Искусственная радиоактивность. Явление радиоактивности. Радиоактивность естественная и искусственная

21.09.2019

Радиоактивность - это. способность ядер атомов некоторых химических элементов самопроизвольно превращаться в ядра дру­гих химических элементов с выделением энергии в виде излучений. Естественно радиоактивными называются вещества, существующие в природе, а искусственно радиоактивными - приобретшие это свойство искусственно. Явление радиоактивности было открыто в 1896 г. французским физиком А. Беккерелем при изучении фос­форесценции солей урана. При спонтанном, не зависящем от внеш­них причин, распаде солей урана испускались лучи, сходные с рентгеновскими: они проникали через непрозрачные вещества, засвечивали фотобумагу, ионизировали газы, воздействовали на живую ткань. В 1898г. Мария Склодовская-Кюри открыла радио­активность тория. Она показала также, что урановая руда обла­дает большей радиоактивностью по сравнению с чистым ураном. Мария и Пьер Кюри высказали предположение, что соли урана содержат примеси других радиоактивных веществ, ими оказались полоний и радий.

Излучения естественно радиоактивных элементов, как показал английский физик Э. Резерфорд (1911), имеют различные физиче­ские свойства. Часть лучей в электрическом поле отклоняется к отрицательно заряженному проводнику, что свидетельствует об их положительном заряде; их назвали ά-лучами. Другая часть лучей отклонялась к положительно заряженному проводнику. Эти отрицательно заряженные лучи получили название β-лучей. Электронейтральные лучи, которые не отклонялись в электриче­ском поле, были названы γ-лучами.

Изучение сущности естественного радиоактивного распада при­вело Э. Резерфорда к заключению о возможности искусственного расщепления ядер. В 1919 г. при бомбардировке ά -частицами ядра атома азота он выбил из него положительно заряженную частицу - протон. При этом образовался новый химический элемент - кислород.

В 1932 г. появились данные о существовании в ядре атомов наряду с протонами аналогичных им по величине нейтронов. Со­ветские физики Д. Д. ИЕаненко, Е. Г. Гапон и немецкий физик Гольдхабер разработали теорию о протонно-нейтропном строении ядра атома. Английский физик Chadwick в 1933 г. открыл нейтрон. Ирен и Фредерик Жолио-Кюри при бомбардировке ά -частицами алюминия, бора, магния наряду с нейтронами получили позит­рон. Причем позитроны испускались и после прекращения облу­чения алюминия, т. е. впервые были получены радиоактивные элементы искусственным путем.

2713А1 +42 ά→10n + 3015P→ е+ + 3014Si

Первый генератор нейтронов, которые образовывались в ускори­теле тяжелых заряженных частиц (циклотроне), сконструировал в 1936 г. Laurence.

В 1940 г. советские физики Г. Н. Флеров и К. А. Петржак открыли явление самопроизвольного деления ядер урана на круп­ные осколки с выделением 2-3 свободных нейтронов, которые, в свою очередь, вызывали деление других ядер с высвобождением новых нейтронов и т. д. Показана возможность цепной реакции, которая могла быть использована для облучения нейтронами ста­бильных химических элементов и превращения их в радиоактив­ные. В противоположность а-частицам нейтроны, будучи электро­нейтральными, легко внедряются в ядра атомов, переводя их в возбужденное состояние.

В 1942 г. в США итальянский физик Э. Ферми впервые получил цепную реакцию на практике, создав работающий атомный реак­тор. Ко времени второй мировой войны относится разработка пер­вых образцов атомного оружия. Его применили США в 1945 г. при бомбардировке японских городов Хиросима и Нагасаки. В 1954 г. в СССР началась промышленная эксплуатация первой в мире атомной электростанции.

Благодаря созданию атомных реакторов и мощных ускорите­лей заряженных частиц в настоящее время получены радиоактив­ные изотопы всех химических элементов, которые можно исполь­зовать для нужд народного хозяйства, в том числе и для меди­цины.

Искусственно радиоактивные изотопы получают путем бомбар­дировки ядер атомов стабильных химических элементов нейтро­нами, протонами, дейтронами, а также из продуктов деления урана или плутония в атомных реакторах.

В качестве примера можно привести реакцию получения радио­фосфора:

3115P + 10n → 3215Р или 3115P + 11H → 3215P + e+ + п.

Явление радиоактивности состоит в самопроизвольном распаде ядер с испусканием одной или нескольких частиц. Ядра, подверженные такому распаду, называются радиоактивными. Очевидно, что необходимым, но не всегда достаточным условием радиоактивного распада является его энергетическая выгодность - масса радиоактивного ядра должна превышать сумму масс ядра-осколка и частиц, вылетающих при распаде (совершенно очевидно, что аналогичное неравенство должно выполняться, если в нем

массы ядер заменить на массы соответствующих атомов, именно такие неравенства обычно и используют при рассмотрении радиоактивных распадов).

В природе существует большое число естественно-радиоактивных ядер, т. е. ядер, не успевших распасться с момента их образования до настоящего времени или непрерывно образующихся под действием космических лучей. В то же время радиоактивные ядра могут быть получены искусственным путем - бомбардировкой стабильных ядер частицами. Никакой физической границы между естественной и искусственной радиоактивностью нет.

Впервые радиоактивность была обнаружена А. Беккерелем в 1896 г. Незадолго до этого были открыты рентгеновские лучи, и Беккерель изучал связь флюоресценции с рентгеновским излучением. Способные флюоресцировать соли урана помещались на фотопластинку, завернутую в черную бумагу, и ставились на солнечный свет. Считалось, что под действием солнечных лучей уран флюоресцирует, и, если в состав спектра флюоресценции входят рентгеновские лучи, то, проходя через черную бумагу, они будут вызывать почернение пластинки. Несколько дней не было солнца, и подготовленные

пластинки с ураном пролежали в черном ящике. Тем не менее после проявления было обнаружено сильное почернение пластинок. Таким образом выяснилось, что соли урана сами испускают какие-то лучи.

Очень скоро к исследованию этого явления подключились другие ученые. 1898 г. П. Кюри совместно с М. Склодовской-Кюри открыли новые радиоактивные элементы - полоний и радий. Используя разработанный ими метод обогащения, они смогли в 1902 г. путем кропотливой работы по переработке больших количеств урановой смолки получить несколько дециграммов чистой соли радия. В 1903 г. за исследования явления радиоактив-

ности супруги Кюри совместно с А. Беккерелем были удостоены Нобелевской премии по физике. Сам термин «радиоактивность» был введен в науку. Склодовской-Кюри.

Законы радиоактивного распада. Радиоактивный распад характеризуется временем протекания, сортом испускаемых частиц, их энергией, а ри вылете нескольких частиц - угловой корреляцией, т. е. относительным углом между направлениями их вылета. Исходное радиоактивное ядро называется материнским, продукт его распада - дочерним.

Поскольку процесс распада происходит самопроизвольно (спонтанно), то изменение dN числа ядер N из-за распада за произвольный промежуток времени dt определяется только количеством радиоактивных ядер в момент t и пропорционально промежутку времени dt:

DN = λNdt, (10.34)

где λ - постоянная, характеризующая скорость распада. Интегрируя (10.34)

и считая, что при t = 0 количество ядер равно исходному N = N 0 , получаем

N = N 0 е - λt (10.35)

т. е. число ядер убывает по экспоненциальному закону.

Величина А, определяющая в (10.35) скорость убывания количества радиоактивных ядер, называется постоянной распада. Она имеет размерность [с -1 ] и, как будет показано чуть дальше, характеризует вероятность распада одного атома в одну секунду. Для характеристики радиоактивных элементов вводится также понятие периода полураспада Т 1/2 . Под ним понимается время, в течение которого распадается половина наличного числа атомов.

Впервые закон радиоактивного распада (10.35) был установлен в 1903 г. П. Кюри. Он же ввел понятие периода полураспада и показал его независимость от внешних условий. Исходя из этого, П. Кюри предложил использовать период полураспада как эталон времени для определения абсолютного возраста земных пород.

Рассчитаем теперь среднее время жизни радиоактивного ядра. Подставляя

условие N(T 1/2) = N 0 /2 в уравнение (10.35), получим

N 0 /2 = N 0 e - λTl/2 , (10.36)

откуда, логарифмируя, найдем, что

λТ 1/2 = 1n2 = 0,693,

а период полураспада

Т 1/2 = 0,693/λ. (10.37)

При экспоненциальном законе радиоактивного распада в любой момент времени t имеется отличная от нуля вероятность найти еще нераспавшиеся ядра. Время жизни таких ядер превышает t. Вместе с тем, другие, распавшиеся к этому времени ядра, прожили разное время, меньшее t. Среднее время жизни для данного радиоактивного изотопа определяется обычно следующим образом:

Следовательно, среднее время жизни г радиоактивного ядра равно обратной величине от постоянной распада А. За время т первоначальное число ядер уменьшается в е раз.

Величина

А = - dN/dt = λN

называется активностью данного препарата,



она определяет число распадов в секунду. Активность является характеристикой определенного количества распадающегося вещества, а не отдельного ядра. Единицей активности является беккерелъ: 1 беккерель (Бк) равен 1 распаду в секунду. Часто на практике используют и внесистемную, ранее применявшуюся, единицу активности - кюри: 1 кюри (Ки) равно числу распадов ядер, содержащихся в 1 г радия за 1 с 3,7 10 10 распадов в секунду).

Виды радиоактивных распадов .К числу радиоактивных процессов относятся α- и β-распады (в том числе и захват электрона с атомной оболочки), γ-излучение, деление ядер, а также испускание запаздывающих нейтронов и протонов. Два последних процесса относятся к каскадному двухступенчатому типу, так как испускание запаздывающих нейтронов (протонов) происходит после предварительного испускания ядром электрона (позитрона). Поэтому испускание запаздывает на время, характеризующее предшествующий β-распад. Рассмотрим перечисленные нами процессы.

Альфа-распад . Спонтанному α-распаду подвержены только тяжелые ядра с Z > 83 и небольшая группа редкоземельных ядер в области А = 140-160. При α-распаде исходное материнское ядро испускает ядро гелия (α-частицу) и превращается в дочернее ядро, числа протонов и нейтронов у которого уменьшаются на две единицы каждое. Период полураспада α-активных ядер изменяется в чрезвычайно широких пределах. Так, например, для изотопа полония 214 84 Pо он равен 3 10 ~7 с, а для изотопа свинца 204 82 Pb - 1,4 * 10 17 лет. Диапазон изменения энергии вылетающих α-частиц значительно меньше - от 4 до 9 МэВ, причем чем меньше их энергия, тем больше период полураспада. Функциональная связь между энергией α-частицы Е и периодом полураспада радиоактивного ядра T 1/2 хорошо

описывается формулой

lgT 1/2 = а/√Ё + b, (10.39)

полученной на основе экспериментальных данных Г. Гейгером и Дж. Нэттолом в 1911 г. Теоретическое обоснование закон Гейгера-Нэттола получил лишь после создания квантовой механики в 1928 г. в работах Г. Гамова и, независимо, Р. Герни и Э. Кондона, которые показали, что вероятность вылета α-частицы из ядра определяется вероятностью ее проникновения через кулоновский барьер. Экспоненциальный характер этого процесса возникает вследствие экспоненциального затухания волновой функции в области под

барьером, где потенциальная энергия больше энергии частицы.

Четыре элементарные частицы, из которых состоит α-частица (два протона и два нейтрона), участвуют в сложном движении нуклонов в ядре, и нет никакого способа отличить их от других частиц этого ядра. Вместе с тем существует заметная (~ 10 ~6) вероятность образования а-частицы в ядре на какое-то короткое время в результате случайного сближения четырех нуклонов. Однако лишь только когда а-частица покинет ядро и окажется достаточно далеко от него, можно рассматривать ее и ядро как две отдельные частицы.

Энергетически α-распад возможен, если энергия связи исходного материнского ядра Е А, z меньше суммы энергий связи дочернего ядра Е А-4, z-2 и α-частицы Е α , т. е. должно выполняться соотношение

ΔE = Е А-4, z-2 + E α - Е А, z > 0. (10.40)

Энергия связи α-частицы равна 28 МэВ, что составляет 7 МэВ/нуклон.

Поэтому невозможен α-распад средних ядер, у которых энергия связи на

нуклон ~ 8 МэВ.

Рассмотрим вид потенциальной энергии а-частицы в ядре и его окрестности (рис. 10.9). Вне ядра короткодействующие ядерные силы быстро обращаются в нуль, и на а-частицу действует только электростатическое кулоновское отталкивание, потенциал которого U кул равен

U кул = 2(Z-2)e 2 /r (10.41)

На границе ядра вступает в игру сильное притяжение, обусловленное ядерными силами, и потенциальная кривая резко уходит вниз. Внутри ядра потенциал можно считать примерно постоянным.

Даже если полная энергия а-частицы в ядре больше нуля, как это показано на рис. 10.9, и тем самым энергетически а-распад разрешен, по представлениям классической физики этот процесс не может происходить без сообщения ей дополнительной энергии, поскольку частица находится в потенциальной яме. Однако квантовая механика разрешает прохождение или, точнее, просачивание частицы через потенциальный барьер. Говорят, что может происходить туннелирование α-частицы сквозь барьер. Дело в том, что

свойства квантовой частицы описываются с помощью волновой функции ψ, квадрат модуля которой |ψ(r)| 2 пропорционален вероятности обнаружить частицу в точке r. В

случае конечного потенциала (потенциала со стенками конечной высоты) ψ-функция

всюду отлична от нуля. Поэтому существует, хотя и малая, вероятность обнаружить частицу вне ядра, а это и означает возможность α-распада.

Покажем качественно, откуда следуют указанные выше закономерности α-распада. Проницаемость D барьера для α-частицы с энергией Е определяется следующим выражением:

(10.42)

где интегрирование производится в пределах от радиуса ядра R я до точки поворота R n , определяемой из условия

2(Z–2)e 2 /R n = Е

(мы учли, что на α-частицу вне ядра действует кулоновский потенциал ядра-остатка с зарядом Z-2). Будем считать, что туннелирование происходит глубоко под барьером, т. е.

В силу малости постоянной Планка, стоящей в выражении для проницаемости барьера в экспоненте, фактически вклад области, где U ~ Е, мал, и накладываемое нами условие физически оправдано. При этих предположениях формула (10.42) принимает вид

где А, В, С - константы. Поскольку период полураспада Т 1/2 обратно пропорционален проницаемости барьера, из выражения (10.43) следует экспериментально наблюдаемый закон Гейгера-Нэттола

lgT 1/2 = а/√Е + b , (10.44)

связывающий период полураспада с энергией вылетающей α-частицы. Реально коэффициенты а и b - не константы, однако они очень слабо зависят от атомного номера материнского ядра Z:

а ~ 1,6 Z; b ~ -1,6 Z 2/3 - 21,4 (10.45)

(если Т 1/2 выражается в секундах, Е - в мегаэлектронвольтах, a Z - заряд дочернего ядра). Как видно, Т 1/2 не зависит от атомного веса А, слабо зависит от Z и в сильной степени - от энергии вылетающих α-частиц.

До сих пор мы говорили только о проницаемости потенциального барьера.

Чтобы найти константу распада λ надо умножить проницаемость барьера на число попыток α-частицы ν в единицу времени преодолеть этот барьер, т. е.

λ= 0,693/T 1/2 = νD. (10.46)

Грубая оценка предэкспоненциального множителя в (10.46) может быть сделана, если под v понимать частоту ударов а-частицы о поверхность ядра, определяемой формулой

ν = v/(2R n), (10.47)

где v - скорость а-частицы внутри ядра. Разумеется, предэкспоненциальный множитель также зависит от энергии (согласно нашей грубой оценке он пропорционален √Е), но, по сравнению с экспоненциальной зависимостью, это - медленно меняющаяся функция энергии, так что именно проницаемостью барьера определяются

все основные закономерности α-распада.

Энергетический спектр а-частиц многих α-активных ядер состоит из нескольких линий, одна из которых является преобладающей. В качестве примера на рис. 10.10 показан α-спектр ThC(212 83 Bi).

Рис. 10.10 α-спектр ThC(212 83 Bi).

Дискретность линии и их относительная интенсивность легко объяснимы. Дело в том, что α-частицы могут либо испускаться ядром, находящимся в возбужденном состоянии (так называемые длиннопробежные α-частицы), либо может происходить α-распад из сновного состояния материнского ядра в возбужденные состояния дочернего ядра (короткопробежные α-частицы). На рис. 10.11 приведены два примера таких переходов - распад 238 Рu и 212 Ро.

В первом случае(238 Рu) α-частицы максимальной энергии соответствуют переходам из основного в основное состояние. Кроме того, α-распад может идти в возбужденные состояния дочернего ядра 234 U с последующими γ~переходами в основное состояние. Распад 212 Ро - пример испускания α-частиц из возбужденного состояния. Такая ситуация возникает от того, что 212 Ро образуется в результате β-распада 212 Bi. Находясь в возбужденном состоянии, ядро 212 Ро может либо испустить α-частицу, либо путем γ-излучения перейти в основное состояние.

Бета-распад. Бета-распад - процесс самопроизвольного превращения нестабильного ядра в ядро-изобару (ядро с тем же атомным номером) с зарядом, отличным от исходного на ΔZ = ±1, за счет испускания электрона (позитрона) или захвата электрона с атомной оболочки. Главной особенностью β-распада является то, что он обусловлен не ядерными и не электромагнитными силами, а слабым взаимодействием (см. гл. 12), вероятность

которого примерно в 10 14 раз меньше ядерного. Поэтому периоды полураспадов

β-активных ядер в среднем довольно велики - порядка нескольких минут и даже часов. В общем случае при прочих равных условиях при β-распаде соблюдается та же тенденция, что и при α-распаде: чем больше энергия Q, выделяющаяся при распаде, тем меньше период полураспада.

Периоды полураспада меньше 10 ~2 с не встречаются, так как при них значения Q получились бы больше 10 МэВ, т. е. больше средней энергии связи нуклонов в ядре; при таком избытке энергии ядро оказывается нестабильным по отношению к вылету нуклона, а этот процесс (когда он возможен) происходит гораздо быстрее β-распада, за время порядка 10~20 с. Процессы β-распада идут всегда, когда они энергетически возможны. Кулоновский барьер для β-распада несущественен в силу очень малой массы электрона.

Характерной особенностью β -распада является энергетический спектр вылетающих частиц (рис. 10.12). В отличие от а-частиц, в данном случае мы имеем непрерывный энергетический спектр электронов β-распада. Наблюдающаяся непрерывность является следствием участия в процессе распада еще одной частицы - нейтрино, обладающей нулевой энергией покоя (согласно последним данным верхний предел энергии покоя нейтрино составляет 3 эВ). Поэтому при одиночном акте распада соотношение энергий электрона и нейтрино может быть любым, т. е. энергия электрона может принимать любые значения от нуля до максимальной возможной энергии (полной выделяющейся энергии).

Остановимся более подробно на энергетических процессах при β-распаде.

Рассмотрим атом с зарядом Z+1 и полной энергией E z+1 . Пусть его нулевая энергия соответствует системе «однократно ионизованный атом плюс покоящийся свободный электрон». Последнее означает, что энергия нейтрального атома с зарядом Z + 1 слегка отрицательна и имеет порядок энергии

ионизационного потенциала атома (рис. 10.13). При этом возможны следующие случаи.

А. Энергия E z атома с зарядом Z выше, чем E z+1 . Энергетически возможным является β-распад, т. е. распад с вылетом электрона, и атом Z переходит в ионизованный атом Z + 1. Процесс E z+1 -> E z запрещен.

B . Переход E z+1 -> E z возможен только в том случае, если ядро Z + 1 поглощает электрон из атомных К-, L-, М-оболочек. Обычно ядром захватывается К-электрон, и поэтому процесс часто называют К-захватом. Новый атом Z образуется в возбужденном состоянии B* соответственно с вакансией (дыркой) в К- или L-оболочке. Затем роисходит переход в основное состояние, сопровождающийся испусканием характеристического излучения:

B* -> В + hv. (10.48)

C. Энергия атома Z такова, что E z + 2m 2 <= E z +1. Также возможен процесс К-захвата, но, кроме того, ядро может претерпевать β + -распад (позитронный распад). Приведенное энергетическое соотношение легко получить.

Если m- масса электрона (позитрона), M z - масса конечного ядра, а

M z+1 - масса исходного ядра, то должно выполняться неравенство

M z+1 c 2 >= M z c 2 + mс 2 . (10.49)

Но массы атомов (A M Z и A M z+1) Z и Z+1 с учетом массы электронов равны

A M Z =M Z + Zm, A M Z +1 = M z +1 + (Z + l)m. (10.50)

Подставив эти соотношения в условие A0.49), получим

A M Z +1 >= A M z +2m (10.51)

E z +1 >= E z +2mc 2 . (10.52)

Важно подчеркнуть, что β-распад - процесс не внутриядерный, а внутринуклонный. В ядре распадается одиночный нуклон - нейтрон либо протон.

Электронный распад связан с распадом нейтрона

n° -> p + + e - + ν > . (10.53)

При позитронном распаде в ядре распадается одиночный протон

р + -> n° + е + + ν. (10.54)

В формуле (10.53) знак «тильда» над нейтрино означает, что при распаде нейтрона образуется антинейтрино. Почему так происходит, будет подробно рассматриваться дальше в гл. 12. Заметим, что в свободном состоянии нейтрон нестабилен, его период полураспада равен 10,5 мин. Свободный же протон не распадается, т. к. его масса меньше массы нейтрона, но для связанного в ядре протона подобное превращение возможно, недостающая энергия восполняется ядром.

С β-распадом связано одно из удивительных открытий XX в. - открытие несохранения четности. Кажется совершенно очевидным, что выбор системы координат, в которой математически записываются физические уравнения и происходит, соответственно, эволюция системы во времени, является вполне произвольным. Следовательно, не может быть разницы между описаниями одного и того же процесса в левой и правой системах координат. Математически это означает, что все уравнения должны быть симметричны относительно операции пространственной инверсии, т. е. замены r на -r. Изменение

знаков координат какой-либо точки соответствует положению точки, полученной в результате ее зеркального отражения в трех координатных плоскостях, и поэтому такое изменение системы координат можно трактовать как переход к совокупности событий, являющихся зеркальным изображением данной совокупности событий. Преобразование

пространственной инверсии обладает физическим смыслом вследствие того, что, как показывает опыт, процессы природы в основном симметричны относительно

такого преобразования. Это означает, что для всякого процесса в природе осуществляется и протекает с той же вероятностью «зеркально симметричный» процесс.

Симметрия относительно преобразования пространственной инверсии приводит при квантовомеханическом описании к существованию у системы определенной пространственной четности. Иными словами, волновая функция системы либо четна, либо нечетна при этом преобразовании. Пространственная четность сохраняется в процессах сильного и электромагнитного взаимодействий. Что же касается слабых взаимодействий,

ответственных за β-распад, то здесь ситуация иная. Гипотеза несохранения четности в слабых взаимодействиях была выдвинута Т.Д. Ли(р.1926) и Ч.Н. Янгом(р.1922), которые предложили соответствующий эксперимент, поставленный Ч.С. By(р.1913).

Принципиальная схема опыта крайне проста. Бета-активный изотоп 60 Со помещался в магнитное поле Н соленоида, которое поляризовало ядра кобальта, т. е. ориентировало их магнитные моменты вдоль поля (рис. 10.14).

Вся система зеркально симметрична относительно плоскости токового витка, поэтому, казалось бы, и интенсивность излучения β-электронов должна быть одинаковой по обе стороны от плоскости симметрии. На самом деле в эксперименте наблюдалась резкая асимметрия (примерно на 40 %), т. е. асимметрия слабых взаимодействий относительно левого и правого.

Гамма-излучение. В том случае, когда распад ядра с вылетом нуклона энергетически невозможен, происходит снятие возбуждения за счет испускания γ-квантов - высокоэнергетичных фотонов. Испускание ядром γ- квантов с энергией, превышающей энергию связи нуклона, имеет место только в случае запрета по четности и моменту количества движения для вылета нуклонов (или других частиц), который делает процесс испускания γ-квантов относительно более вероятным. Если же подобного рода запрета не существует, то испускание таких «ядерных» частиц, как нейтроны, протоны,

а-частицы, значительно более вероятно, чем γ-uзлучение. Последнее связано с тем, что γ~излучение обусловлено электромагнитным взаимодействием, тогда как вылет нуклонов или а-частиц просходит благодаря более сильному ядерному взаимодействию (этот тип фудаментального взаимодействия обычно называют сильным взаимодействием - см. гл. 12).

В отличие от β-распада, γ~излучение - явление не внутринуклонное, а внутриядерное. Изолированный свободный нуклон не может испустить (или поглотить) γ- квант из-за совместного действия законов сохранения энергии и импульса. Последнее полностью аналогично тому, что фотоэффект на свободных электронах невозможен. В то же время внутри ядра нуклон может испустить квант, передав при этом часть импульса другим нуклонам.

В гл. 8 мы показали, что поскольку фотон - безмассовая частица, для него не существует системы координат, в которой он покоится. Кроме того, для фотона бессмысленно делить его полный момент импульса на спиновый и орбитальный. Полный же момент может иметь в принципе любое целое (в единицах К) значение, начиная с единицы. Именно поэтому часто говорят, что спин фотона равен 1, хотя более правильным является утверждение «минимальное значение момента импульса фотона равно 1».

Как упоминалось в § 8.1, состояние фотона, испущенного какой-либо системой, характеризуют мулътиполъностъю, т. е. определенными полным моментом импульса и четностью.

Фотон мультипольности 2 L обладает угловым моментом L, абсолютное значение которого, согласно квантовой механике, равно √(L(L + 1)), т. е. точно такое же, как и в случае частицы конечной массы. В соответствии с законом сохранения момента импульса должно выполняться следующее соотношение между моментами I н и I К начального и конечного ядра и моментом L, уносимым γ-квантом:

|I н -I к |<=L<=I H + I K . (10.55)

Оно является правилом отбора по моменту количества движения. Согласно (10.55) дипольные γ-кванты (L = 1) могут быть испущены при переходах между состояниями с

ΔI = 0, ±1, кроме (0-0)-переходов; квадрупольные γ-кванты (L = 2) - при переходах между состояниями с ΔI = ± 2, ±1, 0, кроме (0-0)-, (0-1)- и (1-0)-переходов и т. д.

Еще одно правило отбора связано с выполнением закона сохранения четности волновой функции. Четность, как мы уже говорили ранее, определяется по влиянию на знак волновой функции системы отражения всех трех осей относительно начала координат.

Такое отражение в случае статического диполя приводит к взаимной перестановке положения каждого заряда (рис. 10.15). Следовательно, если смотреть из исходной системы координат, то происходит очевидное изменение знаков всех зарядов. Однако такое же отражение в случае магнитного диполя (кругового тока) не изменяет направления (знака) тока в магнитном диполе (см. также рис. 8.1).

Поэтому разрешенное изменение четности ядра, испускающего электрическое γ-излучение мультипольности L, описывается формулой

Р и /Р к = (-1) L, (10.56)

а для ядра, испускающего магнитное L-мультипольное излучение, формулой

Р н /Р к = (-1) L+1 , (10.57)

где Р н иР к - соответственно четности начального и конечного состояний ядра.

Часто снятие возбуждения в ядре происходит не путем непосредственного перехода в основное состояние, а путем испускания каскада γ-квантов, обладающих меньшей мультипольностью. При этом оказывается, что существует угловая корреляция последовательно испускаемых γ-квантов, т. е. наблюдается преимущественное направление испускания второго кванта.

Появление корреляционной зависимости обусловлено тем, что проекция т полного момента γ-кванта на его импульс может принимать только значения m = ±1 (единицей измерения является постоянная Планка ћ).

Значение m = 0 исключено условием поперечности электромагнитных волн.

Поэтому, если, например, ядро на уровне с моментом нуль испустило γ-квант, вылетевший в определенном направлении, т. е. зарегистрированный в этом направлении детектором, то проекция спина ядра в новом, более низком энергетическом состоянии на данное направление может быть только ±1, но не нуль. Таким образом, оказывается, что ядро ориентировано в пространстве уже не совсем хаотически. Поэтому и каскадные γ-кванты вылетают из него в разных направлениях с разной вероятностью. Угловая

корреляция существенно зависит от моментов последовательно распадающихся состояний.

Времена жизни γ-активных ядер в среднем невелики и обычно имеют порядок 10 ~7 -10 ~11 с. В редких случаях, при сочетании высокой степени запрета с малой энергией перехода, могут наблюдаться γ-активные ядра с временами жизни макроскопического порядка - до нескольких часов, а иногда даже лет. Такие возбужденные долгоживущие состояния ядер называются изомерами. Данное явление было открыто в 1935 г. И.В. Курчатовым с сотрудниками. Изомерный уровень должен иметь спин, сильно отличающийся от спинов уровней, лежащих ниже, и низкую энергию возбуждения. Как правило, изомерное состояние относится к первому возбужденному уровню ядра. Так, например, в ядре 115 49 In, основное состояние имеет характеристику 9/2 + , а первый возбужденный уровень с нергией 335 кэВ - характеристику 1/2 ~ . Переход этот настолько сильно запрещен, что время жизни возбужденного уровня оказывается равным 14,4 часа.

Следует обратить внимание на то, что все лабораторные источники γ-квантов являются фактически долгоживущими β-активными ядрами, а γ-излучение возникает из-за

β-распада материнского ядра на возбужденные уровни дочернего ядра. Так, например, в широко распространенном источнике γ-излучения 60 Со (Т 1/2 = 5,3 г) происходят вылет электронов с энергией 0,3 МэВ и последующие γ-переходы в ядре 60 Ni с энергиями 1,17 и 1,33 МэВ.

Кроме γ-излучения, существует еще один механизм потери энергии возбужденным ядром - испускание электронов внутренней конверсии. В этом процессе энергия возбуждения ядра передается непосредственно одному из орбитальных электронов, который получает всю энергию кванта. С наибольшей вероятностью процесс внутренней конверсии идет на К-электронах, волновая функция которых больше всего перекрывается с ядром. Однако

если энергия, освобождаемая при ядерном переходе, меньше энергии связи Х-электрона, то наблюдается конверсия на L-электронах и т. д. Помимо конверсионных электронов, при внутренней конверсии можно наблюдать еще и рентгеновские кванты, возникающие при переходе одного из наружных электронов на уровень К- или L-оболочки, освобожденной вылетевшим электроном. Моноэнергетичность вылетающих при внутренней конверсии электронов позволяет отличать их от β-распадных электронов, спектр которых непрерывен.

В качестве иллюстрации этого процесса на рис. 10.16 приведен спектр электронов, вылетающих из β-активного ядра ртути 203 Hg.

Процесс внутренней конверсии в некотором смысле аналогичен колебаниям в связанной системе с двумя степенями свободы. Простейшим примером такой системы могут служить два маятника, связанные пружиной: колебания одного из маятников благодаря пружине возбуждают колебания другого. В случае внутренней конверсии роль «пружины» играет электрическое поле. Таким образом, внутренняя конверсия представляет собой первичный, а не вторичный процесс взаимодействия электромагнитного излучения с орбитальными электронами: энергия возбуждения ядра передается орбитальным электронам, как говорят, виртуальными, а не реальными квантами.

Деление ядер . Деление атомных ядер - это процесс, характерный только для самых тяжелых ядер, начиная от тория и далее в сторону больших Z.

Сейчас трудно себе представить, с каким недоумением и недоверием физики встретили в 1938 г. сообщение О. Хана и Ф. Штрассмана о делении атомного ядра медленными нейтронами, поскольку было хорошо известно, что для вырывания из ядра одного нуклона требуется энергия в миллионы электроновольт. По образному выражению Р. Личмена, это равносильно тому, что твердый камень раскалывается от легкого постукивания карандаша. Первое объяснение наблюдаемого процесса было выдвинуто Н. Бором и Дж. Уилером и независимо, Я.И. Френкелем уже через несколько месяцев на основе

аналогии деления ядра с делением заряженной капли жидкости при деформации.

При попадании нейтрона ядро-капля начинает колебаться и в какой-то момент времени принимает вытянутую форму. Действующие между нуклонами ядерные силы, подобно силам сцепления молекул в жидкости, приводят к появлению поверхностного натяжения. Они стремятся вернуть ядру первоначальную почти сферическую форму (тяжелые ядра в основном состоянии слегка деформированы и имеют форму вытянутого эллипсоида).

Однако, если вытянутость ядра в какой-то момент времени оказывается достаточно большой, электростатические силы отталкивания одноименных зарядов могут превзойти силы поверхностного натяжения.

Тогда ядро начнет еще больше растягиваться, пока не разорвется на два осколка. В качестве «мелких брызг» в момент деления вылетают два-три нейтрона, α-частицы и даже легкие ядра, правда, с очень малой вероятностью. Последовательные стадии процесса

деления атомного ядра представлены на рис. 10.17.

В 1940 г. Г.Н. Флеров и К.А. Петржак обнаружили, что ядра урана могут делиться и самопроизвольно (спонтанно). Период полураспада спонтанного деления 238 U

равен 8 10 15 лет. Как оказалось в дальнейшем, все ядра тяжелее тория испытывают спонтанное деление, причем чем тяжелее ядро, и чем больше его заряд, тем в среднем больше вероятность этого процесса, т. е. тем меньше период его спонтанного деления. Период спонтанного деления очень быстро уменьшается по мере перехода к более тяжелым ядрам. Так, у изотопа плутония 242 Рu он равен 6,8*10 10 лет, у калифорния 252 Cf уже 85 лет, а у фермия 256 Fm – 2.7 часа.

Спонтанное деление ядер представляет собой чисто квантовомеханический эффект. Как указывалось выше, оно является результатом конкуренции двух процессов - поверхностного натяжения, стремящегося вернуть ядро в исходное состояние, и кулоновского отталкивания заряженных осколков. Таким образом у ядра появляется потенциальный барьер, препятствующий его делению.

На рис. 10.18 показана потенциальная энергия ядра как функция отклонения ΔR поверхности ядра от сферической формы. Основное состояние ядра является слегка

деформированным.

Следовательно, спонтанное деление ядер является туннельным процессом, точно так же, как это происходит при туннелировании α-частиц. Отсюда и появляется столь сильная зависимость периода спонтанного деления от заряда ядра: по мере увеличения заряда ядра уменьшается величина барьера и резко увеличивается вероятность деления. У изотопа 235 U барьер деления равен примерно 6 МэВ, как раз той энергии, какую вносит медленный нейтрон в ядро, и поэтому 235 U столь легко делится при поглощении нейтрона.

Появление и влияние кулоновского барьера легко объясняется с помощью полуэмпирической формулы Вайцзеккера для энергии связи ядер. Пусть ядро изменяет свою форму, например, из сферического становится эллипсоидальным. Объем ядра не изменяется (ядерная материя практически несжимаема), но поверхность увеличивается, а кулоновская энергия уменьшается (увеличивается среднее расстояние между протонами). Способность ядра к делению естественно характеризовать отношением кулоновской энергии к поверхностной, т. е.

(10.58)

Так как коэффициенты γ и βпостоянны для всех ядер, то вероятность деления определяется величиной Z 2 /А, которая по предложению Бора и Уиллера выбрана в качестве параметра делимости ядра. Расчеты показывают, что для ядер с Z 2 /А >= 49 деление происходит практически мгновенно, за время порядка 10 ~23 с.

Это означает, что спонтанное деление определяет предел существования стабильных ядер, т. е. у ядер с Z >= 120 отсутствует энергетический барьер, препятствующий спонтанному делению. Характер изменения барьера деления E f и энергии Q f , выделяющейся при делении ядра, по мере деформации ядра ε. При разных значениях параметра делимости показан на рис. 10.19, а на рис. 10.20 приведены времена жизни для спонтанного деления четно-четных ядер. Ядра с нечетными N или Z имеют на несколько порядков больший период полураспада для спонтанного деления, чем соседние четно-четные ядра.

На основе приведенных выше рассуждений легко предсказать следующие основные свойства процесса деления.

1 . При делении тяжелого ядра должна освобождаться большая энергия Q, поскольку энергия связи, приходящаяся на один нуклон в тяжелых ядрах ε тяж примерно на 0,8 МэВ меньше сответствующей энергии ε ср для средних ядер; так, например, для ядра 238 U

Q f ~ А(ε тяж - ε ср) ~ 238 0,8 ~ 200 МэВ. (10.59)

2. Подавляющая часть энергии деления освобождается в форме кинетической энергии осколков деления Ек, так как ядра-осколки неизбежно должны разлетаться под действием кулоновского отталкивания. Кулоновская энергия двух осколков с зарядами Z 1 и Z 2 , находящихся на расстоянии δ, равна

. (10.60)

где R 1 , R 2 - радиусы ядер осколков, которые

могут быть вычислены по формуле

R = 1,23 10 ~13 А 1/3 см,

a Z 1 = Z 2 = Z 0 /2 ~ 46

(считая, что ядро урана делится пополам), то получим

т. е. значение такого же порядка, что и Q f

3 . Образующиеся при делении осколки должны быть β-радиоактивными и могут испускать нейтроны. Причина заключается в том, что, по мере увеличения заряда ядра, отношение числа нейтронов в ядре к числу протонов растет из-за увеличения кулоновской энергии протонов. Поэтому ядра-осколки будут иметь при делении такое же отношение N/Z, как, скажем, у урана, т. е. будут перегружены нейтронами, а подобные ядра испытывают β-распад (ввиду большой перегрузки нейтронами продукты этого распада также β-активны, так что осколки деления дают начало достаточно длинным цепочкам из радиоактивных ядер). Кроме того, часть энергии может уноситься путем непосредственного испускания нейтронов деления или вторичных, т. е. испускаемых из осколков деления, нейтронов. Средняя энергия нейтронов деления составляет около 2 МэВ.

Среднее число нейтронов ν, испускаемых за один акт деления, зависит от массового числа делящегося ядра и растет с ростом Z. Если для ядра 240 Рu ν ~ 2,2, то уже для 252 Cf ν ~ 3,8. Так как 252 Cf к тому же достаточно быстро распадается (по отношению к спонтанному делению Т 1/2 = 85 лет; реально его время жизни определяется α-распадом и составляет 2,64 г.), то он является интенсивным источником нейтронов.

В настоящее время его рассматривают как один самых перспективных радиоактивных источников нейтронов.

Большое энерговыделение и испускание вторичных нейтронов в процессе деления ядер имеют огромное практическое значение. На этом процессе основана работа ядерных реакторов, которые будут рассматриваться в следующей главе.

Радиоактивность - это свойство атомных ядер определенных химических элементов самопроизвольно превращаться в ядра других элементов с испусканием особого рода излучения, называемого радиоактивным. Нельзя повлиять на течение процесса радиоактивного распада, не изменив состояния атомного ядра. На скорость течения радиоактивных превращенийне оказывают никакого воздействия изменения температуры и давления, наличие электрического и магнитного полей, вид химического соединения данного радиоактивного элемента и его агрегатное состояние.

Радиоактивные явления, происходящие в природе, называют естественной радиоактивностью (космическая радиация и излучения природных радионуклидов, рассеянных в земных породах, почве, воде, воздухе, строительных и других материалах, живых организмах). Например, изотоп 40 K широко рассеян в почвах и прочно удерживается глинами вследствие процессов сорбции. Глинистые почвы почти везде богаче радиоактивными элементами, чем песчаные и известняки. Радиоактивные тяжелые элементы (U, Th, Ra) содержатся преимущественно в горных гранитных породах. Радиоактивные элементы распространены в природе в ничтожных количествах. В земной коре естественно-радиоактивные элементы есть преимущественно в урановых рудах, и почти все они являются изотопами тяжелых элементов с атомным номером более 83. Цепи радиоактивных распадов начинаются с урана - радия (- Ra), тория () или актиния().

Аналогичные процессы, происходящие в искусственно полученных веществах (через соответствующие ядерные реакции), называют искусственной радиоактивностью (сжигание угля, разработка месторождений радиоактивных руд, применение радионуклидов в различных отраслях экономики, работа ядерно-технических установок, ядерные взрывы в мирных целях (строительство подземных хранилищ, нефтедобыча, строительство каналов), аварии на объектах, содержащих радиоактивные вещества, ядерные отходы АЭС, промышленности, флота, испытание ядерного оружия (при ядерных взрывах образуется около 250 изотопов 35 элементов (из них 225 радиоактивных) как непосредственных осколков деления ядер тяжелых элементов (235 U, 239 Pu, 233 U, 238 U), так и продуктов их распада. Количество радиоактивных продуктов деления (РПД) возраста­ет соответственно мощности ядерного заряда. Часть образовавшихся РПД распадается в ближайшие секунды и минуты после взрыва, другая часть имеет период полураспада порядка нескольких часов. Радионуклиды, такие как 86 Rb, 89 Sr, 91 Y, 95 Cd, 125 Sn. l 25 Te, l 31 I, 133 Xe, l 36 Cs, 140 Ba, 141 Ce, 156 Eu, 161 Yb, обладают периодом полураспада в несколько дней, a 85 Kr, 90 Sr, 106 Ru, 125 Sb, 137 Cs, l 47 Pm, l 5 l Sm, l 55 Eu – от одного года до нескольких десятков лет. Группа, состоящая из 87 Rb, 93 Zr, l 29 I, 135 Cs, 144 Nd, 137 Sm, характеризуется чрезвычайно медленным распадом, продолжающимся миллионы лет)). Искусственные радионуклиды по различным причинам попадают в окружающую среду, повышая тем самым радиационный фон. Кроме того, они включаются в биологические системы и поступают непосредственно в организм животных и человека. Все это создает опасность для нормальной жизнедеятельности живого организма.

Внешние и внутренние источники, действуя непрерывно, сообщают организму определенную поглощенную дозу. Большую часть облучения от источников естественной радиации человек получает за счет земных источников - в среднем более 5/6 годовой эффективной эквивалентной дозы, получаемой населением (в основном внутреннее облучение). Оставшаяся часть приходится на космическое излучение (главным образом внешнее облучение). Эффективная эквивалентная доза от воздействия космического излучения составляет около 300 мкЗв/год (для живу­щих на уровне моря), для живущих выше 2 тыс. м над уровнем моря эта величина в несколько раз больше. Среднегодовая безопасная доза для человека составляет около 1,2 мГр на гонады и 1,3 мГр на скелет.

История развития радиобиологии.

Радиобиология – наука, изучающая механизмы и закономерности действия ИИ на биологические объекты в биологии, медицине, сельском хозяйстве и других сферах деятельности человека.

1895 – В. К. Рентген обнаружил Х-лучи.

1896 – А. Беккерель установил радиоактивность солей урана. Мария Склодовская и Пьер Кюри продолжили исследование радиоактивных элементов полония и радия, содержащихся в виде примесей в солях урана.

Сначала радиобиология носила описательный характер, разработаны методы оценки биологических реакций с позиции «доза-эффект» на уровнях от молекулярного до организменного.

На основе работ Г. А. Надсона и Г. Ф. Филиппова о генетическом воздействии излучений и исследований Г. Мюллера была введена количественная оценка радиобиологических эффектов в радиационную генетику.

Ветеринарная радиобиология изучает эффекты биологического действия радиации и выясняет особенности развития возникающих патологических процессов у животных.

В учебный план вузов курс радиобиологии был введен в 1959 г.

Строение атома

В 1911 г. Э. Резерфорд предложил планетарную модель атома, которую разил в 1913 г. Н. Бором.

Атом состоит из нейтронов, протонов и электронов.

Электронная оболочка – электроны группируются вокруг ядра на различных уровнях в зависимости от энергии, удерживающей их на орбите: K, L, M, N, O, P, Q.

Электрон – устойчивая элементарная частица с массой покоя (масса при скорости равной 0) 0,000548 U, 9,1∙10-28 г.

Протон – устойчивая элементарная единица, 1,00758 U, 1,6725∙10-24 г. Количество протонов в ядре называется атомным номером или зарядовым числом.

Нейтрон – электрически нейтральная частица, 1,00898 U. Сам по себе нестабилен. В свободном состоянии он испускает электрон и антинейтрино, превращаясь в протон. Он не отталкивается атомным ядром, не отклоняется под действием магнитного поля, обладает большой проникающей способностью.

Массовое число – сумма нейтронов и протонов в ядре.

Число нейтронов N=A-Z, где А – массовое число, а Z – порядковый номер.

Ионизация – отделение или присоединение к атому одного или нескольких электронов.

Рекомбинация, или деионизация – процесс замещение отщепившегося с орбиты атома электрона с выделением избыточной энергии.

Возбуждение – переход одного электрона на другой уровень (орбиту).

Явление радиоактивности. Естественная и искусственная радиоактивность. Радиоизотопы

Радиоактивность – явление самопроизвольного излучения. Это свойство ядер определенных элементов самопроизвольно превращаться в ядра других элементов с испусканием радиоактивного излучения. Само явление называется радиоактивным распадом. Радиоактивность является исключительно свойством атомного ядра и зависит только от его внутреннего состояния.

Естественная радиоактивность – это радиоактивные явления, происходящие в природе.

Искусственная радиоактивность – явление радиоактивности в искусственно полученных веществах через ядерные реакции.

Деление на естественную и искусственную радиоактивность условно, поскольку они подчиняются одним и тем же законам.

    янЗакон сохр массы-Масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции

    Атомно-молекулярное учение разработал М.В. Ломоносовв 1741 г. Основные положения закона:

1) все вещества состоят из «корпускул» (молекул);

2) молекулы состоят из «элементов» (атомов);

3) частицы – молекулы и атомы – находятся в непрерывном движении. Тепловое состояние тел есть результат движения их частиц;

4) молекулы простых веществ состоят из одинаковых атомов, а молекулы сложных веществ – из различных атомов. Атомно-молекулярное учение окончательно утвердилось в 1860 г.

    П ростые вещества - вещества, состоящие исключительно из атомов одного химического элемента, в отличие от сложных веществ. В зависимости от типа химической связи между атомами простые вещества могут быть металлами (Na, Mg, Al, Bi и др.) и неметаллами (H 2 , N 2 , Br 2 , Si и др.)

    Химический элемент - совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающим с порядковым (атомным) номером в таблице Менделеева. Каждый химический элемент имеет свои название и символ, которые приводятся в Периодической системе элементов Менделеева.

    Закон постоянства состава - любое определенное химически чистое соединение независимо от способа его получения состоит из одних и тех же химических элементов

    Закон кратных отношений - один из стехиометрических законов химии: если два элемента образуют друг с другом более одного соединения, то массы одного из элементов, приходящиеся на одну и ту же массу другого элемента,

относятся как целые числа, обычно небольшие.

    Закон обьёмных отношен объемы вступающих в реакцию газов при одинаковых условиях (температуре и давлении) относятся друг к другу как целые числа.

    Атомная масса элемента - есть отношение массы его атома к 1/12 части массы атома 12С

Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения). Молекуля́рная ма́сса масса молекулы, выраженная в атомных единицах массы. Численно равна молярной массе.

Моль – это единица количества вещества. Это такое количество вещества (или его порция), которое содержит 6,02 · 1023 частиц (молекул, атомов или других частиц)

    Закон Авагадро в равных объёмах различных газов, взятых при одинаковых температуре и давлении, содержится одно и то же число молекул

    Моль – это единица количества вещества. Это такое количество вещества (или его порция), которое содержит 6,02 · 1023 частиц (молекул, атомов или других частиц)

    Эквивалент- это реальная или условная частица, которая может присоединять, высвобождать или другим способом быть эквивалентна катиону водорода в ионообменных реакциях или электрону в окислительно-восстановительных реакциях

    закон эквивалентов: все вещества реагируют в эквивалентных отношениях. Валентностью называется свойство атомов данного элемента присоединять или замещать в соединении определенное число атомов другого элемента

    Закон Авогадро позволяет определить число атомов, входящих в состав молекул простых газов. Путем изучения объемных отношений при реакциях, в которых участвуют водород, кислород, азот и хлор, было установлено, что молекулы этих газов двухатомны. Следовательно, определив относительную молекулярную массу любого из этих газов и разделив ее пополам, можно было сразу найти относительную атомную массу соответствующего элемента. Например, установили, что молекулярная масса хлора равна 70,90; отсюда атомная масса хлора равняется или 35,45.

    Вале́нтность способность атомов химических элементов образовывать определённое число химических связей с атомами других элементов.

Внутр.э-это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы

Ковалентная связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам.

    энергетическое состояние электронов в атоме.

    Главное квантовое число - целое число, обозначающее номер энергетического уровня. Характеризует энергию электронов, занимающих данный энергетический уровень. Является первым в ряду квантовых чисел, который включает в себя главное, орбитальное имагнитное квантовые числа, а также спин

    Орбитальное квантовое число - в квантовой физике квантовое число ℓ, определяющее форму распределения амплитуды волновой функции электрона в атоме, то есть форму электронного облака. Определяет подуровень энергетического уровня, задаваемого главным (радиальным) квантовым числом n и может принимать значения

Является собственным значением оператора орбитального момента электрона, отличающегося от момента количества движенияэлектрона j лишь на оператор спина s :

    Энергия ионизации - представляет собой наименьшую энергию, необходимую для удаления электрона от свободного атома. На энергию ионизации атома наиболее существенное влияние оказывают следующие факторы:

    эффективный заряд ядра, являющийся функцией числа электронов в атоме, экранирующих ядро и расположенных на более глубоко лежащих внутренних орбиталях;

    радиальное расстояние от ядра до максимума зарядовой плотности наружного, наиболее слабо связанного с атомом и покидающего его при ионизации, электрона;

    мера проникающей способности этого электрона;

    межэлектронное отталкивание среди наружных (валентных) электронов.

    Сродство к электрону - количество энергии, выделяющееся при присоединении электрона к атому, молекуле пли радикалу. Сродство к электрону выражается обычно в электрон-вольтах. Значение величины Сродства к электрону важно для понимания природы химической связи и процессов образования отрицательных ионов. Чем больше Сродство к электрону, тем легче атом присоединяет электрон. Сродство атомов металлов к электрону равно нулю, у атомов неметаллов Сродство к электрону тем больше, чем ближе стоит элемент (неметалл) к инертному газу в периодической системе Д. И. Менделеева. Поэтому в пределах периода усиливаются неметаллические свойства по мере приближения к концу периода.

    Атом состоит из ядра и окружающего его электронного "облака". Находящиеся в электронном облаке электроны несут отрицательный электрический заряд. Протоны , входящие в состав ядра, несутположительный заряд.В любом атоме число протонов в ядре в точности равно числу электронов в электронном облаке, поэтому атом в целом – нейтральная частица, не несущая заряда.Атом может потерять один или несколько электронов или наоборот – захватить чужые электроны. В этом случае атом приобретает положительный или отрицательный заряд и называется ионом .

    Изото́пы (от др.-греч. ισος - «равный» , «одинаковый» , и τόπος - «место» ) - разновидности атомов (и ядер) какого-либо химического элемента, которые имеют одинаковый атомный номер, но при этом разные массовые числа. Название связано с тем, что все изотопы одного атома помещаются в одно и то же место (в одну клетку) таблицы Менделеева: 16 8 O, 17 8 O, 18 8 O - три стабильных изотопа кислорода.

    Радиоактивные элементы и их распад.

Радиоактивный распад - спонтанное изменение состава нестабильных атомных ядер путём испускания элементарных частиц или ядерных фрагментов. Существуют альфа, бета и гамма распады. Соответственно они испускают альфа, бета и гамма частицы. Распад имеющий самую сильную проникающую способность, это гамма распад (не откланяются магнитным полем). Альфа – положительно заряженные частицы. Бета – отрицательно заряженные частицы.

Распад ядер радиоактивных элементов или изотопов может происходить тремя основными путями, и соответствующие реакции ядерного распада названы тремя первыми буквами греческого алфавита. При альфа-распаде выделяется атом гелия, состоящий из двух протонов и двух нейтронов, - его принято называть альфа-частицей. Поскольку альфа-распад влечет за собой понижение числа положительно заряженных протонов в атоме на два, ядро, испустившее альфа-частицу, превращается в ядро элемента, отстоящую на две позиции ниже от нее в периодической системе Менделеева. При бета-распаде ядро испускает электрон, а элемент продвигается на одну позицию вперед по периодической таблице (при этом, по существу, нейтрон превращается в протон с излучением этого самого электрона). Наконец, гамма-распад - это распад ядер с излучением фотонов высоких энергий, которые принято называть гамма-лучами. При этом ядро теряет энергию, но химический элемент не видоизменяется. Радиоактивный элемент - химический элемент, все изотопы которого радиоактивны.

  1. 37. Искусственная радиоактивность.

Искусственная радиоактивность - самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующие ядерные реакции. Все три типа излучений - a, b и g, характерные для естественной радиоактивности,- испускаются также и искусственно-радиоактивными веществами. Однако среди искусственно-радиоактивных веществ часто встречается еще иной тип распада, не свойственный естественно-радиоактивным элементам. Это - распад с испусканием позитронов - частиц, обладающих массой электрона, но несущих -положительный заряд. По абсолютной величине заряды позитрона и электрона равны. Искусственно-радиоактивные вещества могут получаться при весьма разнообразных ядерных реакциях. Примером может служить реакция захвата нейтронов серебром. Для проведения такой реакции достаточно поместить пластинку серебра поблизости от источника нейтронов, окруженного парафином.

  1. 38. Ядерные реакции.

Ядерная реакция - процесс образования новых ядер или частиц при их столкновениях. Впервые ядерную реакцию наблюдал Резерфорд в 1919 году, бомбардируя α-частицами ядра атомов азота, она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны. Впоследствии с помощью камеры Вильсона были получены фотографии этого процесса.

  1. 39. Теория химического строения.

У этой теории четыре положения: 1) Атомы в молекуле соединены в определённой последовательности в соответствии с их валентностью. Эта последовательность называется химическим строением . 2) Свойства вещества зависят не только от качественного и количественного состава молекулы, но и от её химического строения. Вещества, имеющие один и тот же состав, но разное строение, называются изомерами , а само их существование изомерией . 3) Атомы и группы атомов в молекуле взаимно влияют друг на друга непосредственно или посредством других атомов. 4) Строение вещества познаваемо, возможен синтез веществ с заданным строением. Бутлеров.1861 г.

  1. 40. Ковалентная связь.

Ковалентная связь - химическая связь, образованная перекрытием пары валентных электронных облаков. Обеспечивающие связь электронные облака называются общей электронной парой . Бывает полярной и неполярной. Важная характеристика ковалентной связи это её полярность. Если молекула состоит из 2 атомов, которые связаны полярной связью, то такая молекула – полярная молекула. Представляет собой диполь. Диполь – электро-нейтральная система в которой центры положительного и отрицательного заряда находятся на определённом расстоянии друг от друга. Полярность молекулы, количественно оценивается дипольным моментом, которые равен произведению длины диполя на значение эффективного заряда. Эффективный заряд = 1.6 * 10 -19 Кл. Способность молекул и отдельных связей полиризоватся под влиянием внешнего электрического поля называется полиризуемостью. Способность атома участвовать в образовании ограниченного числа ковалентных связей, называется насыщаемостью ковалентной связи. Направленность ковалентной связи обуславливает пространственную структуру молекул, т.е. перекрывание электронных облаков. Происходит только при определённой взаимной ориентации орбиталей обеспечивающей наибольшую электронную плотность в области перекрывания.



© dagexpo.ru, 2024
Стоматологический сайт