рациональными числами, то есть сложение, вычитание, деление и, разумеется, умножение. При этом в процессе преобразований можно также выделить ряд свойств.

  • a + b = b + a (перемена мест слагаемых, коммутативность);
  • 0 + a = a + 0 ;
  • (a + b) + c = a + (b + c) (ассоциативность);
  • a + (-a) = 0;
  • ab = ba;
  • (ab)c = a(bc) (дистрибутивность);
  • a x 1 = 1 x a = a;
  • a x (1 / a) = 1 (при этом a не равно 0);
  • (a + b)c = ac + ab;
  • (a > b) ^ (c > 0) => (ac > bc).

Когда же речь идет об обыкновенных, а не или целых числах, действия с ними могут вызывать определенные трудности. Так, сложение и вычитание возможны только при равенстве знаменателей. Если они изначально различны, следует найти общий, используя умножение всей дроби на те или иные числа. Сравнение также чаще всего возможно только при соблюдении этого условия.

Деление и перемножение обыкновенных дробей производятся в соответствии с достаточно простыми правилами. Приведение к общему знаменателю не нужно. Отдельно перемножаются числители и знаменатели, при этом в процессе выполнения действия по возможности дробь нужно максимально сократить и упростить.

Что касается деления, то это действие аналогично первому с небольшой разницей. Для второй дроби следует найти обратную, то есть

"перевернуть" ее. Таким образом, числитель первой дроби нужно будет перемножить со знаменателем второй и наоборот.

Наконец, еще одно свойство, присущее рациональным числам, называют аксиомой Архимеда. Часто в литературе также встречается название "принцип". Он действителен для всего множества действительных чисел, однако не везде. Так, этот принцип не действует для некоторых совокупностей рациональных функций. По сути же, эта аксиома означает, что при существовании двух величин a и b всегда можно взять достаточное количество a, чтобы превзойти b.

Область применения

Итак, тем, кто узнал или вспомнил, что такое рациональные числа, становится ясно, что они используются повсеместно: в бухгалтерии, экономике, статистике, физике, химии и других науках. Естественно, также место им есть в математике. Не всегда зная, что имеем дело с ними, мы постоянно используем рациональные числа. Еще маленькие дети, учась считать предметы, разрезая на части яблоко или выполняя другие простые действия, сталкиваются с ними. Они буквально нас окружают. И все же для решения некоторых задач их недостаточно, в частности, на примере теоремы Пифагора можно понять необходимость введения понятия

В этом пункте мы дадим несколько определений рациональных чисел. Несмотря на различия в формулировках, все эти определения имеют единый смысл: рациональные числа объединяют целые числа и дробные числа, подобно тому, как целые числа объединяют натуральные числа, противоположные им числа и число нуль. Иными словами, рациональные числа обобщают целые и дробные числа.

Начнем с определения рациональных чисел , которое воспринимается наиболее естественно.

Определение.

Рациональные числа – это числа, которые можно записать в виде положительной обыкновенной дроби, отрицательной обыкновенной дроби или числа нуль.

Из озвученного определения следует, что рациональным числом является:

· Любое натуральное число n . Действительно, можно представить любоенатуральное число в виде обыкновенной дроби, например, 3=3/1 .

· Любое целое число, в частности, число нуль. В самом деле, любое целое число можно записать в виде либо положительной обыкновенной дроби, либо в виде отрицательной обыкновенной дроби, либо как нуль. Например, 26=26/1 , .

· Любая обыкновенная дробь (положительная или отрицательная). Это напрямую утверждается приведенным определением рациональных чисел.

· Любое смешанное число. Действительно, всегда можно представить смешанное число в виде неправильной обыкновенной дроби. Например, и.

· Любая конечная десятичная дробь или бесконечная периодическая дробь. Это так в силу того, что указанные десятичные дроби переводятся в обыкновенные дроби. К примеру, а 0,(3)=1/3 .

Также понятно, что любая бесконечная непериодическая десятичная дробь НЕ является рациональным числом, так как она не может быть представлена в виде обыкновенной дроби.

Теперь мы можем с легкостью привести примеры рациональных чисел . Числа 4 ,903 , 100 321 – это рациональные числа, так как они натуральные. Целые числа 58 ,−72 , 0 , −833 333 333 тоже являются примерами рациональных чисел. Обыкновенные дроби 4/9 , 99/3 , - это тоже примеры рациональных чисел. Рациональными числами являются и числа.

Из приведенных примеров видно, что существуют и положительные и отрицательные рациональные числа, а рациональное число нуль не является ни положительным, ни отрицательным.

Озвученное выше определение рациональных чисел можно сформулировать более краткой форме.

Определение.

Рациональными числами называют числа, которые можно записать в виде дроби z/n , где z – целое число, а n – натуральное число.

Докажем, что данное определение рациональных чисел равносильно предыдущему определению. Мы знаем, что можно рассматривать черту дроби как знак деления, тогда из свойств деления целых чисел и правил деления целых чисел следует справедливость следующих равенств и. Таким образом, что и является доказательством.

Приведем примеры рациональных чисел, основываясь на данном определении. Числа−5 , 0 , 3 , и являются рациональными числами, так как они могут быть записаны в виде дробей с целым числителем и натуральным знаменателем вида и соответственно.

Определение рациональных чисел можно дать и в следующей формулировке.

Определение.

Рациональные числа – это числа, которые могут быть записаны в виде конечной или бесконечной периодической десятичной дроби.

Это определение также равносильно первому определению, так как всякой обыкновенной дроби соответствует конечная или периодическая десятичная дробь и обратно, а любому целому числу можно сопоставить десятичную дробь с нулями после запятой.

Например, числа 5 , 0 , −13 , представляют собой примеры рациональных чисел, так как их можно записать в виде следующих десятичных дробей 5,0 , 0,0 ,−13,0 , 0,8 и −7,(18) .

Закончим теорию этого пункта следующими утверждениями:

· целые и дробные числа (положительные и отрицательные) составляют множество рациональных чисел;

· каждое рациональное число может быть представлено в виде дроби с целым числителем и натуральным знаменателем, а каждая такая дробь представляет собой некоторое рациональное число;

· каждое рациональное число может быть представлено в виде конечной или бесконечной периодической десятичной дроби, а каждая такая дробь представляет собой некоторое рациональное число.

К началу страницы

Сложение положительных рациональных чисел коммутативно и ассоциативно,

("а, b Î Q +) а + b= b + а;

("а, b, с Î Q +) (а + b)+ с = а + (b+ с)

Прежде чем сформулировать определение умножения положительных рациональных чисел, рассмотрим следующую задачу: известно, что длина отрезка Х выражается дробьюпри единице длины Е, а длина единичного отрезка измерена при помощи единицы Е 1 и выражается дробью. Как найти число, которым будет представлена длина отрезка X, если измерить ее при помощи единицы длины Е 1 ?

Так как Х=Е, то nХ=mЕ, а из того, что Е =Е 1 следует, что qЕ=рЕ 1 . Умножим первое полученное равенство на q, а второе – на m. Тогда (nq)Х = (mq)Е и (mq)Е= (mр)Е 1 , откуда (nq)X= (mр)Е 1. Это равенство показывает, что длина отрезка х при единице длины выражается дробью , азначит, =, т.е. умножение дробей связано с переходом от одной единицы длины к другой при изме­рении длины одного и того же отрезка.

Определение.Если положительное число а представлено дробью, а положительное рациональное число b дробью, то их произведением называется число а b , которое представляется дробью.

Умножение положительных рациональных чисел коммутативно, ассоциативно и дистрибутивно относительно сложения и вычитания. Доказательство этих свойств основываетсяна определении умножения и сложения положительных рациональных чисел, а также на соответствующих свойствах сложения и умножения натуральных чисел.

46. Как известно вычитание - это действие, противоположное сложению.

Если a и b - положительные числа , то вычесть из числа a число b, значит найти такое число c, которое при сложении с числом b даёт число a.
a - b = с или с + b = a
Определение вычитания сохраняется для всех рациональных чисел. То есть вычитание положительных и отрицательных чисел можно заменить сложением.
Чтобы из одного числа вычесть другое, нужно к уменьшаемому прибавить число противоположное вычитаемому.
Или по другому можно сказать, что вычитание числа b - это тоже самое сложение, но с числом противоположным числу b.
a - b = a + (- b)
Пример.
6 - 8 = 6 + (- 8) = - 2
Пример.
0 - 2 = 0 + (- 2) = - 2
Стоит запомнить выражения ниже.
0 - a = - a
a - 0 = a
a - a = 0

Правила вычитания отрицательных чисел
Вычитание числа b - это сложение с числом противоположным числу b.
Это правило сохраняется не только при вычитании из бóльшего числа меньшего, но и позволяет из меньшего числа вычесть большее число, то есть всегда можно найти разность двух чисел.
Разность может быть положительным числом, отрицательным числом или числом ноль.
Примеры вычитания отрицательных и положительных чисел.
- 3 - (+ 4) = - 3 + (- 4) = - 7
- 6 - (- 7) = - 6 + (+ 7) = 1
5 - (- 3) = 5 + (+ 3) = 8
Удобно запомнить правило знаков, которое позволяет уменьшить количество скобок.
Знак «плюс» не изменяет знака числа, поэтому, если перед скобкой стоит плюс, то знак в скобках не меняется.
+ (+ a) = + a
+ (- a) = - a
Знак «минус» перед скобками меняет знак числа в скобках на противоположный.
- (+ a) = - a
- (- a) = + a
Из равенств видно, что если перед и внутри скобок стоят одинаковые знаки, то получаем «+», а если знаки разные, то получаем «-».
(- 6) + (+ 2) - (- 10) - (- 1) + (- 7) = - 6 + 2 + 10 + 1 - 7 = - 13 + 13 = 0
Правило знаков сохраняется и в том случае, если в скобках не одно число, а алгебраическая сумма чисел.
a - (- b + c) + (d - k + n) = a + b - c + d - k + n
Обратите внимание, если в скобках стоит несколько чисел и перед скобками стоит знак «минус», то должны меняться знаки перед всеми числами в этих скобках.
Чтобы запомнить правило знаков можно составить таблицу определения знаков числа.
Правило знаков для чисел+ (+) = + + (-) = -
- (-) = + - (+) = -
Или выучить простое правило.
Минус на минус даёт плюс,
Плюс на минус даёт минус.

Правила деления отрицательных чисел.
Чтобы найти модуль частного, нужно разделить модуль делимого на модуль делителя.
Итак, чтобы разделить два числа с одинаковыми знаками, надо:

· модуль делимого разделить на модуль делителя;

· перед результатом поставить знак «+».

Примеры деления чисел с разными знаками:

Для определения знака частного можно также пользоваться следующей таблицей.
Правило знаков при делении
+ : (+) = + + : (-) = -
- : (-) = + - : (+) = -

При вычислении «длинных» выражений, в которых фигурируют только умножение и деление, пользоваться правилом знаков очень удобно. Например, для вычисления дроби
Можно обратить внимание, что в числителе 2 знака «минус», которые при умножении дадут «плюс». Также в знаменателе три знака «минус», которые при умножении дадут «минус». Поэтому в конце результат получится со знаком «минус».
Сокращение дроби (дальнейшие действия с модулями чисел) выполняется также, как и раньше:
Частное от деления нуля на число, отличное от нуля, равно нулю.
0: a = 0, a ≠ 0
Делить на ноль НЕЛЬЗЯ!
Все известные ранее правила деления на единицу действуют и на множество рациональных чисел.
а: 1 = a
а: (- 1) = - a
а: a = 1 , где а - любое рациональное число.
Зависимости между результатами умножения и деления, известные для положительных чисел, сохраняются и для всех рациональных чисел (кроме числа нуль):
если a × b = с; a = с: b; b = с: a;
если a: b = с; a = с × b; b = a: c
Данные зависимости используются для нахождения неизвестного множителя, делимого и делителя (при решении уравнений), а также для проверки результатов умножения и деления.
Пример нахождения неизвестного.
x × (- 5) = 10
x = 10: (- 5)
x = - 2


Похожая информация.


Множество рациональных чисел

Множество рациональных чисел обозначается и может быть записано таком в виде:

При этом оказывается, что разные записи могут представлять одну и ту же дробь, например, и , (все дроби, которые можно получить друг из друга умножением или делением на одно и то же натуральное число, представляют одно и то же рациональное число). Поскольку делением числителя и знаменателя дроби на их наибольший общий делитель можно получить единственное несократимое представление рационального числа, то можно говорить об их множестве как о множестве несократимых дробей со взаимно простыми целым числителем и натуральным знаменателем:

Здесь - наибольший общий делитель чисел и .

Множество рациональных чисел является естественным обобщением множества целых чисел . Легко видеть, что если у рационального числа знаменатель , то является целым числом. Множество рациональных чисел располагается на числовой оси всюду плотно: между любыми двумя различными рациональными числами расположено хотя бы одно рациональное число (а значит, и бесконечное множество рациональных чисел). Тем не менее, оказывается, что множество рациональных чисел имеет счётную мощность (то есть все его элементы можно перенумеровать). Заметим, кстати, что ещё древние греки убедились в существовании чисел, не представимых в виде дроби (например, они доказали, что не существует рационального числа, квадрат которого равен 2).

Терминология

Формальное определение

Формально рациональные числа определяются как множество классов эквивалентности пар по отношению эквивалентности , если . При этом операции сложения и умножения определяются следующим образом:

Связанные определения

Правильные, неправильные и смешанные дроби

Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Правильные дроби представляют рациональные числа, по модулю меньшие единицы . Дробь, не являющаяся правильной, называется неправильной и представляет рациональное число, большее или равное единице по модулю.

Неправильную дробь можно представить в виде суммы целого числа и правильной дроби, называемой смешанной дробью . Например, . Подобная запись (с пропущенным знаком сложения), хотя и употребляется в элементарной арифметике , избегается в строгой математической литературе из-за схожести обозначения смешанной дроби с обозначением произведения целого числа на дробь.

Высота дроби

Высота обыкновенной дроби - это сумма модуля числителя и знаменателя этой дроби. Высота рационального числа - это сумма модуля числителя и знаменателя несократимой обыкновенной дроби, соответствующей этому числу.

Например, высота дроби равна . Высота же соответствующего рационального числа равна , так как дробь сокращается на .

Комментарий

Термин дробное число (дробь) иногда [уточнить ] используется как синоним к термину рациональное число , а иногда синоним любого нецелого числа. В последнем случае, дробные и рациональные числа являются разными вещами, так как тогда нецелые рациональные числа - всего лишь частный случай дробных.

Свойства

Основные свойства

Множество рациональных чисел удовлетворяют шестнадцати основным свойствам , которые легко могут быть получены из свойств целых чисел .

  1. Упорядоченность . Для любых рациональных чисел и существует правило, позволяющее однозначно идентифицировать между ними одно и только одно из трёх отношений : «», «» или «». Это правило называется правилом упорядочения и формулируется следующим образом: два положительных числа и связаны тем же отношением, что и два целых числа и ; два неположительных числа и связаны тем же отношением, что и два неотрицательных числа и ; если же вдруг неотрицательно, а - отрицательно, то .

    Суммирование дробей

  2. Операция сложения . правило суммирования суммой чисел и и обозначается , а процесс отыскания такого числа называется суммированием . Правило суммирования имеет следующий вид: .
  3. Операция умножения . Для любых рациональных чисел и существует так называемое правило умножения , которое ставит им в соответствие некоторое рациональное число . При этом само число называется произведением чисел и и обозначается , а процесс отыскания такого числа также называется умножением . Правило умножения имеет следующий вид: .
  4. Транзитивность отношения порядка. Для любой тройки рациональных чисел , и если меньше и меньше , то меньше , а если равно и равно , то равно .
  5. Коммутативность сложения. От перемены мест рациональных слагаемых сумма не меняется.
  6. Ассоциативность сложения. Порядок сложения трёх рациональных чисел не влияет на результат.
  7. Наличие нуля . Существует рациональное число 0, которое сохраняет любое другое рациональное число при суммировании.
  8. Наличие противоположных чисел. Любое рациональное число имеет противоположное рациональное число, при суммировании с которым даёт 0.
  9. Коммутативность умножения. От перемены мест рациональных множителей произведение не меняется.
  10. Ассоциативность умножения. Порядок перемножения трёх рациональных чисел не влияет на результат.
  11. Наличие единицы . Существует рациональное число 1, которое сохраняет любое другое рациональное число при умножении.
  12. Наличие обратных чисел . Любое ненулевое рациональное число имеет обратное рациональное число, умножение на которое даёт 1.
  13. Дистрибутивность умножения относительно сложения. Операция умножения согласована с операцией сложения посредством распределительного закона:
  14. Связь отношения порядка с операцией сложения. К левой и правой частям рационального неравенства можно прибавлять одно и то же рациональное число.
  15. Связь отношения порядка с операцией умножения. Левую и правую части рационального неравенства можно умножать на одно и то же положительное рациональное число.
  16. Аксиома Архимеда . Каково бы ни было рациональное число , можно взять столько единиц, что их сумма превзойдёт .

Дополнительные свойства

Все остальные свойства, присущие рациональным числам, не выделяют в основные, потому что они, вообще говоря, уже не опираются непосредственно на свойства целых чисел, а могут быть доказаны исходя из приведённых основных свойств или непосредственно по определению некоторого математического объекта. Таких дополнительных свойств очень много. Здесь имеет смысл привести лишь некоторые из них.

Счётность множества

Чтобы оценить количество рациональных чисел, нужно найти мощность их множества. Легко доказать, что множество рациональных чисел счётно . Для этого достаточно привести алгоритм, который нумерует рациональные числа, т. е. устанавливает биекцию между множествами рациональных и натуральных чисел. Примером такого построения может служить следующий простой алгоритм. Составляется бесконечная таблица обыкновенных дробей, на каждой -ой строке в каждом -ом столбце которой располагается дробь . Для определённости считается, что строки и столбцы этой таблицы нумеруются с единицы. Ячейки таблицы обозначаются , где - номер строки таблицы, в которой располагается ячейка, а - номер столбца.

Полученная таблица обходится «змейкой» по следующему формальному алгоритму.

Эти правила просматриваются сверху вниз и следующее положение выбирается по первому совпадению.

В процессе такого обхода каждому новому рациональному числу ставится в соответствие очередное натуральное число. Т. е. дроби ставится в соответствие число 1, дроби - число 2, и т. д. Нужно отметить, что нумеруются только несократимые дроби. Формальным признаком несократимости является равенство единице наибольшего общего делителя числителя и знаменателя дроби.

Следуя этому алгоритму, можно занумеровать все положительные рациональные числа. Это значит, что множество положительных рациональных чисел счётно. Легко установить биекцию между множествами положительных и отрицательных рациональных чисел, просто поставив в соответствие каждому рациональному числу противоположное ему. Т. о. множество отрицательных рациональных чисел тоже счётно. Их объединение также счётно по свойству счётных множеств. Множество же рациональных чисел тоже счётно как объединение счётного множества с конечным.

Разумеется, существуют и другие способы занумеровать рациональные числа. Например, для этого можно воспользоваться такими структурами как дерево Калкина - Уилфа, дерево Штерна - Броко или ряд Фарея .

Утверждение о счётности множества рациональных чисел может вызывать некоторое недоумение, т. к. на первый взгляд складывается впечатление, что оно гораздо обширнее множества натуральных чисел. На самом деле это не так и натуральных чисел хватает, чтобы занумеровать все рациональные.

Недостаточность рациональных чисел

См. также

Целые числа
Рациональные числа
Вещественные числа Комплексные числа Кватернионы

Примечания

Литература

  • И.Кушнир. Справочник по математике для школьников. - Киев: АСТАРТА, 1998. - 520 с.
  • П. С. Александров. Введение в теорию множеств и общую топологию. - М.: глав. ред. физ.-мат. лит. изд. «Наука», 1977
  • И. Л. Хмельницкий. Введение в теорию алгебраических систем

)- это числа с положительным или отрицательным знаком (целые и дробные) и ноль. Более точное понятие рациональных чисел, звучит так:

Рациональное число — число, которое представляется обычной дробью m/n , где числитель m — целые числа, а знаменатель n — натуральные числа, к примеру 2/3 .

Бесконечные непериодические дроби НЕ входят в множество рациональных чисел.

a/b , где a Z (a принадлежит целым числам), b N (b принадлежит натуральным числам).

Использование рациональных чисел в реальной жизни.

В реальной жизни множество рациональных чисел используется для счёта частей некоторых целых делимых объектов, например , тортов или других продуктов, которые разрезаются на части перед употреблением, или для грубой оценки пространственных отношений протяжённых объектов.

Свойства рациональных чисел.

Основные свойства рациональных чисел.

1. Упорядоченность a и b есть правило, которое позволяет однозначно идентифицировать между ними 1-но и только одно из 3-х отношений: «<», «>» либо «=». Это правило - правило упорядочения и формулируют его вот так:

  • 2 положительных числа a=m a /n a и b=m b /n b связаны тем же отношением, что и 2 целых числа m a n b и m b n a ;
  • 2 отрицательных числа a и b связаны одним отношением, что и 2 положительных числа |b| и |a| ;
  • когда a положительно, а b — отрицательно, то a>b .

a,b Q (aa>b a=b)

2. Операция сложения . Для всех рациональных чисел a и b есть правило суммирования , которое ставит им в соответствие определенное рациональное число c . При этом само число c - это сумма чисел a и b и ее обозначают как (a+b) суммирование .

Правило суммирования выглядит так:

m a /n a +m b /n b =(m a n b +m b n a) /(n a n b).

a,b Q !(a+b) Q

3. Операция умножения . Для всяких рациональных чисел a и b есть правило умножения , оно ставит им в соответствие определенное рациональное число c . Число c называют произведением чисел a и b и обозначают (a⋅b) , а процесс нахождения этого числа называют умножение .

Правило умножения выглядит так: m a n a m b n b =m a m b n a n b .

∀a,b∈Q ∃(a⋅b)∈Q

4. Транзитивность отношения порядка. Для любых трех рациональных чисел a , b и c если a меньше b и b меньше c , то a меньше c , а если a равно b и b равно c , то a равно c .

a,b,c Q (aba(a = b b = c a = c)

5. Коммутативность сложения . От перемены мест рациональных слагаемых сумма не изменяется.

a,b Q a+b=b+a

6. Ассоциативность сложения . Порядок сложения 3-х рациональных чисел не оказывает влияния на результат.

a,b,c Q (a+b)+c=a+(b+c)

7. Наличие нуля . Есть рациональное число 0, оно сохраняет всякое другое рациональное число при складывании.

0 Q a Q a+0=a

8. Наличие противоположных чисел . У любого рационального числа есть противоположное рациональное число, при их сложении получается 0.

a Q (−a) Q a+(−a)=0

9. Коммутативность умножения . От перемены мест рациональных множителей произведение не изменяется.

a,b Q a b=b a

10. Ассоциативность умножения . Порядок перемножения 3-х рациональных чисел не имеет влияния на итог.

a,b,c Q (a b) c=a (b c)

11. Наличие единицы . Есть рациональное число 1, оно сохраняет всякое другое рациональное число в процессе умножения.

1 Q a Q a 1=a

12. Наличие обратных чисел . Всякое рациональное число, отличное от нуля имеет обратное рациональное число, умножив на которое получим 1.

a Q a−1 Q a a−1=1

13. Дистрибутивность умножения относительно сложения . Операция умножения связана со сложением при помощи распределительного закона:

a,b,c Q (a+b) c=a c+b c

14. Связь отношения порядка с операцией сложения . К левой и правой частям рационального неравенства прибавляют одно и то же рациональное число.

a,b,c Q aa+c

15. Связь отношения порядка с операцией умножения . Левую и правую части рационального неравенства можно умножить на одинаковое неотрицательное рациональное число.

a,b,c Q c>0 aa cc

16. Аксиома Архимеда . Каким бы ни было рациональное число a , легко взять столько единиц, что их сумма будет больше a .

На этом уроке мы познакомимся с множеством рациональных чисел. Разберем основные свойства рациональных чисел, научимся переводить десятичные дроби в обыкновенные и наоборот.

Мы уже говорили про множества натуральных и целых чисел. Множество натуральных чисел является подмножеством целых чисел .

Теперь мы узнали, что такое дроби, научились с ними работать. Дробь , например, не является целым числом. Значит, нужно описать новое множество чисел, куда будут входить все дроби, и этому множеству нужно название, четкое определение и обозначение.

Начнем с названия. Латинское слово ratio переводится на русский язык как отношение, дробь. Название нового множества «рациональные числа» и происходит от этого слова. То есть «рациональные числа» можно перевести как «дробные числа».

Разберемся, из каких чисел состоит это множество. Можно предположить, что оно состоит из всех дробей. Например, таких - . Но такое определение было бы не совсем корректным. Дробь - это не само число, а форма записи числа. В примере, представленном ниже, две разные дроби обозначают одно и то же число:

Тогда точнее будет сказать, что рациональные числа - это те числа, которые можно представить в виде дроби. И это в самом деле уже почти то самое определение, которое и используют в математике.

Обозначили это множество буквой . А как связаны множества натуральных и целых чисел с новым множеством рациональных чисел? Натуральное число можно записать в виде дроби, причем бесконечным числом способов . А раз его можно представить в виде дроби, то оно тоже является рациональным.

С отрицательными целыми числами аналогичная ситуация. Любое целое отрицательное число можно представить в виде дроби . А можно ли число ноль представить в виде дроби? Конечно, можно, тоже бесконечным числом способов .

Таким образом, все натуральные и все целые числа тоже являются рациональными числами. Множества натуральных и целых чисел являются подмножествами множества рациональных чисел ().

Замкнутость множеств относительно арифметических операций

Необходимость введения новых чисел - целых, затем рациональных - м ожно объяснять не только задачами из реальной жизни. Сами арифметические операции подсказывают нам это. Сложим два натуральных числа: . Получим снова натуральное число.

Говорят, множество натуральных чисел замкнуто относительно операции сложения ( замкнуто относительно сложения). Самостоятельно подумайте, замкнуто ли множество натуральных чисел относительно умножения.

Как только мы пытаемся вычесть из числа равное ему или большее, то натуральных чисел нам не хватает. Введение нуля и отрицательных целых чисел исправляет ситуацию:

Множество целых чисел замкнуто относительно вычитания. Мы можем складывать и вычитать любые целые числа, не опасаясь, что у нас не будет числа, чтобы записать результат ( замкнуто относительно сложения и вычитания).

Замкнуто ли множество целых чисел относительно умножения? Да, произведение любых двух целых чисел дает в результате целое число ( замкнуто относительно сложения, вычитания и умножения).

Осталось еще одно действие - деление. Замкнуто ли множество целых чисел относительно деления? Ответ очевиден: нет. Поделим на . Среди целых чисел нет такого, чтобы записать ответ: .

Но с помощью дробного числа мы почти всегда можем записать результат деления одного целого числа на другое. Почему почти? Вспомним, что, по определению, делить на ноль нельзя.

Таким образом, множество рациональных чисел (которое возникает при введении дробей) претендует на роль множества, замкнутого относительно всех четырех арифметических операций.

Давайте проверим.

То есть множество рациональных чисел замкнуто относительно сложения, вычитания, умножения и деления, исключая деление на ноль. В этом смысле можно говорить, что множество рациональных чисел устроено «лучше», чем предшествующие множества натуральных и целых чисел. Означает ли это, что рациональные числа - последнее числовое множество, которое мы изучаем? Нет. Впоследствии у нас появятся другие числа, которые нельзя записать в виде дробей, например иррациональных.

Числа как инструмент

Числа - это инструмент, которые человек создавал по мере необходимости.

Рис. 1. Использование натуральных чисел

Дальше, когда понадобилось вести денежные расчеты, перед числом стали ставить знаки плюс или минус, показывая, нужно увеличить или уменьшить исходную величину. Так появились отрицательные и положительные числа. Новое множество назвали множеством целых чисел ().

Рис. 2. Использование дробных чисел

Поэтому появляется новый инструмент, новые числа - дроби. Мы их записываем разными эквивалентными способами: обыкновенными и десятичными дробями ().

Все числа - «старые» (целые) и «новые» (дробные) - объединили в одно множество и назвали его множеством рациональных чисел ( - рациональные числа )

Итак, рациональное число - это число, которое можно представить в виде обыкновенной дроби. Но это определение в математике еще немного уточняют. Любое рациональное число можно представить в виде дроби с положительным знаменателем, то есть отношением целого числа к натуральному: .

Тогда получаем определение: число называется рациональным, если его можно представить в виде дроби с целым числителем и натуральным знаменателем ().

Кроме обыкновенных дробей, мы используем и десятичные. Посмотрим, как они связаны с множеством рациональных чисел.

Десятичные дроби бывают трех видов: конечные, периодические и непериодические.

Бесконечные непериодические дроби: у таких дробей тоже бесконечное количество цифр после запятой, но периода нет. Примером является десятичная запись числа ПИ:

Любая конечная десятичная дробь по определению - это обыкновенная дробь со знаменателем и т.д.

Прочитаем десятичную дробь вслух и запишем в виде обыкновенной: , .

При обратном переходе от записи в виде обыкновенной дроби к десятичной могут получаться конечные десятичные дроби или бесконечные периодические дроби.

Переход от обыкновенной дроби к десятичной

Самый простой случай, когда знаменатель дроби - это степень десятки: и т.д. Тогда мы пользуемся определением десятичной дроби:

Есть дроби, у которых знаменатель легко приводится к такому виду: . Перейти к такой записи возможно, если в разложение знаменателя входят только двойки и пятерки.

Знаменатель состоит из трех двоек и одной пятерки. Каждая и образуют десятку. Значит, нам не хватает двух . Домножим на и числитель, и знаменатель:

Можно было поступить по-другому. Поделить столбиком на (см. рис. 1).

Рис. 2. Деление в столбик

В случае с знаменатель не удастся превратить в или другое разрядное число, так как в его разложение входит тройка. Остается один способ - делить в столбик (см. рис. 2).

Такое деление на каждом шаге будет давать в остатке и в частном. Этот процесс бесконечен. То есть получили бесконечную периодическую дробь с периодом

Давайте потренируемся. Переведем обыкновенные дроби в десятичные.

Во всех этих примерах мы получили конечную десятичную дробь, так как в разложении знаменателя были только двойки и пятерки.

(проверим себя делением в столик - см. рис. 3).

Рис. 3. Деление в столбик

Рис. 4. Деление в столбик

(см. рис. 4)

В разложение знаменателя входит тройка, значит, привести знаменатель к виду , и т.д. не получится. Делим на в столбик. Ситуация будет повторяться. В записи результата будет бесконечное число троек. Таким образом, .

(см. рис. 5)

Рис. 5. Деление в столбик

Итак, любое рациональное число можно представить в виде обыкновенной дроби. Это его определение.

А любую обыкновенную дробь можно представить в виде конечной или бесконечной периодической десятичной дроби.

Виды записи дробей:

запись десятичной дроби в виде обыкновенной: ; ;

запись обыкновенной дроби в виде десятичной: (конечная дробь); (бесконечная периодическая).

То есть любое рациональное число можно записать конечной или периодической десятичной дробью. При этом конечную дробь тоже можно считать периодической с периодом ноль.

Иногда рациональному числу дают именно такое определение: рациональное число - это число, которое можно записать периодической десятичной дробью.

Преобразование периодической дроби

Рассмотрим сначала дробь, у которой период состоит из одной цифры и нет предпериода. Обозначим это число буквой . Метод заключается в том, чтобы получить еще одно число с таким же периодом:

Это можно сделать, умножив исходное число на . Итак, число имеет такой же период. Вычтем из само число :

Чтобы убедиться, что мы правильно все сделали, давайте теперь сделаем переход в обратную сторону, уже известным нам способом - делением в столбик на (см. рис. 1).

В самом деле получаем число в исходной форме с периодом .

Рассмотрим число с предпериодом и более длинным периодом: . Метод остается точно таким же, как и в предыдущем примере. Надо получить новое число с таким же периодом и предпериодом такой же длины. Для этого нужно, чтобы запятая сдвинулась вправо на длину периода, т.е. на два знака. Умножим исходное число на :

Вычтем из полученного выражения исходное:

Итак, каков алгоритм перевода. Периодическую дробь нужно умножить на число вида и т.д., в котором столько нулей, сколько цифр в периоде десятичной дроби. Получим новую периодическую. Например:

Вычтем из одной периодической дроби другую, получим конечную десятичную дробь:

Остается выразить исходную периодическую дробь в виде обыкновенной.

Для тренировки самостоятельно запишите несколько периодических дробей. По данному алгоритму приведите их к виду обыкновенной дроби. Для проверки на калькуляторе поделите числитель на знаменатель. Если все верно, то получится исходная периодическая дробь

Итак, любую конечную или бесконечную периодическую дробь мы можем записать как обыкновенную дробь, как отношение натурального и целого чисел. Т.е. все такие дроби являются рациональными числами.

А как обстоит дело с непериодическими дробями? Оказывается, непериодические дроби невозможно представить в виде обыкновенных (этот факт мы примем без доказательства). А значит, они не являются рациональными числами. Их называют иррациональными.

Бесконечные непериодические дроби

Как мы уже сказали, рациональное число в десятичной записи - это или конечная, или периодическая дробь. Значит, если мы сможем построить бесконечную непериодическую дробь, то мы получим нерациональное, то есть иррациональное число.

Вот один из способов такого построения: Дробная часть этого числа состоит только из нулей и единиц. Количество нулей между единицами каждый раз увеличивается на . Здесь невозможно выделить повторяющуюся часть. То есть дробь не является периодической.

Потренируйтесь самостоятельно конструировать непериодические десятичные дроби, то есть иррациональные числа

Известный нам пример иррационального числа - это число пи (). Периода в этой записи нет. Но, кроме числа пи, существует бесконечно много других иррациональных чисел. Подробнее об иррациональными числами мы поговорим позже.

  1. Математика 5 класс. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И., 31-е изд., стер. - М: Мнемозина, 2013.
  2. Математика 5 класс. Ерина Т.М.. Рабочая тетрадь к учебнику Виленкина Н.Я., М.: Экзамен, 2013.
  3. Математика 5 класс. Мерзляк А.Г., Полонский В.Б., Якир М.С., М.: Вентана - Граф, 2013.
  1. Math-prosto.ru ().
  2. Cleverstudents.ru ().
  3. Mathematics-repetition.com ().

Домашнее задание



© dagexpo.ru, 2024
Стоматологический сайт