Какая форма у нашей Вселенной

24.09.2019

В древности люди считали, что Земля плоская, однако время показало, что они ошибались. Сейчас мы можем также обманываться насчет формы Вселенной. Общая теория относительности имеет дело с четырехмерным пространством, где в качестве четвертой координаты представлено время, и, согласно этой теории, любое массивное тело искривляет это пространство, а вся масса Вселенной превращает его плоскость в сферу. Но это плоскость в четырехмерном пространстве, а какую форму примет само это пространство, было до сих пор неизвестно. Большинство склонялось к тому, что оно имеет форму тора.

Григор Асланян (Grigor Aslanyan), космолог из Калифорнийского университета, считает, что это не совсем тор. Форма Вселенной, говорит он, зависит от протяженности ее координат. Она может быть конечна по всем трем пространственным измерениям; может иметь два конечных измерения и одно бесконечное; также может иметь два бесконечных измерения и одно конечное - три бесконечных измерения Асланян воспринимать не хотел. И в каждом из этих трех вариантов пространство будет иметь свою особую четырехмерную форму. И, что самое главное, Асланян знает, как проверить, какой вариант принят в нашей Вселенной. Он попытался это узнать, сравнивая свои расчеты с данными, полученными космическим зондом WMAP, исследующим распределение реликтового излучения в небосводе.

Правда, тут возникла проблема - Асланян быстро понял, что расчеты такой сложности обычному компьютеру не под силу. Тогда он обратился к помощи ГРИД - системы распределенных вычислений, охватывающей через подобие интернета множество компьютеров. Сами расчеты было легко распараллелить и 500 тысяч часов, необходимых для получения результата, превратились во вполне приемлемое время.

Результат подтвердил ожидания - вариант трех бесконечных измерений он отверг. Получилось интересное - пространство имеет форму вытянутого тора, грубо говоря, баранки, вытянутой в том самом направлении, в котором направлена недавно обнаруженная астрофизиками "ось зла" - направление в небе, где значения реликтового излучения отличаются от значений в других направлениях. Более точно узнать форму Вселенной Асланян надеется, получив в этом году данные от другого спутника под названием "Планк".

Комментарии (10):

"Общая теория относительности имеет дело с четырехмерным пространством, где в качестве четвертой координаты представлено время"

Речь идёт про 4-е пространственные координаты.

Время же координата не пространственная, а эволюционная.

В этом то и заключёны основные некорректности в выводах теории относительности.

Они (эти выводы) поразумевают обращение с направлением времени, как с обычным вектором.

Но время не есть пространственный вектор... Время мера эволюции процессов, скаляр.

И именно поэтому оно необратимо!

Начнем с бублика. Нет никакого бублика. Ноги же у этого образа растут из того факта, что наша Вселенная имеет хоть и очень большой, но все же конечный объем, но при этом не имеет границ. Представить это довольно просто на двухмерном примере: в некоторых простых компьютерных играх объект, уходящий за правую границу игрового поля, появляется слева, а ушедший вниз – сверху. Еще более наглядный пример – трехмерный – можно узреть, если на любом из уровней игры "Quake" (во всяком случае, первой или второй игры серии; может, и других подобных 3D-шутеров, я просто не пробовал) воспользоваться одновременно читами, позволяющими проходить сквозь стены и летать, и прямиком двинуться в любую сторону: камера быстро выйдет за пределы локации, ваш виртуальный герой какое-то время будет лететь в черной пустоте, а потом перед ним появится оставшееся вроде бы сзади скопление коридоров и комнат, и герой вернется в ту же точку, откуда начал, но с противоположной стороны, как будто обошел вокруг земного шара – хотя летел-то он по прямой. Двигаться можно в любую сторону бесконечно долго – границ нет, но за пределы уровня не выйти, и ни в какое "другое пространство" не прилетишь – объем конечен и замкнут. Вот такова же и реальная Вселенная, только попросторнее.

В общей теории относительности принимается, что физическое пространство является неевклидовым, наличие материи искривляет его; кривизна зависит от плотности и движения вещества.

Оказывается, что то критическое значение плотности, от которого зависит будущее Вселенной (неограниченный разлет или остановка и сжатие), является критическим и для пространственной структуры Вселенной как целого.

Наши представления о пространстве зависят от соотношения между $\rho$ и $\rho_{cr}$

Суть подхода следующая.
Мы видим красное смещение от далеких галактик и делаем вывод, что свет от них идет из пространства большей кривизны чем у нас, это заставляет задуматься над топологией Вселенной, то есть мы ищем топологию, наблюдая картинку красного смещения и напрочь отказываясь от идеи расширения пространства Вселенной, как заведомо избыточной, нарушающей принцип Оккама
Итак, возможный вариант пространства Вселенной - гиперТор
1. Представим себе сферу (А) внутри сферы большего радиуса (B) и склеим обе сферы.
Свет, двигаясь от малой сферы, достигает поверхности большой и тут же оказывается выходящим из поверхности малой. Малая сфера внутри большой, а большая внутри малой.
2. Это же можно представить еще вот так (с некоторой натяжкой, для единственного луча света)
Пусть есть две сферы равного диаметра, свет идет от одной сферы доходит до другой и тут же выходит из первой, пока свет шел до середины сфер он краснел, а потом начал синеть, для света кажется, что это разные сферы, но это одна и таже сфера. Сферы как бы гравитируют (это подпорка, чтобы представить гиперТор с переменной кривизной)

Большинство моделей исходят из того, что (3+1) пространство это данность с момента БВ. На этом постулате и строятся модели. Шар, заполненный пузырями-зародышами будущих вселенных (Александр Кашинский), тонкостенный пузырь в виде додекаэдра (Джеффи Уиксоном), тор на подобии пончика или бублика (Франк Шнайдер). Я думаю, что размерность надо рассматривать как переменную величину, при этом каждой размерности соответствует своя вселенная.. Эволюция на мой взгляд прошла следующие этапы: (0+1), (1+1), (2+1), (3+1) и возможно более. Они вложены друг в друга. Например, вселенная (2+1) существует и развивается на той же временной координате, что и (3+1). Проверить такое предположение сложно - так как попасть из вселенной одной размерности в другую маловероятно или даже более категорично- невозможно.

Для вывода формул можно пользоваться окружением "$$" и \TeX разметкой.

Доктор физико-математических наук А. МАДЕРА.

Что общего между листом бумаги, поверхностью стола, бубликом и кружкой?

Двухмерные аналоги евклидовой, сферической и гиперболической геометрий.

Лист Мёбиуса с точкой a на его поверхности, нормалью к ней и маленькой окружностью с заданным направлением v.

Плоский лист бумаги можно склеить в цилиндр и, соединив его торцы, получить тор.

Тор с одной ручкой гомеоморфен сфере с двумя ручками - их топология одинакова.

Если вырезать эту фигуру и склеить из нее куб, станет понятно, как выглядит трехмерный тор, бесконечно повторяющий копии зеленого "червячка", сидящего в его центре.

Трехмерный тор можно склеить из куба, подобно тому, как тор двухмерный - из квадрата. Разноцветные "червячки", путешествующие внутри его, наглядно демонстрируют, какие грани куба склеены вместе.

Куб - фундаментальная область трехмерного тора - разрезан на тонкие вертикальные слои, которые при склеивании образуют кольцо, состоящее из двухмерных торов.

Если две грани исходного куба склеены с поворотом на 180 градусов, образуется 1/2 -повернутое кубическое пространство.

Поворот двух граней на 90 градусов дает 1/4- повернутое кубическое пространство. Попробуйте эти рисунки и аналогичные рисунки на стр. 88 как инверсные стереопары. "Червячки" на неповернутых гранях приобретут объем.

Если в качестве фундаментальной области взять шестигранную призму, склеить каждую ее грань с противоположной напрямую, а шестиугольные торцы с поворотом на 120 градусов, получится 1/3-повернутое шестиугольное призматическое пространство.

Поворот шестиугольной грани перед склейкой на 60 градусов дает 1/6-повернутое шестиугольное призматическое пространство.

Двойное кубическое пространство.

Пластинчатое пространство возникает, если склеить верхнюю и нижнюю стороны бесконечной пластины.

Трубчатые пространства - прямое (А) и повернутое (Б), в котором одна из поверхностей склеена с противоположной с поворотом на 180 градусов.

Карта распределения микроволнового реликтового излучения демонстрирует то распределение плотности материи, которое было 300 тысяч лет назад (показано цветом). Ее анализ позволит определить, какую топологию имеет Вселенная.

В древности люди полагали, что живут на обширной плоской поверхности, хотя и покрытой кое-где горами и впадинами. Это убеждение сохранялось на протяжении многих тысяч лет, пока Аристотель в IV веке до н. э. не заметил, что уходящее в море судно пропадает из виду не потому, что по мере удаления уменьшается до недоступных глазу размеров. Напротив, сначала исчезает корпус корабля, потом паруса и, наконец, мачты. Это привело его к заключению, что Земля должна быть круглой.

За прошедшие тысячелетия сделано множество открытий, накоплен колоссальный опыт. И тем не менее до сих пор остаются без ответа фундаментальные вопросы: конечна или бесконечна Вселенная, внутри которой мы обитаем, и какова ее форма?

Последние наблюдения астрономов и исследования математиков показывают, что форму нашей Вселенной следует искать среди восемнадцати так называемых трехмерных ориентируемых евклидовых многообразий, причем претендовать на нее могут только десять.

НАБЛЮДАЕМАЯ ВСЕЛЕННАЯ

Любые умозаключения о возможной форме нашей Вселенной должны опираться на реальные факты, полученные из астрономических наблюдений. Без этого даже самые красивые и правдоподобные гипотезы обречены на неудачу. Поэтому посмотрим, что говорят о Вселенной результаты наблюдений.

Прежде всего, заметим, что, в каком бы месте Вселенной мы ни находились, вокруг любой ее точки можно очертить сферу произвольного размера, содержащую внутри пространство Вселенной. Такое несколько искусственное построение говорит космологам, что пространство Вселенной представляет собой трехмерное многообразие (3-многообразие).

Сразу же возникает вопрос: а какое именно многообразие представляет нашу Вселенную? Математики давно установили, что их так много, что полного списка до сих пор не существует. Многолетние наблюдения показали, что Вселенная обладает рядом физических свойств, которые резко сокращают число возможных претендентов на ее форму. И одно из главных таких свойств топологии Вселенной - ее кривизна.

Согласно принятой на сегодняшний день концепции, примерно через 300 тысяч лет после Большого взрыва температура Вселенной упала до уровня, достаточного для объединения электронов и протонов в первые атомы (см. "Наука и жизнь" №№ 11, 12, 1996 г.). Когда это произошло, излучение, которое вначале рассеивалось заряженными частицами, внезапно получило возможность беспрепятственно проходить через расширяющуюся Вселенную. Это известное ныне как космическое микроволновое фоновое, или реликтовое, излучение удивительно однородно и обнаруживает только очень слабые отклонения (флуктуации) интенсивности от среднего значения (см. "Наука и жизнь" № 12, 1993 г.). Такая однородность может быть только во Вселенной, кривизна которой всюду постоянна.

Постоянство кривизны означает, что пространство Вселенной имеет одну из трех возможных геометрий: плоскую евклидову сферическую с положительной кривизной или гиперболическую с отрицательной. Эти геометрии обладают совершенно разными свойствами. Так, например, в евклидовой геометрии сумма углов треугольника равна точно 180 градусам. В сферической и гиперболической геометриях это не так. Если на сфере взять три точки и провести между ними прямые, то сумма углов между ними составит больше 180 градусов (вплоть до 360). В гиперболической же геометрии эта сумма меньше 180 градусов. Имеются и другие кардинальные отличия.

Так какую же геометрию для нашей Вселенной выбрать: евклидову, сферическую или гиперболическую?

Немецкий математик Карл Фридрих Гаусс еще в первой половине XIX столетия понимал, что реальное пространство окружающего мира может быть и неевклидовым. Проводя многолетние геодезические работы в Ганноверском королевстве, Гаусс задался целью с помощью прямых измерений исследовать геометрические свойства физического пространства. Для этого он выбрал три удаленные одна от другой горные вершины - Хохенгаген, Инзельберг и Броккен. Стоя на одной из этих вершин, он направлял отраженные зеркалами солнечные лучи на две другие и измерял углы между сторонами огромного светового треугольника. Тем самым он пытался ответить на вопрос: искривляются ли траектории световых лучей, проходящих над сферическим пространством Земли? (Кстати, примерно в это же время российский математик, ректор Казанского университета Николай Иванович Лобачевский предложил экспериментально исследовать вопрос о геометрии физического пространства, используя звездный треугольник.) Если бы Гаусс обнаружил, что сумма углов светового треугольника отличается от 180 градусов, то последовал бы вывод, что стороны треугольника искривлены и реальное физическое пространство неевклидово. Однако в пределах ошибки измерений сумма углов "проверочного треугольника Броккен - Хохенгаген - Инзельберг" составляла ровно 180 градусов.

Итак, в малых (по астрономическим меркам) масштабах Вселенная предстает как евклидова (хотя, конечно, экстраполировать выводы Гаусса на всю Вселенную нельзя).

Недавние исследования, проведенные с помощью высотных аэростатов, поднятых над Антарктидой, также подтверждают этот вывод. При измерении углового спектра мощности реликтового излучения был зарегистрирован пик, который, как полагают исследователи, может быть объяснен только существованием холодной черной материи - относительно больших, медленно движущихся объектов - именно в евклидовой Вселенной. Другие исследования также подтверждают этот вывод, что резко сокращает количество вероятных претендентов на возможную форму Вселенной.

Еще в тридцатых годах XX столетия математики доказали, что существует только 18 различных евклидовых трехмерных многообразий и, следовательно, только 18 возможных форм Вселенной вместо их бесконечного числа. Понимание свойств этих многообразий помогает экспериментально определить истинную форму Вселенной, так как целенаправленный поиск всегда эффективнее поиска вслепую.

Однако число возможных форм Вселенной можно сократить еще. Действительно, среди 18 евклидовых 3-многообразий имеется 10 ориентируемых и 8 неориентируемых. Поясним, что представляет собой понятие ориентируемости. Для этого рассмотрим интересную двухмерную поверхность - лист Мёбиуса. Его можно получить из прямоугольной полоски бумаги, перекрученной один раз и склеенной концами. Теперь возьмем на листе Мёбиуса точку а , проведем к ней нормаль (перпендикуляр), а вокруг нормали начертим небольшую окружность с направлением против часовой стрелки, если смотреть из конца нормали. Начнем перемещать точку вместе с нормалью и направленной окружностью по листу Мёбиуса. Когда точка обойдет весь лист и вернется в исходное положение (зрительно она будет на другой стороне листа, но в геометрии поверхность толщины не имеет), направление нормали изменится на обратное, а направление окружности - на противоположное. Такие траектории называются путями, обращающими ориентацию. А поверхности, имеющие их, называют неориентируемыми или односторонними. Поверхности же, на которых не существует обращающих ориентацию замкнутых путей, например сфера, тор и неперекрученная лента, называют ориентируемыми или двухсторонними. Заметим кстати, что лист Мёбиуса представляет собой евклидово неориентируемое двухмерное многообразие.

Если допустить, что наша Вселенная - неориентируемое многообразие, то физически это означало бы следующее. Если мы полетим с Земли вдоль замкнутой петли, обращающей ориентацию, то, конечно, вернемся домой, но окажемся в зеркальной копии Земли. Мы не заметим в себе никаких изменений, но по отношению к нам у остальных жителей Земли сердце окажется справа, все часы пойдут против часовой стрелки, а тексты предстанут в зеркальном отображении.

Маловероятно, что мы живем в таком мире. Космологи полагают, что если бы наша Вселенная была неориентируемой, то происходило бы излучение энергии из пограничных зон, в которых взаимодействуют материя и антиматерия. Однако ничего подобного никогда не наблюдалось, хотя теоретически и можно предположить, что подобные зоны существуют за пределами области Вселенной, доступной нашему взгляду. Поэтому резонно исключить из рассмотрения восемь неориентируемых многообразий и ограничить возможные формы нашей Вселенной десятью ориентируемыми евклидовыми трехмерными многообразиями.

ВОЗМОЖНЫЕ ФОРМЫ ВСЕЛЕННОЙ

Трехмерные многообразия в четырехмерном пространстве необычайно трудны для наглядного представления. Однако можно попытаться представить себе их структуру, если применить подход, используемый в топологии для визуализации двухмерных многообразий (2-многообразий) в нашем трехмерном пространстве. Все объекты в нем считаются как бы сделанными из какого-то прочного эластичного материала вроде резины, допускающего любые растяжения и искривления, но без разрывов, складок и склеек. В топологии фигуры, которые можно с помощью таких деформаций преобразовывать одну в другую, называют гомеоморфными; они имеют одинаковую внутреннюю геометрию. Поэтому с точки зрения топологии бублик (тор) и обычная чашка с ручкой - одно и то же. А вот футбольный мяч перевести в бублик невозможно. Эти поверхности топологически различны, то есть имеют различные внутренние геометрические свойства. Однако если на сфере вырезать круглую дырку и приделать к ней одну ручку, то получившаяся фигура уже будет гомеоморфна тору.

Существует множество поверхностей, которые топологически отличны от тора и сферы. Например, добавив к тору ручку, подобную той, что мы видим у чашки, мы получим новую дырку, а значит, и новую фигуру. Тор с ручкой будет гомеоморфен фигуре, напоминающей крендель, которая в свою очередь гомеоморфна сфере с двумя ручками. Добавление каждой новой ручки создает еще одну дырку, а значит, и другую поверхность. Таким способом можно получать бесконечное их количество.

Все такие поверхности называются двухмерными многообразиями или просто 2-многообразиями. Это означает, что вокруг любой их точки можно очертить окружность произвольного радиуса. На поверхности Земли можно нарисовать круг, содержащий ее точки. Если мы видим только такую картину, резонно считать, что она представляет собой бесконечную плоскость, сферу, тор или вообще любую другую поверхность из бесконечного числа торов или сфер с различным числом ручек.

Эти топологические формы могут быть довольно сложны для понимания. И чтобы легче и отчетливее представи ть их себе, склеим цилиндр из квадратного листа бумаги, соединив его левую и правую стороны. Квадрат в этом случае называется фундаментальной областью для тора. Если теперь мысленно склеить основания цилиндра (материал цилиндра эластичен), получится тор.

Представим себе, что есть некое двухмерное существо, скажем насекомое, движение которого по поверхности тора нужно исследовать. Сделать это непросто, и гораздо удобнее наблюдать его движение по квадрату - пространству с той же топологией. Этот прием имеет два преимущества. Во-первых, позволяет наглядно увидеть путь насекомого в трехмерном пространстве, следя за его перемещением в двухмерном пространстве, а во-вторых, позволяет оставаться в рамках хорошо развитой евклидовой геометрии на плоскости. В евклидовой геометрии содержится постулат о параллельных прямых: для любой прямой линии и точки вне ее существует единственная прямая, параллельная первой и проходящая через эту точку. Кроме того, сумма углов плоского треугольника в точности равна 180 градусам. Но поскольку квадрат описывается евклидовой геометрией, мы можем распространить ее на тор и утверждать, что тор - евклидово 2-многообразие.

Неразличимость внутренних геометрий для самых разных поверхностей связана с важной их топологической характеристикой, называемой развертываемостью. Так, поверхности цилиндра и конуса выглядят совершенно различными, но тем не менее их геометрии абсолютно одинаковы. Обе они могут быть развернуты в плоскости без изменения длин отрезков и углов между ними, поэтому для них справедлива евклидова геометрия. Это же относится и к тору, поскольку он представляет собой поверхность, развертывающуюся в квадрат. Такие поверхности называют изометричными.

Бесчисленное число торов можно сформировать и из других плоских фигур, например из различных параллелограммов или шестиугольников, склеивая их противоположные края. Однако для этого годится далеко не каждый четырехугольник: длины его склеенных сторон должны быть одинаковы ми. Такое требование необходимо, чтобы избежать при склейке удлинений или сжиманий краев области, которые нарушают евклидову геометрию поверхности.

Теперь перейдем к многообразиям большей размерности.

ПРЕДСТАВЛЕНИЕ ВОЗМОЖНЫХ ФОРМ ВСЕЛЕННОЙ

Попробуем представить себе возможные формы нашей Вселенной, которые, как мы уже видели, надо искать среди десяти ориентируемых евклидовых трехмерных многообразий.

Для представления евклидова 3-многообразия применим использованный выше метод для двухмерных многообразий. Там мы использовали в качестве фундаментальной области тора квадрат, а для представления трехмерного многообразия станем брать трехмерные объекты.

Возьмем вместо квадрата куб и подобно тому, как мы склеивали противоположные края квадрата, склеим вместе противоположные грани куба во всех их точках.

Получившийся трехмерный тор представляет собой евклидово 3-многообразие. Если мы каким-то образом оказались бы в нем и посмотрели вперед, то увидели бы свой затылок, а также свои копии в каждой грани куба - впереди, сзади, слева, справа, вверху и внизу. За ними мы бы увидали бесконечное множество других копий, подобно тому, как если бы оказались в комнате, где стены, пол и потолок покрыты зеркалами. Но изображения в трехмерном торе будут прямыми, а не зеркальными.

Важно отметить круговую природу этого и многих других многообразий. Если бы Вселенная действительно имела такую форму, то, покинув Землю и летя без каких-либо изменений курса, мы в конце концов вернулись бы домой. Нечто подобное наблюдается и на Земле: двигаясь на запад вдоль экватора, мы рано или поздно вернемся в исходную точку с востока.

Разрезав куб на тонкие вертикальные слои, мы получим набор квадратов. Противоположные края этих квадратов должны быть склеены вместе, потому что они составляют противоположные грани куба. Так что трехмерный тор оказывается кольцом, состоящим из двухмерных торов. Вспомним, что передний и задний квадраты также склеены и служат гранями куба. Топологи обозначают такое многообразие как T 2 xS 1 , где T 2 означает двухмерный тор, а S 1 - кольцо. Это пример связки, или пучка, торов.

Трехмерные торы могут быть получены не только с помощью куба. Подобно тому как параллелограмм образует 2-тор, склеивая противоположные грани параллелепипеда (трехмерного тела, ограниченного параллелограммами), мы создадим 3-тор. Из разных параллелепипедов образуются пространства с различными замкнутыми путями и углами между ними.

Эти и все другие конечные многообразия очень просто включаются в картину расширяющейся Вселенной. Если фундаментальная область многообразия постоянно расширяется, образованное ею пространство будет расширяться тоже. Каждая точка в расширяющемся пространстве все дальше отдаляется от остальных, что в точности соответствует космологической модели. При этом, однако, нужно принять во внимание, что точки вблизи одной грани всегда будут соседствовать с точками на противоположной грани, поскольку, вне зависимости от размера фундаментальной области, противоположные грани склеены.

Следующее трехмерное многообразие, похожее на трехмерный тор, называется 1/2- повернутое кубическое пространство. В этом пространстве фундаментальной областью снова служит куб или параллелепипед. Четыре грани склеены как обычно, а оставшиеся две, передняя и задняя, склеены с поворотом на 180 градусов: верхняя часть передней грани приклеена к нижней части задней. Если бы мы оказались в таком многообразии и посмотрели на одну из этих граней, то увидели бы собственную копию, но перевернутую вверх ногами, за ней обычную копию и так до бесконечности. Подобно трехмерному тору, фундаментальная область 1/2-повернутого кубического пространства может быть нарезана на тонкие вертикальные слои, так что при склейке получится снова пучок двухмерных торов, с той только разницей, что на этот раз передний и задний торы склеены с поворотом на 180 градусов.

1/4-повернутое кубическое пространство получается так же, как предыдущее, но с поворотом на 90 градусов. Однако поскольку поворот осуществляется только на четверть, оно может получиться не из всякого параллелепипеда - его передняя и задняя части должны быть квадратами, чтобы избежать искривления и перекашивания фундаментальной области. В передней грани куба мы увидели бы за своей копией еще одну, повернутую относительно ее на 90 градусов.

1/3-повернутое шестиугольное призматическое пространство использует в качестве фундаментальной области не куб, а шестиугольную призму. Для его получения нужно склеить каждую грань, представляющую собой параллелограмм, с ее противоположной гранью, а две шестиугольные грани - с поворотом на 120 градусов. Каждый шестиугольный слой этого многообразия - тор, и, таким образом, пространство также представляет собой пучок торов. Во всех шестиугольных гранях мы увидели бы копии, повернутые на 120 градусов относительно предыдущей, а копии в гранях - параллелограммах - прямые.

1/6-повернутое шестиугольное призматическое пространство сконструировано подобно предыдущему, но с той разницей, что передняя шестиугольная грань приклеена к задней с поворотом на 60 градусов. Как и прежде, в получившемся пучке торов оставшиеся грани - параллелограммы - приклеены одна к другой непосредственно.

Двойное кубическое пространство радикально отличается от предыдущих многообразий. Это конечное пространство уже не является пучком торов и имеет необычную структуру склейки. Двойное кубическое пространство, однако, использует простую фундаментальную область, которая представляет собой два куба, расположенных один на другом. При склейке не все грани соединяются напрямую: верхние передняя и задняя грани приклеиваются к граням, расположенным непосредственно под ними. В этом пространстве мы бы видели себя в своеобразной перспективе - ступни ног оказались бы прямо перед глазами.

На этом заканчивается список конечных ориентируемых евклидовых трехмерных, так называемых компактных многообразий. Вполне вероятно, что среди них и нужно искать форму нашей Вселенной.

Многие космологи полагают, что Вселенная конечна: трудно представить себе физический механизм возникновения бесконечной Вселенной. Тем не менее рассмотрим четыре оставшихся ориентируемых некомпактных евклидовых трехмерных многообразия, пока не получены реальные данные, исключающие их существование.

Первое и самое простое бесконечное трехмерное многообразие - евклидово пространство, которое изучается в средней школе (оно обозначается R 3). В этом пространстве три оси декартовых координат простираются до бесконечности. В нем мы не видим никаких своих копий, ни прямых, ни повернутых, ни перевернутых.

Следующее многообразие - так называемое пластинчатое пространство, фундаментальной областью которого служит бесконечная пластина. Верхняя часть пластины, представляющая собой бесконечную плоскость, приклеивается напрямую к ее нижней части, также бесконечной плоскости. Эти плоскости должны быть параллельны одна другой, но могут быть произвольно сдвинуты при склейке, что несущественно, учитывая их бесконечность. В топологии это многообразие записывается как R 2 xS 1 , где R 2 обозначает плоскость, а S 1 - кольцо.

Последние два 3-многообразия используют в качестве фундаментальных областей бесконечно длинные трубки. Трубки имеют четыре стороны, их сечения представляют собой параллелограммы, они не имеют ни верха, ни низа - четыре их стороны простираются бесконечно. Как и раньше, характер склейки фундаментальной области определяет форму многообразия.

Трубчатое пространство формируется посредством склейки обеих пар противоположных сторон. После склеивания первоначальное сечение в виде параллелограмма становится двухмерным тором. В топологии это пространство записывается как произведение T 2 xR 1 .

Повернув на 180 градусов одну из склеиваемых поверхностей трубчатого пространства, получим повернутое трубчатое пространство. Этот поворот с учетом бесконечной длины трубки придает ему необычные характеристики. Например, две точки, расположенные очень далеко одна от другой, по разным концам фундаментальной области, после склейки окажутся рядом.

Какова же все-таки форма нашей Вселенной?

Чтобы из приведенных выше десяти евклидовых 3-многообразий выбрать одно в качестве формы нашей Вселенной, необходимы дополнительные данные астрономических наблюдений.

Проще всего было бы отыскать копии нашей Галактики в ночном небе. Обнаружив их, мы сможем установить характер склейки фундаментальной области Вселенной. Если окажется, что Вселенная представляет собой 1/4-повернутое кубическое пространство, то прямые копии нашей Галактики будут видны с четырех сторон, а повернутые на 90 градусов - с оставшихся двух. Однако, несмотря на кажущуюся простоту, этот способ мало пригоден для установления формы Вселенной.

Свет распространяется с конечной скоростью, поэтому, наблюдая Вселенную, мы, в сущности, смотрим в прошлое. Даже если мы однажды обнаружим изображение нашей Галактики, то не сможем узнать ее, потому что в свои "молодые годы" она выглядела совершенно иначе. Слишком сложно из огромного количества галактик узнать копию нашей.

В начале статьи говорилось, что Вселенная имеет постоянную кривизну. Однородность космического микроволнового фонового излучения прямо указывает на это. Однако оно имеет легкие пространственные вариации, примерно 10 -5 кельвинов, показывающие, что в ранней Вселенной имели место незначительные флуктуации плотности вещества. Когда расширяющаяся Вселенная остывала, материя в этих областях со временем создала галактики, звезды и планеты. Карта микроволнового излучения позволяет посмотреть в прошлое, во времена первоначальных неоднородностей, увидеть наметки Вселенной, которая была тогда в тысячу раз меньше. Чтобы оценить значение этой карты, рассмотрим гипотетический пример: Вселенная в виде двухмерного тора.

В трехмерной Вселенной мы наблюдаем небо по всем направлениям, то есть в пределах сферы. Двухмерные жители двухмерной Вселенной смогли бы наблюдать его только в пределах круга. Если бы этот круг был меньше фундаментальной области их Вселенной, они не могли бы получить никаких указаний о ее форме. Если, однако, круг видения двухмерных созданий больше фундаментальной области, они смогли бы увидеть пересечения и даже повторение образов Вселенной и попытаться найти точки с одинаковыми температурами, которые соответствуют одной и той же ее области. Если в их круге видения оказалось бы достаточно много таких точек, они смогли бы заключить, что живут в торовой Вселенной.

Несмотря на то, что мы живем в трехмерной Вселенной и видим сферическую область, перед нами встает та же проблема, что и перед двухмерными созданиями. Если наша сфера видения меньше фундаментальной области Вселенной 300 000-летней давности, мы ничего необычного не увидим. В противном случае сфера будет пересекать ее по кругам. Обнаружив два круга, имеющих одинаковые вариации микроволнового излучения, космологи смогут сравнить их ориентацию. Если круги расположены крест-накрест, это будет означать наличие склейки, но без поворота. Некоторые из них, однако, могут сочетаться в соответствии с поворотом на четверть или на половину. Если этих кругов удастся обнаружить достаточно много, тайна фундаментальной области Вселенной и ее склейки будет раскрыта.

Однако до тех пор, пока не появится точная карта микроволнового излучения, космологи никаких заключений сделать не смогут. В 1989 году исследователи из НАСА попытались создать карту реликтового излучения космического пространства. Однако угловое разрешение спутника составляло порядка 10 градусов, что не позволило сделать точные измерения, удовлетворяющие космологов. Весной 2002 года НАСА предприняло вторую попытку и запустило зонд, который нанес на карту температурные флуктуации с угловым разрешением уже порядка 0,2 градуса. В 2007 году Европейское космическое агентство планирует использовать спутник "Планк", имеющий угловое разрешение 5 дуговых секунд.

Если запуски пройдут успешно, то в течение четырех-десяти лет будут получены точные карты флуктуаций реликтового излучения. И если размер сферы нашего видения окажется достаточно большой, а измерения - достаточно точными и надежными, мы наконец узнаем, какую форму имеет наша Вселенная.

По материалам журналов "American Scientist" и "Popular Science".

Ученые-космогонисты до сих пор не знают точного ответа на вопрос о форме Вселенной. Как, впрочем, и на вопросы о ее конечности-бесконечности или замкнутости-разомкнутости. Многих космогонистов объединяет гипотеза Большого взрыва, которая в упрощенном изложении выглядит так.

Большой взрыв: как все начиналось…

До Большого взрыва не существовало понятий «здесь» и «там», «до» и «после». Вся материя мира была сосредоточена в одной точке с практически нулевым размером и, соответственно, практически бесконечной плотностью. Не существовало и времени, потому что в самой точке ничего не происходило, а за ее пределами ничего не было и, следовательно, происходить не могло.

Потом в силу каких-то причин точка (ее еще называют «космическим яйцом») взорвалась. Новорожденная материя стремительно, со скоростью света хлынула в окружающее «ничто». Появились энергия и силы – ядерные, электромагнитные, гравитационные. Появилось и начало течь время.

Материя закрутилась спиралями туманностей. Возникли звезды, а затем и планеты. Спустя миллиарды лет на третьей планете, ничем не примечательном, заурядном желтом карлике, находящемся на периферии ничем не примечательной, заурядной спиральной галактики, из первобытного океана выползла на сушу первая протобактерия.

А еще через миллиард лет потомки этой протобактерии начали ломать себе голову над различными космогоническими вопросами.

Вселенная велика, но конечна

Гипотеза Большого взрыва определяет возраст Вселенной в 15 (примерно!) миллиардов лет. Если гипотеза неверна, то неправильна и оценка возраста. Может, никакого взрыва и не было, и Вселенная существовала всегда?

Но если гипотеза верна, то становится ясным ответ на вопрос о размере Вселенной. Если она верна, размер Вселенной с легкостью может подсчитать каждый школьник.

В самом деле, нужно просто умножить время (15 миллиардов лет) на скорость разлетания материи. То есть на скорость света – 300 000 километров в секунду. Скорее всего, эта скорость с годами становится несколько меньше, но для простоты расчета будем считать ее постоянной.

Умножили? Да, огромное получилось число, со множеством нулей… но все же не бесконечное. Вывод: Вселенная велика, но конечна. А стало быть, должна иметь не только размер, но и форму.

И вот тут начинается самое интересное.

Вселенная может быть самых разных форм: плоской, открытой или замкнутой


К вопросу о форме Вселенной

Логичнее и проще всего считать, что Вселенная имеет форму сферы. В самом деле, если материя разлетается из единого центра с постоянной скоростью, то что это может быть, как не сфера? А вот если скорость не постоянна и Вселенная не замкнута и не однородна, то это может быть любая форма. Например, прямая или изогнутая четырехмерная плоскость. В этом случае Вселенная не замкнута, вечна и бесконечна.

Информацию о форме Вселенной ученые пытаются получить, исследуя так называемое реликтовое излучение. Начало всех начал, или Большой взрыв сопровождался выбросом не только материи, но и излучения. У этого электромагнитного излучения, называемого реликтовым, есть свои, неизменные физические характеристики, которые позволяют астрофизикам отличать его от обширной разновидности других «космических лучей». Считается, что реликтовое излучение до сих пор равномерно заполняет Вселенную. Экспериментально его существование было подтверждено в 1965 году.

Вселенная имеет форму бутылки?


Так выглядит бутылка Клейна (замкнутая односторонняя поверхность)

Исследуя реликтовое излучение, советский ученый Д.Д. Иваненко еще в середине прошлого века выдвинул предположение, что Вселенная, во-первых, замкнута, а во-вторых, далеко не везде подчиняется законам эвклидовой геометрии. Неподчинение эвклидовой геометрии означает, что где-то есть места, где параллельные линии пересекаются и даже перетекают одна в другую. Замкнутость Вселенной означает, что она, возможно, «замкнута сама на себя»: отправившись в путешествие из одной ее точки (скажем, с планеты Земля) и двигаясь, как нам кажется, строго по прямой, мы в конце концов очутимся там же, на Земле – хотя и через очень большое количество лет.

Косвенное подтверждение теории Д.Д. Иваненко и его последователей было получено в 2001 году. Американский космический зонд WMAP (Wilkinson Microwave Anisotropy Probe) передал на Землю данные о флуктуациях (изменениях, колебаниях) температуры реликтового излучения. Астрофизиков заинтересовали размеры и характер распределения этих флуктуаций. Было проведено компьютерное моделирование, показавшее, что подобный характер флуктуаций может наблюдаться лишь в том случае, если Вселенная ограниченна и замкнута сама на себя.

Даже луч света, распространяясь в пространстве, должен через определенный (большой) промежуток времени возвратиться в исходную точку. Значит, астрономы Земли могут, например, наблюдать одну и ту же галактику в разных частях небосвода, да еще и с разных сторон!

Если данные WMAP будут подтверждены, наши взгляды на Вселенную изменятся очень сильно. Во-первых, она окажется относительно небольшой – не более 10 миллиарда световых лет в поперечнике. Во-вторых, ее формой может оказаться тор (бублик), а то и что-то совсем экзотическое, например замкнутая на себя бутылка Клейна.

Кроме того, это будет означать, что мы сможем наблюдать всю Вселенную целиком и убедиться в том, что везде действуют одни и те же физические законы.

> Какая форма у Вселенной?

В какой форме существует Вселенная : исследование бесконечного пространства, карта реликтового излучения WMAP, геометрия Вселенной и предполагаемые формы с фото.

Стоит ли вообще размышлять над тем, какой формы Вселенная? С чем мы имеем дело? Сфера? Конус? Плоская? И как это определить?

Вселенная - это единственное место, в котором мы существуем и за пределы которого не вырваться (потому что их нет). Благодаря физическим законам, природным постоянным и извергающимся тяжелым металлам, нам удалось создать жизнь на небольшом скалистом шаре, затерянном в одной из множества галактик.

Но разве вам не хочется узнать, где вы живете? Просто получить возможность посмотреть на все со стороны, как мы сделали это с родной планетой Землей. Чтобы вы увидели? Бесконечная темнота? Множество пузырьков? Снежный шар? Крысиный лабиринт в руках инопланетян или что-то еще? Какая форма у Вселенной?

Что же, ответ намного проще, но также и страннее. О форме Вселенной начали задумываться еще в древние времена. И люди, в силу нехватки информации, предлагали довольно чудные вещи. В индуистских текстах это было яйцо в форме человека. Греки видели остров, плавающий в пустоте. Аристотель говорит, что Вселенная имеет форму бесконечной сферы или же просто черепахи.

Интересно, что вклад Альберта Эйнштейна помогает проверить каждую из этих моделей. Ученые выдвинули три любимейших формы: положительно-изогнутая, отрицательно-изогнутая и плоская. Мы понимаем, что Вселенная существует в 4-х измерениях и любая из фигур граничит с безумной геометрией Лавкрафта. Поэтому включите максимальное воображение и поехали!

При положительно-изогнутом варианте мы получаем четырехмерную сферу. У этой разновидности есть конец, но не выделяется четкая граница. Если точнее, то две частицы пересекли бы ее, прежде чем вернуться на старт. Вы можете даже протестировать это в домашних условиях. Возьмите воздушный шар и проведите прямую линию, пока она не вернется в начальную точку.

Этот вид вписывается в три измерения и появляется, если в космосе есть огромное количество энергии. Чтобы полностью изогнуться или замкнуться, пространству пришлось бы остановить расширение. Это произойдет, если появится масштабный энергетический запас, способный создать край. Современные данные показывают, что расширение – бесконечный процесс. Так что этот сценарий отпадает.

Отрицательно-изогнутая форма Вселенной – четырехмерное седло. Она открыта, лишена границ в пространстве и времени. Здесь мало энергии, поэтому Вселенная не перестанет расширяться. Если пустить две частицы по ровным линиям, то они никогда не встретятся, а просто будут расходиться, пока не уйдут в разные стороны.

Если критическое количество энергии будет колебаться между крайностями, то спустя бесконечность расширение прекратится. Это плоская Вселенная. Здесь две частицы будут путешествовать параллельно, но никогда не разойдутся и не встретятся.

Легко представить эти три формы, но есть еще множество вариантов. Футбольный мяч напоминает идею со сферической Вселенной. Пончик – технически плоская, но связанная в определенных точках. Некоторые считают, что в пользу этого варианта говорят огромные теплые и прохладные пятна. Можете рассмотреть предполагаемые формы Вселенной на фото.

И вот мы подошли к трубе. Это еще один вид отрицательного искривления. Один ее конец будет зауженный, а второй – широкий. В первой половине все казалось бы узким и существовало в двух измерениях. А в широком можно было бы путешествовать на максимальные расстояния, но возвращаться приходилось бы в обратную сторону (в изгибе меняется направление).

Тогда что? С чем мы имеем дело? Рогалик? Духовой инструмент? Гигантская сырная голова? Ученые все еще не исключили варианты с трубой и седлом.

Ворчуны будут утверждать, что все это бессмысленно и нам никогда не узнать правду. Но давайте не будем столь категоричны. Последние данные Планка показывают, что наша Вселенная… плоская! Бесконечно конечная, совершенно не изогнутая и с точным критическим количеством энергии.

Немыслимо, что мы можем не только узнать, как Вселенная выглядит, но есть и люди, которые постоянно пытаются найти еще больше информации. Если «плоская» кажется вам скучной, то не забывайте, что у нас еще нет достаточной информации. Поэтому вполне вероятно, что все мы можем существовать в гигантском пончике.

Знаете ли вы о том, что наблюдаемая нами Вселенная имеет довольно определённые границы? Мы привыкли ассоциировать Вселенную с чем-то бесконечным и непостижимым. Однако современная наука на вопрос о «бесконечности» Вселенной предлагает совсем другой ответ на столь «очевидный» вопрос.

Согласно современным представлениям, размер наблюдаемой Вселенной составляет примерно 45,7 миллиардов световых лет (или 14,6 гигапарсек). Но что означают эти цифры?

Первый вопрос, который приходит в голову обычному человеку – как Вселенная вообще не может быть бесконечной? Казалось бы, бесспорным является то, что вместилище всего сущего вокруг нас не должно иметь границ. Если эти границы и существуют, то что они вообще собой представляют?

Допустим, какой-нибудь астронавт долетел до границ Вселенной. Что он увидит перед собой? Твёрдую стену? Огненный барьер? А что за ней – пустота? Другая Вселенная? Но разве пустота или другая Вселенная могут означать, что мы на границе мироздания? Ведь это не означает, что там находится «ничего». Пустота и другая Вселенная – это тоже «что-то». А ведь Вселенная – это то, что содержит абсолютно всё «что-то».

Мы приходим к абсолютному противоречию. Получается, граница Вселенной должна скрывать от нас что-то, чего не должно быть. Или граница Вселенной должна отгораживать «всё» от «чего-то», но ведь это «что-то» должно быть также частью «всего». В общем, полный абсурд. Тогда как учёные могут заявлять о граничном размере, массе и даже возрасте нашей Вселенной? Эти значения хоть и невообразимо велики, но всё же конечны. Наука спорит с очевидным? Чтобы разобраться с этим, давайте для начала проследим, как люди пришли к современному понимаю Вселенной.

Расширяя границы

Человек с незапамятных времён интересовался тем, что представляет собой окружающий их мир. Можно не приводить примеры о трёх китах и прочие попытки древних объяснить мироздание. Как правило, в конечном итоге все сводилось к тому, что основой всего сущего является земная твердь. Даже во времена античности и средневековья, когда астрономы имели обширные познания в закономерностях движения планет по «неподвижной» небесной сфере, Земля оставалась центром Вселенной.

Естественно, ещё в Древней Греции существовали те, кто считал то, что Земля вращается вокруг Солнца. Были те, кто говорил о множестве миров и бесконечности Вселенной. Но конструктивные обоснования этим теориям возникли только на рубеже научной революции.

В 16 веке польский астроном Николай Коперник совершил первый серьёзный прорыв в познании Вселенной. Он твёрдо доказал, что Земля является лишь одной из планет, обращающихся вокруг Солнца. Такая система значительно упрощала объяснение столь сложного и запутанного движения планет по небесной сфере. В случае неподвижной Земли астрономам приходилось выдумывать всевозможные хитроумные теории, объясняющие такое поведение планет. С другой стороны, если Землю принять подвижной, то объяснение столь замысловатым движениям приходит, само собой. Так в астрономии укрепилась новая парадигма под названием «гелиоцентризм».

Множество Солнц

Однако даже после этого астрономы продолжали ограничивать Вселенную «сферой неподвижных звёзд». Вплоть до 19 века им не удавалось оценить расстояние до светил. Несколько веков астрономы безрезультатно пытались обнаружить отклонения положения звёзд относительно движения Земли по орбите (годичные параллаксы). Инструменты тех времён не позволяли проводить столь точные измерения.

Наконец, в 1837 году русско-немецкий астроном Василий Струве измерил параллакс . Это ознаменовало новый шаг в понимании масштабов космоса. Теперь учёные могли смело говорить о том, что звезды являют собой далекие подобия Солнца. И наше светило отныне не центр всего, а равноправный «житель» бескрайнего звёздного скопления.

Астрономы ещё больше приблизились к пониманию масштабов Вселенной, ведь расстояния до звёзд оказались воистину чудовищными. Даже размеры орбит планет казались по сравнению с этим чем-то ничтожным. Дальше нужно было понять, каким образом звёзды сосредоточены во .

Множество Млечных Путей

Известный философ Иммануил Кант ещё в 1755 предвосхитил основы современного понимания крупномасштабной структуры Вселенной. Он выдвинул гипотезу о том, что Млечный Путь является огромным вращающимся звёздным скоплением. В свою очередь, многие наблюдаемые туманности также являются более удалёнными «млечными путями» — галактиками. Не смотря на это, вплоть до 20 века астрономы придерживались того, что все туманности являются источниками звёздообразования и входят в состав Млечного Пути.

Ситуация изменилась, когда астрономы научились измерять расстояния между галактиками с помощью . Абсолютная светимость звёзд такого типа лежит в строгой зависимости от периода их переменности. Сравнивая их абсолютную светимость с видимой, можно с высокой точностью определить расстояние до них. Этот метод был разработан в начале 20 века Эйнаром Герцшрунгом и Харлоу Шелпи. Благодаря ему советский астроном Эрнст Эпик в 1922 году определил расстояние до Андромеды, которое оказалось на порядок больше размера Млечного Пути.

Эдвин Хаббл продолжил начинание Эпика. Измеряя яркости цефеид в других галактиках, он измерил расстояние до них и сопоставил его с красным смещением в их спектрах. Так в 1929 году он разработал свой знаменитый закон. Его работа окончательно опровергла укрепившееся мнение о том, что Млечный Путь является краем Вселенной. Теперь он был одной из множества галактик, которые ещё когда-то считали его составной частью. Гипотеза Канта подтвердилась почти через два столетия после её разработки.

В дальнейшем, открытая Хабблом связь расстояния галактики от наблюдателя относительно скорости её удаления от него, позволило составить полноценную картину крупномасштабной структуры Вселенной. Оказалось, галактики были лишь её ничтожной частью. Они связывались в скопления, скопления в сверхскопления. В свою очередь, сверхскопления складываются в самые большие из известных структур во Вселенной – нити и стены. Эти структуры, соседствуя с огромными сверхпустотами () и составляют крупномасштабную структуру, известной на данный момент, Вселенной.

Очевидная бесконечность

Из вышесказанного следует то, что всего за несколько веков наука поэтапно перепорхнула от геоцентризма к современному пониманию Вселенной. Однако это не даёт ответа, почему мы ограничиваем Вселенную в наши дни. Ведь до сих пор речь шла лишь о масштабах космоса, а не о самой его природе.

Первым, кто решился обосновать бесконечность Вселенной, был Исаак Ньютон. Открыв закон всемирного тяготения, он полагал, что будь пространство конечно, все её тела рано или поздно сольются в единое целое. До него мысль о бесконечности Вселенной если кто-то и высказывал, то исключительно в философском ключе. Без всяких на то научных обоснований. Примером тому является Джордано Бруно. К слову, он подобно Канту, на много столетий опередил науку. Он первым заявил о том, что звёзды являются далёкими солнцами, и вокруг них тоже вращаются планеты.

Казалось бы, сам факт бесконечности довольно обоснован и очевиден, но переломные тенденции науки 20 века пошатнули эту «истину».

Стационарная Вселенная

Первый существенный шаг на пути к разработке современной модели Вселенной совершил Альберт Эйнштейн. Свою модель стационарной Вселенной знаменитый физик ввёл в 1917 году. Эта модель была основана на общей теории относительности, разработанной им же годом ранее. Согласно его модели, Вселенная является бесконечной во времени и конечной в пространстве. Но ведь, как отмечалось ранее, согласно Ньютону Вселенная с конечным размером должна сколлапсироваться. Для этого Эйнштейн ввёл космологическую постоянную, которая компенсировала гравитационное притяжение далёких объектов.

Как бы это парадоксально не звучало, саму конечность Вселенной Эйнштейн ничем не ограничивал. По его мнению, Вселенная представляет собой замкнутую оболочку гиперсферы. Аналогией служит поверхность обычной трёхмерной сферы, к примеру – глобуса или Земли. Сколько бы путешественник ни путешествовал по Земле, он никогда не достигнет её края. Однако это вовсе не означает, что Земля бесконечна. Путешественник просто-напросто будет возвращаться к тому месту, откуда начал свой путь.

На поверхности гиперсферы

Точно также космический странник, преодолевая Вселенную Эйнштейна на звездолёте, может вернуться обратно на Землю. Только на этот раз странник будет двигаться не по двумерной поверхности сферы, а по трёхмерной поверхности гиперсферы. Это означает, что Вселенная имеет конечный объём, а значит и конечное число звёзд и массу. Однако ни границ, ни какого-либо центра у Вселенной не существует.

К таким выводам Эйнштейн пришёл, связав в своей знаменитой теории пространство, время и гравитацию. До него эти понятия считались обособленными, отчего и пространство Вселенной было сугубо евклидовым. Эйнштейн доказал, что само тяготение является искривлением пространства-времени. Это в корне меняло ранние представления о природе Вселенной, основанной на классической ньютоновской механике и евклидовой геометрии.

Расширяющаяся Вселенная

Даже сам первооткрыватель «новой Вселенной» не был чужд заблуждений. Эйнштейн хоть и ограничил Вселенную в пространстве, он продолжал считать её статичной. Согласно его модели, Вселенная была и остаётся вечной, и её размер всегда остаётся неизменным. В 1922 году советский физик Александр Фридман существенно дополнил эту модель. Согласно его расчётам, Вселенная вовсе не статична. Она может расширяться или сжиматься со временем. Примечательно то, Фридман пришёл к такой модели, основываясь на всё той же теории относительности. Он сумел более корректно применить эту теорию, минуя космологическую постоянную.

Альберт Эйнштейн не сразу принял такую «поправку». На помощь этой новой модели пришло, упомянутое ранее открытие Хаббла. Разбегание галактик бесспорно доказывало факт расширения Вселенной. Так Эйнштейну пришлось признать свою ошибку. Теперь Вселенная имела определённый возраст, который строго зависит от постоянной Хаббла, характеризующей скорость её расширения.

Дальнейшее развитие космологии

По мере того, как учёные пытались решить этот вопрос, были открыты многие другие важнейшие составляющие Вселенной и разработаны различные её модели. Так в 1948 году Георгий Гамов ввёл гипотезу «о горячей Вселенной», которая в последствие превратится в теорию большого взрыва. Открытие в 1965 году подтвердило его догадки. Теперь астрономы могли наблюдать свет, дошедший с того момента, когда Вселенная стала прозрачна.

Тёмная материя, предсказанная в 1932 году Фрицом Цвикки, получила своё подтверждение в 1975 году. Тёмная материя фактически объясняет само существование галактик, галактических скоплений и самой Вселенской структуры в целом. Так учёные узнали, что большая часть массы Вселенной и вовсе невидима.

Наконец, в 1998 в ходе исследования расстояния до было открыто, что Вселенная расширяется с ускорением. Этот очередной поворотный момент в науке породил современное понимание о природе Вселенной. Введённый Эйнштейном и опровергнутый Фридманом космологический коэффициент снова нашёл своё место в модели Вселенной. Наличие космологического коэффициента (космологической постоянной) объясняет её ускоренное расширение. Для объяснения наличия космологической постоянной было введено понятия – гипотетическое поле, содержащее большую часть массы Вселенной.

Современное представление о размере наблюдаемой Вселенной

Современная модель Вселенной также называется ΛCDM-моделью. Буква «Λ» означает присутствие космологической постоянной, объясняющей ускоренное расширение Вселенной. «CDM» означает то, что Вселенная заполнена холодной тёмной материей. Последние исследования говорят о том, что постоянная Хаббла составляет около 71 (км/с)/Мпк, что соответствует возрасту Вселенной 13,75 млрд. лет. Зная возраст Вселенной, можно оценить размер её наблюдаемой области.

Согласно теории относительности информация о каком-либо объекте не может достигнуть наблюдателя со скоростью большей, чем скорость света (299792458 м/c). Получается, наблюдатель видит не просто объект, а его прошлое. Чем дальше находится от него объект, тем в более далёкое прошлое он смотрит. К примеру, глядя на Луну, мы видим такой, какой он была чуть более секунды назад, Солнце – более восьми минут назад, ближайшие звёзды – годы, галактики – миллионы лет назад и т.д. В стационарной модели Эйнштейна Вселенная не имеет ограничения по возрасту, а значит и её наблюдаемая область также ничем не ограничена. Наблюдатель, вооружаясь всё более совершенными астрономическими приборами, будет наблюдать всё более далёкие и древние объекты.

Другую картину мы имеем с современной моделью Вселенной. Согласно ей Вселенная имеет возраст, а значит и предел наблюдения. То есть, с момента рождения Вселенной никакой фотон не успел бы пройти расстояние большее, чем 13,75 млрд световых лет. Получается, можно заявить о том, что наблюдаемая Вселенная ограничена от наблюдателя шарообразной областью радиусом 13,75 млрд. световых лет. Однако, это не совсем так. Не стоит забывать и о расширении пространства Вселенной. Пока фотон достигнет наблюдателя, объект, который его испустил, будет от нас уже в 45,7 миллиардах св. лет. Этот размер является горизонтом частиц, он и является границей наблюдаемой Вселенной.

За горизонтом

Итак, размер наблюдаемой Вселенной делится на два типа. Видимый размер, называемый также радиусом Хаббла (13,75 млрд. световых лет). И реальный размер, называемый горизонтом частиц (45,7 млрд. св. лет). Принципиально то, что оба эти горизонта совсем не характеризуют реальный размер Вселенной. Во-первых, они зависят от положения наблюдателя в пространстве. Во-вторых, они изменяются со временем. В случае ΛCDM-модели горизонт частиц расширяется со скоростью большей, чем горизонт Хаббла. Вопрос на то, сменится ли такая тенденция в дальнейшем, современная наука ответа не даёт. Но если предположить, что Вселенная продолжит расширяться с ускорением, то все те объекты, которые мы видим сейчас рано или поздно исчезнут из нашего «поля зрения».

На данный момент самым далёким светом, наблюдаемым астрономами, является реликтовое излучение. Вглядываясь в него, учёные видят Вселенную такой, какой она была через 380 тысяч лет после Большого Взрыва. В этот момент Вселенная остыла настолько, что смогла испускать свободные фотоны, которые и улавливают в наши дни с помощью радиотелескопов. В те времена во Вселенной не было ни звёзд, ни галактик, а лишь сплошное облако из водорода, гелия и ничтожного количества других элементов. Из неоднородностей, наблюдаемых в этом облаке, в последствие сформируются галактические скопления. Получается, именно те объекты, которые сформируются из неоднородностей реликтового излучения, расположены ближе всего к горизонту частиц.

Истинные границы

То, имеет ли Вселенная истинные, не наблюдаемые границы, до сих пор остаётся предметом псевдонаучных догадок. Так или иначе, все сходятся на бесконечности Вселенной, но интерпретируют эту бесконечность совсем по-разному. Одни считают Вселенную многомерной, где наша «местная» трёхмерная Вселенная является лишь одним из её слоёв. Другие говорят, что Вселенная фрактальна – а это означает, что наша местная Вселенная может оказаться частицей другой. Не стоит забывать и о различных моделях Мультивселенной с её закрытыми, открытыми, параллельными Вселенными, червоточинами. И ещё много-много различных версий, число которых ограничено лишь человеческой фантазией.

Но если включить холодный реализм или просто отстраниться от всех этих гипотез, то можно предположить, что наша Вселенная является бесконечным однородным вместилищем всех звёзд и галактик. Причем, в любой очень далёкой точке, будь она в миллиардах гигапарсек от нас, всё условия будут точно такими же. В этой точке будут точно такими же горизонт частиц и сфера Хаббла с таким же реликтовым излучением у их кромки. Вокруг будут такие же звёзды и галактики. Что интересно, это не противоречит расширению Вселенной. Ведь расширяется не просто Вселенная, а само её пространство. То, что в момент большого взрыва Вселенная возникла из одной точки говорит только о том, что бесконечно мелкие (практические нулевые) размеры, что были тогда, сейчас превратились в невообразимо большие. В дальнейшем будем пользоваться именно этой гипотезой для того, что наглядно осознать масштабы наблюдаемой Вселенной.

Наглядное представление

В различных источниках приводятся всевозможные наглядные модели, позволяющие людям осознать масштабы Вселенной. Однако нам мало осознать, насколько велик космос. Важно представлять, каким образом проявляют такие понятия, как горизонт Хаббла и горизонт частиц на самом деле. Для этого давайте поэтапно вообразим свою модель.

Забудем о том, что современная наука не знает о «заграничной» области Вселенной. Отбросив версии о мультивселенных, фрактальной Вселенной и прочих её «разновидностях», представим, что она просто бесконечна. Как отмечалось ранее, это не противоречит расширению её пространства. Разумеется, учтём то, что её сфера Хаббла и сфера частиц соответственно равны 13,75 и 45,7 млрд световых лет.

Масштабы Вселенной

Нажмите кнопку СТАРТ и откройте для себя новый, неизведанный мир!
Для начала попробуем осознать, насколько велики Вселенские масштабы. Если вы путешествовали по нашей планете, то вполне можете представить, насколько для нас велика Земля. Теперь представим нашу планету как гречневую крупицу, которая движется по орбите вокруг арбуза-Солнца размером с половину футбольного поля. В таком случае орбита Нептуна будет соответствовать размеру небольшого города, область – Луне, область границы воздействия Солнца – Марсу. Получается, наша Солнечная Система настолько же больше Земли, насколько Марс больше гречневой крупы! Но это только начало.

Теперь представим, что этой гречневой крупой будет наша система, размер которой примерно равен одному парсеку. Тогда Млечный Путь будет размером с два футбольных стадиона. Однако и этого нам будет не достаточно. Придётся и Млечный Путь уменьшить до сантиметрового размера. Она чем-то будет напоминать завёрнутую в водовороте кофейную пенку посреди кофейно-чёрного межгалактическое пространства. В двадцати сантиметрах от неё расположиться такая же спиральная «кроха» — Туманность Андромеды. Вокруг них будет рой малых галактик нашего Местного Скопления. Видимый же размер нашей Вселенной будет составлять 9,2 километра. Мы подошли к понимаю Вселенских размеров.

Внутри вселенского пузыря

Однако нам мало понять сам масштаб. Важно осознать Вселенную в динамике. Представим себя гигантами, для которых Млечный Путь имеет сантиметровым диаметр. Как отмечалось только что, мы окажемся внутри шара радиусом 4,57 и диаметром 9,24 километров. Представим, что мы способны парить внутри этого шара, путешествовать, преодолевая за секунду целые мегапарсеки. Что мы увидим в том случае, если наша Вселенная будет бесконечна?

Разумеется, пред нами предстанет бесчисленное множество всевозможных галактик. Эллиптические, спиральные, иррегулярные. Некоторые области будут кишить ими, другие – пустовать. Главная особенность будет в том, что визуально все они будут неподвижны, пока неподвижными будем мы. Но стоит нам сделать шаг, как и сами галактики придут в движение. К примеру, если мы будем способны разглядеть в сантиметровом Млечном Пути микроскопическую Солнечную Систему, то сможем пронаблюдать её развитие. Отдалившись от нашей галактики на 600 метров, мы увидим протозвезду Солнце и протопланетный диск в момент формирования. Приближаясь к ней, мы увидим, как появляется Земля, зарождается жизнь и появляется человек. Точно также мы будем видеть, как видоизменяются и перемещаются галактики по мере того, как мы будем удаляться или приближаться к ним.

Следовательно, чем в более далёкие галактики мы будем вглядываться, тем более древними они будут для нас. Так самые далёкие галактики будут расположены от нас дальше 1300 метров, а на рубеже 1380 метров мы будем видеть уже реликтовое излучение. Правда, это расстояние для нас будет мнимым. Однако, по мере того, как будем приближаться к реликтовому излучению, мы будем видеть интересную картину. Естественно, мы будем наблюдать то, как из первоначального облака водорода будут образовываться и развиваться галактики. Когда же мы достигнем одну из этих образовавшихся галактик, то поймем, что преодолели вовсе не 1,375 километров, а все 4,57.

Уменьшая масштабы

В качестве итога мы ещё больше увеличимся в размерах. Теперь мы можем разместить в кулаке целые войды и стены. Так мы окажемся в довольно небольшом пузыре, из которого невозможно выбраться. Мало того, что расстояние до объектов на краю пузыря будет увеличиваться по мере их приближения, так ещё и сам край будет бесконечно смещаться. В этом и заключается вся суть размера наблюдаемой Вселенной.

Какой бы Вселенная не была большой, для наблюдателя она всегда останется ограниченным пузырём. Наблюдатель всегда будет в центре этого пузыря, фактически он и есть его центр. Пытаясь добраться до какого-либо объекта на краю пузыря, наблюдатель будет смещать его центр. По мере приближения к объекту, этот объект всё дальше будет отходить от края пузыря и в тоже время видоизменяться. К примеру – от бесформенного водородного облачка он превратится в полноценную галактику или дальше галактическое скопление. Ко всему прочему, путь до этого объекта будет увеличиваться по мере приближения к нему, так как будет меняться само окружающее пространство. Добравшись до этого объекта, мы лишь сместим его с края пузыря в его центр. На краю Вселенной всё также будет мерцать реликтовое излучение.

Если предположить, что Вселенная и дальше будет расширяться ускоренно, то находясь в центре пузыря и мотая время на миллиарды, триллионы и даже более высокие порядки лет вперёд, мы заметим ещё более интересную картину. Хотя наш пузырь будет также увеличиваться в размерах, его видоизменяющиеся составляющие будут отдаляться от нас ещё быстрее, покидая край этого пузыря, пока каждая частица Вселенной не будет разрозненно блуждать в своём одиноком пузыре без возможности взаимодействовать с другими частицами.

Итак, современная наука не располагает сведениями о том, каковы реальные размеры Вселенной и имеет ли она границы. Но мы точно знаем о том, что наблюдаемая Вселенная имеет видимую и истинную границу, называемую соответственно радиусом Хаббла (13,75 млрд св. лет) и радиусом частиц (45,7 млрд. световых лет). Эти границы полностью зависят от положения наблюдателя в пространстве и расширяются со временем. Если радиус Хаббла расширяется строго со скоростью света, то расширение горизонта частиц носит ускоренный характер. Вопрос о том, будет ли его ускорение горизонта частиц продолжаться дальше и не сменится ли на сжатие, остаётся открытым.



© dagexpo.ru, 2024
Стоматологический сайт