Функциональная биохимия. Зачет биохимия Порфирины биохимия

24.08.2019

Порфирины представляют собой циклические соединения, образованные четырьмя пиррольными кольцами, связанными между собой метенильными мостиками (рис. 33.1). Характерным свойством порфиринов является их способность образовывать комплексы с ионами металлов, связывающимися с атомами азота пиррольных колец. Примерами служат железопорфирины, в частности гем, входящий в состав гемоглобина, и магний - содержащий порфирин хлорофилл - пигмент растений, участвующий в фотосинтезе.

В природе металлопорфирины связываются с белками, в результате образуются соединения, играющие важную роль в биологических процессах. К ним относятся:

A. Гемоглобин - железопорфирины, связанные с белком глобином. Гемоглобины обладают способностью обратимо связывать кислород, они транспортируют этот газ в системе кровообращения (см. гл. 6). Структура гема показана на рис. 6.2.

Б. Эритрокруорины - железопорфиринопротеины, находящиеся в крови и тканевых жидкостях некоторых беспозвоночных; выполняют такую же функцию, как и гемоглобин.

B. Миоглобины-дыхательные пигменты, находящиеся в мышечных клетках позвоночных и беспозвоночных. Примером служит миоглобин из сердечной мышцы лошади, закристаллизованный Теореллом

Рис. 33.1. Молекула порфина. Кольца обозначены цифрами I, II, III и IV. Места присоединения замещающих групп обозначены номерами 1, 2, 3, 4, 5, 6, 7, 8. Метенильные мостики обозначены буквами .

Рис. 33.2. Уропорфирин III.

в 1934 г. Молекула миоглобина сходна по структуре с субъединицей гемоглобина.

Г. Цитохромы - соединения, функционирующие как переносчики электронов в окислительновосстановительных реакциях. Важным примером служит цитохром с, молекулярная масса которого составляет около 13000, содержащий 1 грамм - атом железа на моль белка.

Д. Каталазы - железопорфириновые ферменты; несколько каталаз получено в кристаллическом виде. В растениях каталазная активность незначительна, сходные функции у них выполняет другой железопорфириновый фермент - пероксидаза.

Е. Трнптофанпнрролаза. Этот фермент катализирует окисление триптофана в формилкинуренин. Он также является железопорфириновым белком.

Структура порфиринов

Встречающиеся в природе порфирины являются соединениями, у которых 8 атомов водорода порфиринового ядра замещены различными боковыми группами, как показано на рис. 33.1. Упрощенный способ изображения положения заместителей предложен Фишером: пиррольные кольца (без метенильных мостиков) изображаются как выступы крестообразной структуры, пронумерованные вершины которой являются местами присоединения заместителей (рис. 33.2). Различные порфирины показаны на рис. 33.2, 33.3 и 33.4; использованы следующие сокращения: А (ацетат) = - СН2СООН; Р (пропионат) = - СН,СН2СООН; М(метил) = - СН,; V (винил) = - СН = СН2.

Расположение замещающих группы А и Р в уропорфирине асимметрично (в кольце IV по сравнению с другими кольцами порядок присоединения ацетатных и пропионатных групп изменен на обратный). Порфирин с такого типа асимметричным замещением классифицируется как порфирин типа III. Порфирин с полностью симметричным расположением замещающих групп классифицируется как порфирин типа I. В природе встречаются только порфирины типа I и III, причем тип III встречается значительно чаще (рис. 33.3).

Оба соединения, приведенные на рис. 33.4, относятся к порфиринам типа III (метильные группы расположены асимметрично, как в копропорфирине типа III). Однако иногда их классифицируют как принадлежащие к типу IX, поскольку они оказались на девятом месте в серии изомеров, постулированных Гансом Фишером, автором пионерских исследований в области химии порфиринов.

Биосинтез порфиринов

Хлорофилл - растительный пигмент фотосинтезирующей системы и гем - железопротопорфирин гемоглобина животных синтезируются в живых клетках по общему метаболическому пути. Исходным материалом являются «активный сукцинат» - сукцинил-СоА, образующийся в митохондриях в реакциях цикла лимонной кислоты, и аминокислота глицин. Необходима также «активация» глицина пиридоксальфосфатом. Вероятно, глицин образует

Рис. 33.3. Уропорфирины и копропорфирины.

Рис. 33.4. Присоединение железа к протопорфирину приводит к образованию гема.

с пиридоксалем шиффово основание; далее а-углерод глицина присоединяется к карбонильному углероду сукцината. Продуктом реакции конденсации глицина с сукцинил-СоА является а-амино-Р-кетоадипиновая кислота, она быстро де-карбоксилируется с образованием -амино-левулината (АЛК) (рис. 33.5). Эта стадия катализируется ферментом -сннтазой. Вероятно, именно этот фермент является скорость - контролнрующнм при биосинтезе порфиринов в печени млекопитающих. Синтез аминолевулиновой кислоты происходит в митохондриях. В цитозоле фермент АЛК-дегидратаза катализирует конденсацию двух молекул AJIK с образованием двух молекул воды и одной молекулы порфобилиногена (рис. 33.5). АЛК-дегидратаза является Zn-содержащим ферментом и ингибируется ионами свинца.

Образование тетрапиррола (т. е. порфирина) осуществляется путем конденсации четырех монопирролов, образующихся из порфобилиногена (рис. 33.6). Несущий аминогруппу углерод молекулы порфобилиногена («бывший» а-углерод глицина) становится углеродом метиленовой группы (), соединяющей соседние пиррольные кольца в тетрапиррольную структуру. Хотя превращение порфибилиногена в порфирин может происходить просто при нагревании в кислой среде (например, в кислой моче), в тканях это превращение катализируется специфическими ферментами.

Как уже было отмечено выше, в природе встречаются только порфирины типов I и III; то обстоятельство, что более широко представлены изомеры типа III, можно объяснить тем, что биологически важные порфирины (гем и цитохромы) являются изомерами типа III.

В настоящее время детали образования уропорфириногенов путем конденсации порфобилиногенов не ясны. Образование из порфобилиногена уропорфириногена III, интермедиата при биосинтезе гема, катализируется комплексом двух ферментов.

Рис. 33.5. Биосинтез порфобилиногена. АЛК-синтаза находится в митохондриях, тогда как АЛК-дегидратаза находится в цитозоле.

Рис. 33.6. Превращение порфобилиногена в уропорфириногены.

Уропорфириноген-1-синтаза, называемая также порфобилиногендезаминазой, катализирует in vitro конденсацию порфобилиногена в уропорфириноген I (рис. 33.6). Однако в присутствии второго фермента - уропорфириноген-Ш-косннтазы в результате взаимодействия двух ферментов происходит образование уропорфириногена III, а не его симметричного изомера (уропорфириногена I) (рис. 33.6). При нормальных условиях образуется почти исключительно изомер типа III, но при некоторых видах порфирии (рассматриваемых ниже) синтезируются в значительном количестве изомеры типа I.

Обратите внимание, что в этих уропорфириногенах пиррольные кольца соединены метиленовыми мостиками, т.е. у них нет сопряженной системы. Поэтому эти соединения (и вообще все порфириногены) бесцветны. Однако порфириногены легко подвергаются автоокислению в соответствующие порфирины. Окисление стимулируется светом и уже образовавшимися порфиринами.

Уропорфириноген III превращается в копропорфириноген III путем декарбоксилирования всех ацетатных групп (А), вместо которых остаются метильные группы (М). Эта реакция катализируется уропорфириногендекарбокснлазон, которая также способна катализировать превращение уропорфириногена I в копропорфириноген I (рис. 33.7). Копропорфириноген III далее поступает в митохондрии, где превращается в протопорфириноген III, а затем в протопорфирин III. Это превращение, вероятно, включает несколько стадий. Митохондриальный фермент копропорфириногеноксидаза катализирует декарбоксилирование

Рис. 33.7. Декарбоксилирование уропорфириногенов с образованием копропорфириногенов (в цитозоле). А - ацетатная группа, М - метильная группа, Р - пропионильная группа

и окисление двух пропионовых боковых цепей, это приводит к образованию протопорфириногена. Этот фермент действует только на копропорфириноген типа III, чем, по-видимому, и объясняется отсутствие протопорфирина типа I в природных материалах. Окисление протопорфириногена в протопорфирин катализируется другим митохондриальным ферментом - протопорфириногеноксидазой. В печени млекопитающих превращение копропорфириногена в протопорфирин требует присутствия молекулярного кислорода.

Образование гема

Завершающей стадией синтеза гема является включение в протопорфирин двухвалентного железа; эта реакция катализируется митохондриальным ферментом гемсинтазой или феррохелатазой (рис. 33.4). Реакция легко идет и в отсутствие фермента, однако при добавлении тканевых препаратов ее скорость намного выше благодаря присутствию в тканях ферментов, катализирующих образование хелатов железа.

Сводная схема биосинтеза производных порфирина из порфобилиногена представлена на рис. 33.8. Биосинтез гема идет в большинстве тканей млекопитающих, за исключением зрелых эритроцитов, которые не содержат митохондрий.

Описанные выше порфириногены бесцветны и по сравнению с соответствующими окрашенными порфнринами содержат 6 дополнительных атомов водорода. В настоящее время ясно, что именно эти восстановленные порфирины (порфириногены), а не соответствующие порфирины являются интермедиатами при биосинтезе протопорфирина и гема.

Регуляция биосинтеза гема

Скорость-лимитирующей реакцией синтеза гема является конденсация сукцинил-СоА и глицина, приводящая к образованию АЛК (рис. 33.5); эта реакция катализируется синтазой аминолевулиновой кислоты (-синтазой). В нормальных тканях, способных осуществлять синтез гема, уровень АЛК-синтазной активности значительно ниже уровня других ферментов, участвующих в синтезе гема. Однако -синтаза является регуляторным ферментом. Полагают, что гем путем взаимодействия с молекулой апорепрессора является отрицательным регулятором синтеза АЛК-синтазы. Механизм репрессии схематически показан на рис. 33.9. Вероятно, на этой стадии происходит также ингибирование гемом по

Рис. 33.8. Стадии биосинтеза производных порфирина из порфобилиногена.

принципу обратной связи, однако главный регуляторный эффект гема состоит в том, что синтез -синтазы значительно ускоряется в отсутствие гема и замедляется в его присутствии. Скорость обновления -синтазы в печени млекопитающих в норме велика (время полужизни около 1 ч), что не является неожиданным для фермента, катализирующего скорость - лимитирующую реакцию.

Рис. 33.9. Регуляция синтеза гема на стадии, катализируемой АЛК-синтазой, по механизму репрессии и дерспрессии синтеза АЛК-синтазы с участием гема и его гипотетического апорепрессора. Штриховая линия показывает отрицательную регуляцию путем репрессии синтеза АЛК-синтазы.

Многие соединения различной структуры, включая применяемые в настоящее время инсектициды, канцерогенные и фармацевтические препараты, могут значительно повышать содержание в печени АЛК-синтазы. Большинство лекарственных соединений метаболизируется в печени системой, в которую входит специфический гемопротеин цитохром Р-450. В процессе метаболизма этих соединений значительно возрастает потребление гема системой цитохрома Р-450, в результате чего внутриклеточная концентрация гема снижается. Это в свою очередь вызывает дерепрессию синтеза АЛК-синтазы и как следствие - повышение скорости синтеза гема для обеспечения потребностей клетки.

На индукцию АЛК-синтазы в печени оказывают действие и некоторые другие факторы. Глюкоза может тормозить индукцию АЛК-синтазы; железо в хелатной форме оказывает синергический эффект при индукции печеночной АЛК-синтазы; стероиды способствуют дерепрессии АЛК-синтазы in vivo лекарственными препаратами. Введение же в организм гематина может препятствовать дерепрессии АЛК-синтазы (подобное же действие характерно и для гемопротеинов). В эритропоэтических тканях активность АЛК-синтазы возрастает при гипоксии, в то же время на активность АЛК-синтазы в печени гипоксия не оказывает влияния.

Важная роль этих регуляторных механизмов будет обсуждаться ниже, когда будут рассматриваться заболевания, относящиеся к группе порфирий.

Химия порфиринов

Благодаря присутствию третичных азотов в двух пирроленовых кольцах порфирины обладают свойствами слабых оснований. Порфирины же, содержащие карбоксильные группы в одной или нескольких боковых цепях, являются также и кислотами. Их изоэлектрические точки находятся в пределах значений в области этих значений порфирины легко выпадают в осадок.

Различные порфириногены бесцветны, тогда как все порфирины окрашены. При изучении порфиринов и их производных большое значение имеют характерные, для них спектры поглощения как в видимой, так и в ультрафиолетовой области. Примером может служить кривая поглощения раствора порфирина в 5%-ной соляной кислоте (рис. 33.10). Обратите внимание на резкий максимум поглощения вблизи длины волны 400 нм. Это отличительный признак порфинового ядра, характерный для всех порфиринов независимо от природы боковых цепей. Этот максимум называют полосой Соре, по имени ее первооткрывателя. Гематопорфирин в кислой среде имеет помимо полосы Соре два более слабых максимума при 550 и 592 нм.

Если растворы порфиринов в сильных минеральных кислотах или органических растворителях облучать ультрафиолетовым светом, они испускают

Рис. 33.10. Спектр поглощения гематопорфирина (-ный раствор гематопорфирина в 5%-ной ).

интенсивное красное флуоресцентное свечение. Эта флуоресценция столь характерна, что часто используется для обнаружения малых количеств свободных порфиринов. Поглощение и флуоресценция порфиринов обусловлены наличием двойных связей; как уже упоминалось, восстановление метенильных мостиков (путем присоединения водородов) в метиленовые приводит к образованию бесцветных порфиркногенов.

Присоединение металла к порфирину изменяет его спектр поглощения в видимой области. Примером может служить протопорфирин - предшественник гема, свободный от железа. В щелочном растворе в спектре порфирина имеется несколько узких и интенсивных полос поглощения (при 645, 591 и 540 нм), тогда как для гема характерна широкая полоса поглощения в виде плато, простирающегося от 540 до 580 нм.

Определение порфиринов

Копропорфирины и уропорфирины представляют значительный клинический интерес, поскольку при порфириях наблюдается увеличение экскреции этих соединений. Копропорфирины I и III растворимы в смесях эфира и ледяной уксусной кислоты, из которых их можно затем экстрагировать соляной кислотой. Уропорфирины, напротив, в этих смесях нерастворимы, но частично растворимы в этилацетате, и их можно экстрагировать соляной кислотой. Полученные солянокислые растворы при облучении ультрафиолетовым светом дают характерное красное флуоресцентное свечение. Характерные полосы поглощения могут быть зарегистрированы с помощью спектрофотометра.

Таблица 33.1. Верхние пределы нормальной экскреции порфиринов и их предшественников и содержание их в эритроцитах

В табл. 33.1 приведены верхние пределы нормальной экскреции порфиринов и их предшественников. У здоровых людей содержание в моче копропорфиринов составляет в среднем около на изомер типа I приходится в среднем , на изомер типа III - 53 . Отклонение от этого нормального соотношения при экскреции копропорфиринов типа I и III может служить диагностическим признаком при некоторых заболеваниях печени.

Последовательно образующиеся в процессе синтеза гема из АЛК интермедиаты становятся все более гидрофобными. Образование копропорфириногена сопровождается удалением ацетильных групп уропорфириногена; при превращении копропорфириногена в протопорфириноген происходит декарбоксилирование двух пропионильных групп. Это повышение гидрофобности отражается на распределении интермедиатов биосинтеза гема в составе мочи и фекалий. Более полярный уропорфириноген декретируется преимущественно с мочой, тогда как более гидрофобные копропорфириноген и протопорфириноген оказываются преимущественно в желчи и удаляются в составе фекалий.

Заболевания, в основе которых лежат повреждения в синтезе гема, названы порфириями . Их развитие чаще всего связано с наследственными дефектами в ферментных системах, ответственных за анаболизм порфиринов. Некоторые клинические разновидности подобных патологий считаются приобретёнными , т.к. у больных на первый план в качестве вероятных провоцирующих факторов выступают различные интоксикации.

Таблица 2.1

Локализация повреждений ферментов при различных порфириях и их следствие

(снижение активности)

Порфирины(стадии синтеза)

Вид порфирии

Присутствие порфиринов

Путь экскре-ции

АЛК–синтаза

Глицин + сукцинилКоА

Дегидратаза 5- аминолевулиновой кислоты (АР)

Порфобилиноген(ПБГ)

Порфирия 5- АЛК- дегидратазы (П)

Порфобилиноген- дезаминаза(АД)

(Гидроксиметилметил-билин)

Острая перемежающаяся порфирия (ОПП) (П)

5 – АЛК, ПБГ

Уропорфириноген- ко- синтаза(АР)

Уропорфириноген III

Врождённая эритропоэ-тическая порфирия (болезнь Гюнтера) (Э)

Уропорфирино-ген I

Копропорфири-ноген I

Уропорфириноген декарбоксилаза (АД)

Копропорфириноген III

Поздняя кожная порфирия (ПКП) (П )

Уропорфирино-ген

Копропорфириноген оксидаза (АД)

Протопорфириноген IX

Наследственная копропорфирия (Э)

Копропорфири-ноген, 5 – АЛК, ПБГ

Кал, моча

Протопорфириноген – оксидаза (АД)

Протопорфин IX

Порфирия Vaiegata (ВП) (П )

Протопорфири-ноген IX, 5- АЛК, ПБГ

Кал, моча

Феррохелотаза

(не определён)

Эритропоэтическая протопорфирия (Э)

Протопорфирин,

Примечание:АЛК –аминолевуленовая кислота; П – печёночная; Э – эритропоэтическая; АР – аутосомно- рецессивный, АД – аутосомно-доминантный типы наследования

В зависимости от локализации нарушений различают эритропоэтические (аномалии в обмене порфиринов в костном мозге) и печёночные (похожие сдвиги в гепатоцитах) типы (Табл. 2.1), отличающиеся друг от друга дефектами разных генов.

Порфирии встречаются во всех странах с различной частотой, достигающей местами очень высокого уровня (острая перемежающаяся порфирия (ОПП) в Лапландии – 3:1000, порфирия Variegata (ВП) в ЮАР – 1:1000). Впервые порфирия (точнее её наследственная эритропоэтическая форма) была описана Шульцем (1874) и Гюнтером (1911). Однако исторические хроники времён средневековья сохранили описания семейств, у членов которых отмечались черты, свойственные тяжелым формам этого страдания, проявляющиеся кожными, неврологическими, психическим и абдоминальными симптомами (клиникой острого живота, тошнотой, рвотой, задержкой стула; эпилептическими припадками, парезами, параличами, полиневритами, зрительными и слуховыми галлюцинациями, слепотой) , а также аномально высоким выделением порфинов с мочой или калом. Некоторые признаки болезни – красный оттенок зубов и костей, своеобразный цвет кожи, изменённой волдырями, язвами и рубцами; ночной образ жизни, обусловленный фотодерматитом, спонтанное свечение некоторых тканей и выделений больного, прихоти вкуса, связанные с анемией, – столь ярки и необычны, что вызывают в памяти описание облика и поведения мифических вурдалаков или вампиров.

В России чаще выявляются ОПП и ПКП. Для первой характерен комплекс следующих симптомов: тахикардия, повышение АД, коликообразные боли в животе, признаки полиневрита, судороги, изменения поведения, эмоциональная лабильность, депрессия, галлюцинации, парез дыхательной мускулатуры и др. Способы диагностики основаны на выявлении избыточного количества 5-АЛК, порфобилиногена и общих порфиринов (Табл. 2.1).

Поздняя кожная порфирия (ПКП) проявляет себя повышенной светочувствительностью, глубокими поражениями кожи, обусловленными фотосенсибилизацией, иногда клиникой «острого живота». При данной форме рост величин общих порфиринов, 5- АЛК, порфобилиногена незначителен (в 1,5- 2 раза), но в крови и моче можно обнаружить порфириногены , абсолютно отсутствующие у здоровых лиц.

Иногда острое или хроническое отравление тяжёлыми металлами провоцирует клиническую картину пароксизма порфирий. Ионы этих металлов, взаимодействуя с сульфгидрильными группами аминолевулинатсинтазы или феррохелатазы, подавляют их активность в синтезе гема. В результате в эритроцитах накапливается протопорфирин , плазме крови увеличивается содержание железа , оно откладывается в органах и тканях, провоцируя формирование гемосидероза . В моче повышается экскреция 5-аминолевулината.

Гем является простетической группой многих белков: гемоглобина, миоглобина, цитохромов митохондриальной ЦПЭ, цитохрома Р 450 , участвующего в микросомальном окислении. Ферменты каталаза, пероксидаза, цитохромоксидаза содержат гем в качестве кофермента.

Все клетки организма имеют гемсодержащие белки, поэтому синтез гема идёт во всех клетках, за исключением эритроцитов, не имеющих, как известно, белоксинтезирующей системы.

При распаде гема в клетках РЭС образуется жёлчный пигмент билирубин. Дальнейший катаболизм билирубина в печени, кишечнике и почках приводит к образованию конечных продуктов распада гема стеркобилина и уробилина, содержащихся, соответственно, в кале и моче. Железо, освобождающееся при распаде гема, снова используется для синтеза железосодержащих белков.

I. СТРОЕНИЕ И БИОСИНТЕЗ ГЕМА а. строение гема

Гем состоит из иона двухвалентного железа и порфирина (рис. 13-1). В основе структуры пор-фиринов находится порфин. Порфин представляет собой четыре пиррольных кольца, связанных между собой метеновыми мостиками (рис. 13-1). В зависимости от структуры заместителей в кольцах пирролов различают несколько типов порфиринов: протопорфирины, этиопорфи-рины, мезопорфирины и копропорфирины. Протопорфирины - предшественники всех других типов порфиринов.

Гемы разных белков могут содержать разные типы порфиринов (см. раздел 6). В геме гемоглобина находится протопорфирин IX, который имеет 4 метильных, 2 винильных радикала и 2 остатка пропионовой кислоты. Железо в геме находится в восстановленном состоянии (Fе +2) и связано двумя ковалентными и двумя координационными связями с атомами азота пиррольных колец. При окислении железа гем превращается

в гематин (Fe 3 +). Hаибольшее количество гема содержат эритроциты, заполненные гемоглобином, мышечные клетки, имеющие миоглобин, и клетки печени из-за высокого содержания в них цитохрома Р 450 .

б. биосинтез гема

Гем синтезируется во всех тканях, но с наибольшей скоростью в костном мозге и печени (рис. 13-2). В костном мозге гем необходим для синтеза гемоглобина в ретикулоцитах, в гепато-цитах - для образования цитохрома Р 450 .

Первая реакция синтеза гема - образование 5-аминолевулиновой кислоты из глицина и сукцинил-КоА (рис. 13-3) идёт в матриксе митохондрий, где в ЦТК образуется один из субстратов этой реакции - сукцинил-КоА. Эту реакцию катализирует пиридоксальзависимый фермент 5-аминолевулинатсинтаза.

Из митохондрий 5-аминолевулиновая кислота поступает в цитоплазму. В цитоплазме проходят промежуточные этапы синтеза гема: соединение 2 молекул 5-аминолевулиновой кислоты в молекулу порфобилиногена (рис. 13-4), дезаминирование порфобилиногена с образованием гидроксиметилбилана, ферментативное превращение гидроксиметилбилана в молекулу уропорфобилиногена III, декар-боксилирование последнего с образованием копропорфириногена III. Гидроксиметилбилан может также неферментативно превращаться в уропорфириноген I, который декарбоксилиру-ется в копропорфириноген I. Из цитоплазмы копропорфириноген III опять поступает в митохондрии, где проходят заключительные реакции синтеза гема. В результате двух последовательных окислительных реакций коп-ропорфириноген III превращается в протопор-фириноген IX, а протопорфириноген IX - в протопорфирин IX. Фермент феррохелатаза, присоединяя к протопорфирину IX двухвалентное железо, превращает его в гем (рис. 13-2). Источником железа для синтеза гема служит депонирующий железо белок ферритин. Син-

Рис. 13-1. Строение порфина (А), протопорфирина IX (Б) и гема гемоглобина (В). Порфин - циклическая структура, состоящая из четырёх пиррольных колец, связанных между собой метеновыми мостиками. Прото-порфирин IX имеет четыре метильных, два винильных радикала и два остатка пропионовой кислоты. В геме гемоглобина Fe 2+ образует две ковалентные и две координационные связи с атомами азота пиррольных колец протопорфирина IX.

тезированный гем, соединяясь с α- и β-по-липепептидными цепями глобина, образует гемоглобин. Гем регулирует синтез глобина: при снижении скорости синтеза гема синтез глобина в ретикулоцитах тормозится.

В. РЕГУЛЯЦИЯ БИОСИНТЕЗА ГЕМА

Регуляторную реакцию синтеза гема катализирует пиридоксальзависимый фермент 5-аминолевулинатсинтаза. Скорость реакции регулируется аллостерически и на уровне трансляции фермента.

Аллостерическим ингибитором и корепрессо-ром синтеза 5-аминолевулинатсинтазы является гем (рис. 13-5).

В ретикулоцитах синтез этого фермента на этапе трансляции регулирует железо. На участке инициации мРHК, кодирующей фермент, имеется последовательность нуклеотидов, образующая шпилечную петлю, которая называется железочувствительным элементом (от англ. iron-responsive element, IRE) (рис. 13-6).

При высоких концентрациях железа в клетках оно образует комплекс с остатками цисте-ина регуляторного железосвязывающего белка. Взаимодействие железа с регуляторным желе-зосвязывающим белком вызывает снижение сродства этого белка к IRE-элементу мРHК, кодирующей 5-аминолевулинатсинтазу, и продолжение трансляции (рис. 13-6, А). При низких концентрациях железа железосвязывающий

Рис. 13-2. Синтез гема. Цифрами на схеме указаны ферменты: 1 - 5-аминолевулинатсинтаза; 2 - 5-аминоле-вулинатдегидратаза; 3 - порфобилиногендезаминаза; 4 - уропорфириноген III косинтаза; 5 - уропорфирино-гендекарбоксилаза; 6 - копропорфириноген III оксидаза; 7 - протопорфириногеноксидаза; 8 - феррохелатаза. Буквами обозначены заместители в пиррольных кольцах: М - метил, В - винил, П - остатки пропионовой кислоты, А - ацетил, ПФ - пиридоксальфосфат. Донором железа служит депонирующий железо в клетках белок ферритин.

Рис. 13-3. Реакция образования 5-аминолевулиновой кислоты.

белок присоединяется к железочувствительному элементу, находящемуся на 5"-нетранслируемом конце мРНК, и трансляция 5-аминолевулинат-синтазы тормозится (рис. 13-6, Б).

5-Аминолевулинатдегидратаза также аллостери-чески ингибируется гемом, но так как активность этого фермента почти в 80 раз превышает активность 5-аминолевулинатсинтазы, то это не имеет большого физиологического значения.

Рис. 13-4. Реакция образования порфобилиногена.

Рис. 13-5. Регуляция синтеза гема и гемоглобина. Гем по принципу отрицательной обратной связи ингибирует 5-аминолевулинатсинтазу и 5-аминолевулинатдегидратазу и является индуктором трансляции α- и β -цепей гемо глобина.

Рис. 13-6. Регуляция синтеза аминолевулинатсинтазы. А - при высокой концентрации железа в ретикулоцитах оно присоединяется к железосвязывающему белку и снижает сродство этого белка к железочувствительному элементу (IRE) матричной РНК, кодирующей 5-аминолевулинатсинтазу. Белковые факторы инициации трансляции связываются с мРНК и инициируют трансляцию 5-аминолевулинатсинтазы. Б - при низком содержании железа в ретикулоцитах железосвязывающий белок обладает высоким сродством к IRE и взаимодействует с ним. Белковые факторы инициации трансляции не могут присоединиться к мРНК, и трансляция прекращается.

Дефицит пиридоксальфосфата и лекарственные препараты, которые являются его структурными аналогами, снижают активность 5-амино-левулинатсинтазы.

Г. НАРУШЕНИЯ БИОСИНТЕЗА ГЕМА. ПОРФИРИИ

Hаследственные и приобретённые нарушения синтеза гема, сопровождающиеся повышением содержания порфириногенов, а также продуктов их окисления в тканях и крови и появлением их в моче, называют порфириями («порфирин» в переводе с греч. означает пурпурный). Моча больных имеет красный цвет.

Hаследственные порфирии обусловлены генетическими дефектами ферментов, участвующих

в синтезе гема, за исключением 5-аминолевули-натсинтазы. При этих заболеваниях отмечают снижение образования гема. Поскольку гем - ал-лостерический ингибитор 5-аминолевулинатсин-тазы, то активность этого фермента повышается, и это приводит к накоплению промежуточных продуктов синтеза гема - 5-аминолевулиновой кислоты и порфириногенов.

В зависимости от основной локализации патологического процесса различают печёночные и эритропоэтические наследственные порфирии. Эритропоэтические порфирии сопровождаются накоплением порфиринов в нормобластах и эритроцитах, а печёночные - в гепатоцитах.

При тяжёлых формах порфирий наблюдают нейропсихические расстройства, нарушения функций РЭС, повреждения кожи. Порфири-ногены не окрашены и не флуоресцируют, но на свету они легко превращаются в порфирины. Последние проявляют интенсивную красную флуоресценцию в ультрафиолетовых лучах. В коже на солнце в результате взаимодействия с порфиринами кислород переходит в синглетное состояние. Синглетный кислород вызывает ускорение ПОЛ клеточных мембран и разрушение клеток, поэтому порфирии часто сопровождаются фотосенсибилизацией и изъязвлением открытых участков кожи. Нейропсихические расстройства при порфириях связаны с тем, что 5-аминолевулинат и порфириногены являются нейротоксинами.

Иногда при лёгких формах наследственных порфирий заболевание может протекать бессимптомно, но приём лекарств, являющихся индукторами синтеза 5-аминолевулинатсинтазы, может вызвать обострение болезни. Индукторами синтеза 5-аминолевулинатсинтазы являются такие известные лекарства, как сульфанил-ами-ды, барбитураты, диклофенак, вольтарен, стероиды, гестагены. В некоторых случаях симптомы болезни не проявляются до периода полового созревания, когда повышение образования β-стероидов вызывает индукцию синтеза 5-ами-нолевулинатсинтазы. Порфирии наблюдают и при отравлениях солями свинца, так как свинец ингибирует 5-аминолевулинатдегидратазу и феррохелатазу. Некоторые галогенсодержащие гербициды и инсектициды являются индукторами синтеза 5-аминолевулинатсинтазы, поэтому попадание их в организм сопровождается симптомами порфирии.

II. ОБМЕН ЖЕЛЕЗА

В организме взрослого человека содержится 3-4 г железа, из которых только около 3,5 мг

находится в плазме крови. Гемоглобин имеет примерно 68% железа всего организма, ферри-тин - 27%, миоглобин - 4%, трансферрин - 0,1%, На долю всех содержащих железо ферментов приходится всего 0,6% железа, имеющегося в организме. Источниками железа при биосинтезе железосодержащих белков служат железо пищи и железо, освобождающееся при постоянном распаде эритроцитов в клетках печени и селезёнки.

В нейтральной или щелочной среде железо находится в окисленном состоянии - Fe 3+ , образуя крупные, легко агрегирующие комплексы с ОН - , другими анионами и водой. При низких значениях рН железо восстанавливается и легко диссоциирует. Процесс восстановления и окисления железа обеспечивает его перераспределение между макромолекулами в организме. Ионы железа обладают высоким сродством ко многим соединениям и образуют с ними хелатные комплексы, изменяя свойства и функции этих соединений, поэтому транспорт и депонирование железа в организме осуществляют особые белки. В клетках железо депонирует белок ферритин, в крови его транспортирует белок трансферрин.

а. всасывание железа в кишечнике

В пище железо в основном находится в окисленном состоянии (Fe 3+) и входит в состав белков или солей органических кислот. Освобождению железа из солей органических кислот способствует кислая среда желудочного сока. Наибольшее количество железа всасывается в двенадцатиперстной кишке. Аскорбиновая кислота, содержащаяся в пище, восстанавливает железо и улучшает его всасывание, так как в клетки слизистой оболочки кишечника поступает только Fe 2+. В суточном количестве пищи обычно содержится 15-20 мг железа, а всасывается только около 10% этого количества. Организм взрослого человека теряет около 1 мг железа в сутки.

Количество железа, которое всасывается в клетки слизистой оболочки кишечника, как правило, превышает потребности организма. Поступление железа из энтероцитов в кровь зависит от скорости синтеза в них белка апоферритина. Апоферритин «улавливает» железо в энтероцитах и превращается в ферритин, который остаётся в энтероцитах. Таким способом снижается поступ-

ление железа в капилляры крови из клеток кишечника. Когда потребность в железе невелика, скорость синтеза апоферритина повышается (см. ниже «Регуляция поступления железа в клетки»). Постоянное слущивание клеток слизистой оболочки в просвет кишечника освобождает организм от излишков железа. При недостатке железа в организме апоферритин в энтероцитах почти не синтезируется. Железо, поступающее из энтероцитов в кровь, транспортирует белок плазмы крови трансферрин (рис. 13-7).

Б. ТРАНСПОРТ ЖЕЛЕЗА В ПЛАЗМЕ КРОВИ И ЕГО ПОСТУПЛЕНИЕ В КЛЕТКИ

В плазме крови железо транспортирует белок трансферрин. Трансферрин - гликопротеин, который синтезируется в печени и связывает только окисленное железо (Fe 3+). Поступающее в кровь железо окисляет фермент ферроксидаза, известный как медьсодержащий белок плазмы крови церулоплазмин. Одна молекула трансфер-рина может связать один или два иона Fe 3+ , но одновременно с анионом СО 3 2- с образованием комплекса трансферрин-2 (Fе 3+ -СО 3 2-). В норме трансферрин крови насыщен железом приблизительно на 33%.

Трансферрин взаимодействует со специфическими мембранными рецепторами клеток.

В результате этого взаимодействия в цитозоле клетки образуется комплекс Са 2+ -кальмодулин-ПКС, который фосфорилирует рецептор транс-феррина и вызывает образование эндосомы. АТФ-зависимый протонный насос, находящийся в мембране эндосомы, создаёт кислую среду внутри эндосомы. В кислой среде эндосомы железо освобождается из трансферрина. После этого комплекс рецептор-апотрансферрин возвращается на поверхность плазматической мембраны клетки. При нейтральном значении рН внеклеточной жидкости апотрансферрин изменяет свою конформацию, отделяется от рецептора, выходит в плазму крови и становится способным вновь связывать ионы железа и включаться в новый цикл его транспорта в клетку. Железо в клетке используется для синтеза железосодержащих белков или депонируется в белке ферритине.

Ферритин - олигомерный белок с молекулярной массой 500 кД. Он состоит из тяжёлых (21 кД) и лёгких (19 кД) полипептидных цепей, составляющих 24 протомера. Разный набор протомеров в олигомере ферритина определяет образование нескольких изоформ этого белка в разных тканях. Ферритин представляет собой полую сферу, внутри которой может содержаться до 4500 ионов трёхвалентного железа, но обычно содержится менее 3000. Тяжёлые цепи

Рис. 13-7. Поступление экзогенного железа в ткани. В полости кишечника железо освобождается из белков и солей органических кислот пищи. Усвоению железа способствует аскорбиновая кислота, восстанавливающая железо. В клетках слизистой оболочки кишечника избыток поступившего железа соединяется с белком апофер-ритином с образованием ферритина, при этом ферритин окисляет Fe2+ в Fe3+. Поступление железа из клеток слизистой оболочки кишечника в кровь сопровождается окислением железа ферментом сыворотки крови фер-роксидазой. В крови Fe3+ транспортирует белок сыворотки крови трансферрин. В тканях Fe2+ используется для синтеза железосодержащих белков или депонируется в ферритине.

ферритина окисляют Fe 2+ в Fe 3+ . Железо в виде гидроксидфосфата находится в центре сферы, оболочка которой образована белковой частью молекулы. Оно поступает внутрь и освобождается наружу через каналы, пронизывающие белковую оболочку апоферритина, но железо может откладываться и в белковой части молекулы ферритина. Ферритин содержится почти во всех тканях, но в наибольшем количестве в печени, селезёнке и костном мозге. Незначительная часть ферритина экскретируется из тканей в плазму крови. Поскольку поступление ферри-тина в кровь пропорционально его содержанию в тканях, то концентрация ферритина в крови - важный диагностический показатель запасов железа в организме при железодефицитной анемии. Метаболизм железа в организме представлен на рис. 13-8.

В. РЕГУЛЯЦИЯ ПОСТУПЛЕНИЯ ЖЕЛЕЗА В КЛЕТКИ

Содержание железа в клетках определяется соотношением скоростей его поступления, использования и депонирования и контролируется двумя молекулярными механизмами. Скорость поступления железа в неэритроидные клетки зависит от количества белков-рецепторов трансферрина в их мембране. Избыток железа в клетках депонирует ферритин. Синтез апофер-ритина и рецепторов трансферрина регулируется на уровне трансляции этих белков и зависит от содержания железа в клетке.

На нетранслируемом 3"-конце мРНК рецептора трансферрина и на нетранслируемом 5"-конце мРНК апоферритина имеются шпилечные петли - железочувствительные элементы IRE (рис. 13-9 и 13-10). Причём мРНК рецептора трансфер-

Рис. 13-8. Метаболизм железа в организме.

Рис. 13-9. Регуляция синтеза апоферритина. А - при снижении содержания железа в клетке железосвязывающий белок обладает высоким сродством к IRE и взаимодействует с ним. Это препятствует присоединению белковых факторов инициации трансляции к мРНК, кодирующей апоферритин, и синтез апоферритина прекращается; Б - при повышении содержания железа в клетке оно взаимодействует с железосвязывающим белком, в результате чего снижается сродство этого белка к IRE. Белковые факторы инициации трансляции присоединяются к мРНК, кодирующей апоферритин, и инициируют трансляцию апоферритина.

рина имеет 5 петель, а мРНК апоферритина - только 1.

Эти участки мРНК могут взаимодействовать с регуляторным IRE-связывающим белком. При низких концентрациях железа в клетке IRE-связывающий белок соединяется с IRE мРНК апоферритина и препятствует присоединению белковых факторов инициации трансляции (рис. 13-9, А). В результате этого снижаются скорость трансляции апоферри-тина и его содержание в клетке. Вместе с тем при низких концентрациях железа в клетке IRE-связывающий белок связывается с желе-зочувствительным элементом мРНК рецептора трансферрина и предотвращает её разрушение ферментом РНК-азой (рис. 13-10, А). Это вызывает увеличение количества рецепторов

трансферрина и ускорение поступления железа в клетки.

При повышении содержания железа в клетке в результате его взаимодействия с IRE-связывающим белком происходит окисление SH-групп активного центра этого белка и снижение сродства к железочувствительным элементам мРНК. Это приводит к двум последствиям:

Во-первых, ускоряется трансляция апоферритина (рис. 13-9, Б);

Во-вторых, IRE-связывающий белок освобождает шпилечные петли мРНК рецептора трансферрина, и она разрушается ферментом РНК-азой, в результате снижается скорость синтеза рецепторов трансферрина (рис. 1310, Б). Ускорение синтеза апоферритина и торможение синтеза рецепторов транс-

Рис. 13-10. Регуляция синтеза рецептора трансферрина. А - при низком содержании железа в клетке железочувствительный белок обладает высоким сродством к IRE мРНК, кодирующей белок-рецептор транс-феррина. Присоединение железосвязывающего белка к IRE мРНК предотвращает её разрушение РНК-азой и синтез белка-рецептора трансферрина продолжается; Б - При высоком содержании железа в клетке сродство железосвязывающего белка к IRE снижается, и мРНК становится доступной для действия РНК-азы, которая её гидролизует. Разрушение мРНК ведёт к снижению синтеза белка-рецептора трансферрина.

феррина вызывают снижение содержания

железа в клетке. В целом эти механизмы регулируют содержание железа в клетках и его использование для синтеза железосодержащих белков.

Г. НАРУШЕНИЯ МЕТАБОЛИЗМА ЖЕЛЕЗА

Железодефицитная анемия может наблюдаться при повторяющихся кровотечениях, беременности, частых родах, язвах и опухолях

ЖКТ, после операций на ЖКТ. При желе-зодефицитной анемии уменьшается размер эритроцитов и их пигментация (гипохромные эритроциты малых размеров). В эритроцитах уменьшается содержание гемоглобина, понижается насыщение железом трансферрина, а в тканях снижается концентрация ферритина. Причина этих изменений - недостаток железа в организме, вследствие чего снижается синтез гема и ферритина в неэритроидных тканях и гемоглобина в эритроидных клетках.

Гемохроматоз. Когда количество железа в клетках превышает объём ферритинового депо, железо откладывается в белковой части молекулы ферритина. В результате образования таких аморфных отложений избыточного железа ферритин превращается в гемосидерин. Гемо-сидерин плохо растворим в воде и содержит до 37% железа. Накопление гранул гемосидерина в печени, поджелудочной железе, селезёнке приводит к повреждению этих органов - гемохроматозу. Гемохроматоз может быть обусловлен наследственным увеличением всасывания железа в кишечнике, при этом содержание железа в организме больных может достигать 100 г. Это заболевание наследуется по ауто-сомно-рецессивному типу, причём около 0,5% европеоидов гомозиготны по гену гемохрома-тоза. Накопление гемосидерина в поджелудочной железе приводит к разрушению β-клеток островков Лангерханса и, как следствие этого, к сахарному диабету. Отложение гемосидерина в гепатоцитах вызывает цирроз печени, а в ми-окардиоцитах - сердечную недостаточность. Больных наследственным гемохроматозом лечат регулярными кровопусканиями, еженедельно или один раз в месяц в зависимости от тяжести состояния больного. К гемохроматозу могут привести частые переливания крови, в этих случаях больных лечат препаратами, связывающими железо.

III. КАТАБОЛИЗМ ГЕМОГЛОБИНА

Эритроциты имеют короткое время жизни (примерно 120 дней). При физиологических условиях в организме взрослого человека разрушается около 1-2х10 и эритроцитов в сутки. Их катаболизм происходит главным образом в ретикулоэндотелиальных клетках селезёнки, лимфатических узлов, костного мозга и печени. При старении эритроцитов снижается содержание сиаловых кислот в составе гликопротеинов плазматической мембраны. Изменённые углеводные компоненты гликопротеинов мембран эритроцитов связываются рецепторами клеток РЭС, и эритроциты «погружаются» в них эн-доцитозом. Распад эритроцитов в этих клетках начинается с распада гемоглобина на гем и глобин и последующего гидролиза ферментами лизосом белковой части гемоглобина.

А. КАТАБОЛИЗМ ГЕМА

Первая реакция катаболизма гема происходит при участии NADРН-зависимого ферментативного комплекса гемоксигеназы. Ферментная система локализована в мембране ЭР, в области электронтранспортных цепей микросомального окисления. Фермент катализирует расщепление связи между двумя пиррольными кольцами, содержащих винильные остатки, - таким образом, раскрывается структура кольца (рис. 13-11). В ходе реакции образуются линейный тетрапир-рол - биливердин (пигмент жёлтого цвета) и монооксид углерода (СО), который получается из углерода метениловой группы. Гем индуцирует транскрипцию гена гемоксигеназы, абсолютно специфичной по отношению к гему.

Ионы железа, освободившиеся при распаде гема, могут быть использованы для синтеза новых молекул гемоглобина или для синтеза других железосодержащих белков. Биливердин восстанавливается до билирубина NADРН-зависимым ферментом биливердинредуктазой. Билирубин образуется не только при распаде гемоглобина, но также при катаболизме других гемсодержащих белков, таких как цитохромы и миоглобин. При распаде 1 г гемоглобина образуется 35 мг билирубина, а в сутки у взрослого человека - примерно 250-350 мг билирубина. Дальнейший метаболизм билирубина происходит в печени.

Б. МЕТАБОЛИЗМ БИЛИРУБИНА

Билирубин, образованный в клетках РЭС (селезёнки и костного мозга), плохо растворим в воде, по крови транспортируется в комплексе с белком плазмы крови альбумином. Эту форму билирубина называют неконъюгированным билирубином. Каждая молекула альбумина связывает 2 (или даже 3) молекулы билирубина, одна из которых связана с белком более прочно (более высокое сродство), чем другие. При сдвиге рН крови в кислую сторону (повышение концентрации кетоновых тел, лактата) изменяются заряд, конформация альбумина, снижается сродство к билирубину. Поэтому билирубин, связанный с альбумином непрочно, может вытесняться из центров связывания и образовывать комплексы с коллагеном межклеточного матрикса и липидами мембран. Ряд лекарственных соединений конкурирует с билирубином за

Рис. 13-11. Распад гема. М - (-СН 3) - метильная группа; В - (-СН=СН 2) - винильная группа; П - (-СН 2 -СН 2 -СООН) - остаток пропионовой кислоты. В ходе реакции одна метильная группа превращается в окись углерода и, таким образом, раскрывается структура кольца. Образованный биливердин под действием биливердинредуктазы превращается в билирубин.

высокоаффинный, имеющий высокое сродство центр альбумина.

Поглощение билирубина паренхиматозными клетками печени

Комплекс «альбумин-билирубин», доставляемый с током крови в печень, на поверх-

ности плазматической мембраны гепатоцита диссоциирует. Высвобожденный билирубин образует временный комплекс с липидами плазматической мембраны. Облегчённая диффузия билирубина в гепатоциты осуществляется двумя типами белков-переносчиков: лигандина (он транспортирует основное количество били-

рубина) и протеина Z. Активность поглощения билирубина гепатоцитом зависит от скорости его метаболизма в клетке.

Лигандин и протеин Z обнаружены также в клетках почек и кишечника, поэтому при недостаточности функции печени они способны компенсировать ослабление процессов детокси-кации в этом органе.

Конъюгация билирубина в гладком ЭР

В гладком ЭР гепатоцитов к билирубину присоединяются остатки глюкуроновой кислоты - реакции конъюгации. Билирубин имеет 2 карбоксильные группы, поэтому может соединяться с 2 молекулами глюкуроновой кислоты, образуя хорошо растворимый в воде конъюгат - ди-глюкуронид билирубина (конъюгированный, или прямой, билирубин) (рис. 13-12).

Донором глюкуроновой кислоты служит УДФ-глюкуронат. Специфические ферменты, УДФ-глюкуронилтрансферазы (уридиндифосфоглю-куронилтрансферазы) катализируют образование моно- и диглюкуронидов билирубина (рис. 13-13). Индукторами синтеза УДФ-глюкуронилтрансфераз служат некоторые лекарственные препараты, например, фенобарбитал (см. раздел 12).

Секреция билирубина в жёлчь

Секреция конъюгированного билирубина в жёлчь идёт по механизму активного транспорта, т.е. против градиента концентрации. Активный транспорт является, вероятно, скорость-лими-тирующей стадией всего процесса метаболизма билирубина в печени. В норме диглюкуронид

Рис. 13-12. Структура билирубиндиглюкуронида (конъюгированный, «прямой» билирубин). Глюку-роновая кислота присоединяется эфирной связью к двум остаткам пропионовой кислоты с образованием ацилглюкуронида.

билирубина - главная форма экскреции билирубина в жёлчь, однако не исключается присутствие небольшого количества моно-глюкуронида. Транспорт конъюгированного билирубина из печени в жёлчь активируется теми же лекарствами, которые способны индуцировать конъюгацию билирубина. Таким образом, можно сказать, что скорость конъюгации билирубина и активный транспорт билирубинглюкуронида из гепатоцитов в жёлчь строго взаимосвязаны (рис. 13-14).

В. КАТАБОЛИЗМ БИЛИРУБИНДИГЛЮКУРОНИДА

В кишечнике поступившие билирубинглюку-рониды гидролизуются специфическими бактериальными ферментами β-глюкуронидазами, которые гидролизуют связь между билирубином и остатком глюкуроновой кислоты. Освобо-

Рис. 13-13. Образование билирубиндиглюкуронида.

Рис. 13-14. Билирубин-уробилиногеновый цикл в печени. 1 - катаболизм Hb в ретикулоэндотелиальных клетках костного мозга, селезёнки, лимфатических узлов; 2 - образование транспортной формы комплекса билирубин-альбумин; 3 - поступление билирубина в печень; 4 - образование билирубинглюкуронидов;

5 - секреция билирубина в составе жёлчи в кишечник;

6 - катаболизм билирубина под действием кишечных бактерий; 7 - удаление уробилиногенов с калом; 8 - всасывание уробилиногенов в кровь; 9 - усвоение уробилиногенов печенью; 10 - поступление части уробилиногенов в кровь и выделение почками с мочой; 11 - небольшая часть уробилиногенов секретируется в жёлчь.

дившийся в ходе этой реакции билирубин под действием кишечной микрофлоры восстанавливается с образованием группы бесцветных тетрапиррольных соединений - уробилиногенов (рис. 13-15).

В подвздошной и толстой кишках небольшая часть уробилиногенов снова всасывается, попадает с кровью воротной вены в печень. Основная часть уробилиногена из печени в составе жёлчи выводится в кишечник и выделяется с

калом из организма, часть уробилиногена из печени поступает в кровь и удаляется с мочой в форме уробилина (рис. 13-14). В норме большая часть бесцветных уробилиногенов, образующихся в толстой кишке, под действием кишечной микрофлоры окисляется в прямой кишке до пигмента коричневого цвета уробилина и удаляется с калом. Цвет кала обусловлен присутствием уробилина.

Рис. 13-15. Структура некоторых жёлчных пигментов. Мезобилиноген - промежуточный продукт катаболизма билирубина в кишечнике.

iv. диагностическое значение

определения концентрации билирубина в биологических жидкостях человека

В настоящее время для определения содержания билирубина в сыворотке (плазме) крови используют предложенный в 1916 г. Ван дер Бергом метод определения билирубина в сыворотке крови, основанный на диазореакции.

В нормальном состоянии концентрация общего билирубина в плазме составляет 0,3-1 мг/дл (1,7-17 мкмоль/л), 75% от общего количества билирубина находится в неконъюгированной форме (непрямой билирубин). В клинике ко-нъюгированный билирубин называют прямым, потому что он водорастворим и может быстро взаимодействовать с диазореагентом, образуя соединение розового цвета, - это и есть прямая реакция Ван дер Берга. Неконъюгированньш билирубин гидрофобен, поэтому в плазме крови содержится в комплексе с альбумином и не реагирует с диазореактивом до тех пор, пока не добавлен органический растворитель, например этанол, который осаждает альбумин. Неконъ-югированный билирубин, взаимодействующий с азокрасителем только после осаждения белка, называют непрямым билирубином.

У больных с печёночно-клеточной патологией, сопровождающейся длительным повышением

концентрации конъюгированного билирубина, в крови обнаруживают третью форму плазменного билирубина, при котором билирубин ковалентно связан с альбумином, и поэтому его невозможно отделить обычным способом. В некоторых случаях до 90% общего содержания билирубина крови может находиться в этой форме.

А. ЖЕЛТУХИ

Причинами гипербилирубинемии могут быть увеличение образования билирубина, превышающее способность печени экскретировать его, или повреждение печени, приводящее к нарушению секреции билирубина в жёлчь в нормальных количествах. Гипербилирубинемию отмечают также при закупорке желчевыводящих протоков печени.

Во всех случаях содержание общего билирубина в крови повышается. При достижении определённой концентрации он диффундирует в ткани, окрашивая их в жёлтый цвет. Пожелтение тканей из-за отложения в них билирубина называют желтухой. Клинически желтуха может не проявляться до тех пор, пока концентрация билирубина в плазме крови не превысит верхний предел нормы более чем в 2,5 раза, т.е. не станет выше 50 мкмоль/л.

1. Гемолитическая (надпечёночная) желтуха

Известно, что способность печени образовывать глюкурониды и выделять их в жёлчь в 3- 4 раза превышает их образование в физиологических условиях. Гемолитическая (надпечёноч-ная) желтуха - результат интенсивного гемолиза эритроцитов. Она обусловлена чрезмерным образованием билирубина, превышающим

способность печени к его выведению. Гемолитическая желтуха развивается при исчерпании резервных возможностей печени. Основная причина надпечёночной желтухи - наследственные или приобретённые гемолитические анемии. При гемолитических анемиях, вызванных сепсисом, лучевой болезнью, дефицитом глюкозо-6-фосфатдегидрогеназы эритроцитов, талассемией, переливанием несовместимых групп крови, отравлением сульфаниламидами, количество освобождающегося из эритроцитов гемоглобина за сутки может доходить до 45 г

(при норме 6,25 г), что значительно увеличивает образование билирубина. Гипербилирубинемия у больных гемолитической желтухой обусловлена значительным повышением (103-171 мкмоль/л) в крови концентрации альбуминсвязанного неконъюгированного билирубина (непрямой билирубин). Образование в печени и поступление в кишечник больших количеств билиру-бинглюкуронидов (прямой билирубин) ведёт к усиленному образованию и выделению с калом и мочой уробилиногенов и более интенсивной их окраски (рис. 13-16).

Рис. 13-16. Билирубин-уробилиногеновый цикл при гемолитической желтухе. 1 - катаболизм Hb идёт с повышенной скоростью; 2 - в крови примерно в 10 раз повышена концентрация непрямого билирубина; 3 - альбумин высвобождается из комплекса билирубин-альбумин; 4 - активность реакции глюкуронирования возрастает, но она ниже, чем скорость образования билирубина; 5 - секреция билирубина в жёлчь повышена; 6, 7,10 - повышенное содержание уробилиногенов в кале и моче придаёт им более интенсивную окраску; уро-билиноген всасывается из кишечника в кровь (8) и попадает в печень по воротной вене (9).

Один из главных признаков гемолитической желтухи - повышение содержания в крови неконъюгированного (непрямого) билирубина. Это позволяет легко отличить её от механической (подпечёночной) и печёночно-клеточной (печёночной) желтух.

Неконъюгированный билирубин токсичен. Гидрофобный, липофильный неконъюгирован-ный билирубин, легко растворяясь в липидах мембраны и проникая вследствие этого в митохондрии, разобщает в них дыхание и окислительное фосфорилирование, нарушает синтез белка, поток ионов калия через мембрану клетки и органелл. Это отрицательно сказывается на состоянии ЦНС, вызывая у больных ряд характерных неврологических симптомов.

Желтуха новорождённых

Частная разновидность гемолитической желтухи новорождённых - «физиологическая желтуха», наблюдающаяся в первые дни жизни ребёнка. Причиной повышения концентрации непрямого билирубина в крови служит ускоренный гемолиз и недостаточность функции белков и ферментов печени, ответственных за поглощение, конъюгацию и секрецию прямого билирубина. У новорождённых не только снижена активность УДФ-глюкуронилтрансферазы, но и, по-видимому, недостаточно активно происходит синтез второго субстрата реакции конъюгации УДФ-глюкуроната.

Известно, что УДФ-глюкуронилтрансфера-за - индуцируемый фермент (см. раздел 12). Новорождённым с физиологической желтухой вводят лекарственный препарат фенобарбитал, индуцирующее действие которого было описано в разделе 12.

Одно из неприятных осложнений «физиологической желтухи» - билирубиновая энцефалопатия. Когда концентрация неконъюгирован-ного билирубина превышает 340 мкмоль/л, он проходит через гематоэнцефалический барьер головного мозга и вызывает его поражение.

2. Печёночно-клеточная (печёночная) желтуха

Печёночно-клеточная (печёночная) желтуха обусловлена повреждением гепатоцитов и жёлчных капилляров, например, при острых вирусных инфекциях, хроническом и токсических гепатитах.

Причина повышения концентрации билирубина в крови - поражение и некроз части печёночных клеток. Происходит задержка билирубина в печени, чему способствует резкое ослабление метаболических процессов в поражённых гепатоцитах, которые теряют способность нормально выполнять различные биохимические и физиологические функции, в частности переводить конъюгированный (прямой) билирубин из клеток в жёлчь против градиента концентрации. Для печёночно-клеточной желтухи характерно то, что вместо преобладающих в норме диглюкуронидов билирубина в поражённой печёночной клетке образуются главным образом моноглюкурониды

(рис. 13-17).

В результате деструкции печёночной паренхимы образующийся прямой билирубин частично попадает в большой круг кровообращения, что ведёт к желтухе. Экскреция жёлчи также нарушена. Билирубина в кишечник попадает меньше, чем в норме.

При печёночно-клеточной желтухе повышается концентрация в крови как общего билирубина, так и обеих его фракций - неконъюги-рованного (непрямого) и конъюгированного (прямого).

Так как в кишечник поступает меньше били-рубинглюкуронида, то и количество образующегося уробилиногена также снижено. Поэтому кал гипохоличньгй, т.е. менее окрашенньгй. Моча, наоборот, имеет более интенсивную окраску за счёт присутствия там не только уробилинов, но и конъюгированного билирубина, который хорошо растворим в воде и экскретируется с мочой.

3. Механическая, или обтурационная (подпечё-ночная) желтуха

Механическая, или обтурационная (подпечё-ночная), желтуха развивается при нарушении желчеотделения в двенадцатиперстную кишку. Это может быть вызвано закупоркой жёлчных протоков, например при желчнокаменной болезни, опухолью поджелудочной железы, жёлчного пузыря, печени, двенадцатиперстной кишки, хроническим воспалением поджелудочной железы или послеоперационным сужением общего жёлчного протока (рис. 13-18).

При полной закупорке общего жёлчного протока конъюгированный билирубин в составе

Рис. 13-17. Нарушение билирубин-уробилиногенового цикла при печёночно-клеточной желтухе. В печени снижена скорость реакции глюкуронирования билирубина (4), поэтому в крови повышается концентрация непрямого билирубина; вследствие нарушения паренхимы печени часть образованного в печени билирубинглюкуронида попадает в кровь (12) и далее с мочой (10) удаляется из организма. В моче больных присутствуют уробилины и билирубинглюкурониды. Остальные цифры соответствуют этапам метаболизма билирубина на рис. 13-16.

жёлчи не поступает в кишечник, хотя гепато-циты продолжают его вырабатывать. Поскольку билирубин в кишечник не попадает, продуктов его катаболизма уробилиногенов в моче и кале нет. Кал обесцвечен. Так как нормальные пути экскреции билирубина заблокированы, происходит его утечка в кровь, поэтому в крови больных повышена концентрация конъюгиро-ванного билирубина. Растворимый билирубин экскретируется с мочой, придавая ей насыщенный оранжево-коричневый цвет.

Б. ДИФФЕРЕНЦИАЛЬНАЯ ДИАГНОСТИКА ЖЕЛТУХ

При диагностике желтух надо иметь в виду, что на практике редко отмечают желтуху какого-либо одного типа в «чистом» виде. Чаще встречается сочетание того или иного типа. Так, при выраженной гемолитической желтухе, сопровождающейся повышением концентрации непрямого билирубина, неизбежно страдают различные органы, в том числе и печень, что может вносить элементы

Рис. 13-18. Нарушение билирубин-уробилиногенового цикла при обтурационной желтухе. Вследствие закупорки жёлчного пузыря билирубинглюкуронид не секретируется в жёлчь (5); отсутствие билирубина в кишечнике приводит к обесцвечиванию кала (6); растворимый билирубинглюкуронид выделяется почками с мочой (10). Уробилинов в моче нет; образующийся в печени билирубинглюкуронид поступает в кровь (12), вследствие этого возрастает содержание прямого билирубина. Остальные цифры соответствуют этапам метаболизма билирубина на рис. 13-16.

паренхиматозной желтухи, т.е. повышение в крови и моче прямого билирубина. В свою очередь, паренхиматозная желтуха, как правило, включает в себя элементы механической. При подпечё-ночной (механической) желтухе, например, при раке головки поджелудочной железы, неизбежен повышенный гемолиз как результат раковой интоксикации и, как следствие, повышение в крови прямого и непрямого билирубина.

Итак, гипербилирубинемия может быть следствием избытка как связанного, так и свободного

билирубина. Измерение их концентраций по отдельности необходимо при постановке диагноза желтухи. Если концентрация билирубина в плазме <100 мкмоль/л и другие тесты функции печени дают нормальные результаты, возможно предположить, что повышение обусловлено за счёт непрямого билирубина. Чтобы подтвердить это, можно сделать анализ мочи, поскольку при повышении концентрации непрямого билирубина в плазме прямой билирубин в моче отсутствует.

При дифференциальной диагностике желтух необходимо учитывать содержание уробилиноге-нов в моче. В норме за сутки из организма выделяется в составе мочи около 4 мг уробилиногенов. Если с мочой выделяется повышенное количество уробилиногенов, то это - свидетельство недостаточности функции печени, например при печёночной или гемолитической желтухе. Присутствие в моче не только уробилиногенов, но и прямого билирубина указывает на поражение печени и нарушение поступления жёлчи в кишечник.

В. НАСЛЕДСТВЕННЫЕ НАРУШЕНИЯ МЕТАБОЛИЗМА БИЛИРУБИНА

Известно несколько заболеваний, при которых желтуха вызвана наследственными нарушениями метаболизма билирубина.

Примерно у 5% населения диагностируют наследственную желтуху, вызванную генетическими нарушениями в структуре белков и ферментов, ответственных за транспорт (захват) непрямого билирубина в печень и его конъюгацию с глюку-роновой кислотой. Эта патология наследуется по аутосомно-доминантному типу. В крови больных повышена концентрация непрямого билирубина.

Известно 2 типа наследственных желтух, обусловленных нарушением реакции глюкуро-нирования в печени - образования прямого билирубина.

Для первого типа характерно полное отсутствие УДФ-глюкуронилтрансферазы. Заболева-

ние наследуется по аутосомно-рецессивному типу. Введение фенобарбитала, индуктора УДФ-глюкуронилтрансферазы, не приводит к снижению уровня билирубина. Дети умирают в раннем возрасте из-за развития билирубиновой энцефалопатии.

Для второго типа характерно снижение активности (недостаточности) УДФ-глюкуронил-трансферазы, гипербилирубинемия возникает за счёт непрямого билирубина. Желтуха хорошо поддаётся лечению фенобарбиталом.

Нарушение активного транспорта образованных в клетках печени билирубинглюкуронидов в жёлчь характерно для желтухи, наследуемой по аутосомно-доминантному типу. Проявляется гипербилирубинемией за счёт прямого билирубина и билирубинурией (в моче определяется прямой билирубин).

Семейная гипербилирубинемия новорождённых связана с наличием конкурентных ингибиторов конъюгации билирубина (эстрогенов, свободных жирных кислот) в материнском молоке. При грудном вскармливании ингибиторы конъюгации билирубина обнаруживают в сыворотке крови ребёнка. Такая гиперби-лирубинемия была названа транзиторной. Ги-пербилирубинемия исчезает при переводе ребёнка на искусственное вскармливание. Не поддающаяся лечению гипербилирубинемия приводит к развитию билирубиновой энцефалопатии и ранней смерти.

Порфирии - гетерогенная группа заболеваний, вызванная нарушениями синтеза гема вследствие дефицита одного или нескольких ферментов.

Классификации порфирий

Единой классификации порфирий нет. Порфирии делят по причинам на:

    Наследственные . Возникают при дефекте гена фермента, участвующего в синтезе гема;

    Приобретенные . Возникают при ингибирующем влиянии токсических соединений (гексохлорбензол, соли тяжелых металлов - свинец) на ферменты синтеза гема.

В зависимости от преимущественной локализации дефицита фермента (в печени или эритроцитах) порфирин делится на:

    печеночные – наиболее распространенный тип порфирина к нему относится острая перемежающаяся порфирия (ОПП), поздняя кожная порфирия, наследственная копропорфирия, мозаичная порфирия;

    эритропоэтические – врожденная эритропоэтическая порфирия (болезнь Гюнтера), эритропоэтическая протопорфирия.

В зависимости от клинической картины, порфирии делят на:

  1. хронические.

Негативные последствия порфирий связаны с дефицитом гема и накоплением в тканях и крови промежуточных продуктов синтеза гема – порфириногенов и продуктов их окисления. При эритропоэтических порфириях порфирины накапливаются в нормобластах и эритроцитах, при печёночных - в гепатоцитах.

Для каждого вида порфирии существует определенный уровень ферментативного дефекта, в результате накапливаются продукты, синтезирующиеся выше этого уровня. Эти продукты являются основными диагностическими маркерами заболевания.

Порфириногены ядовиты, при тяжёлых формах порфирий они вызывают нейропсихические расстройства, нарушения функций РЭС и повреждения кожи.

Нейропсихические расстройства при порфириях связаны с тем, что аминолевулинат и порфириногены являются нейротоксинами.

В коже на солнце порфириногены легко превращаются в порфирины. Кислород при взаимодействии с порфиринами переходит в синглетное состояние. Синглетный кислород стимулирует ПОЛ клеточных мембран и разрушение клеток, поэтому порфирии часто сопровождаются фотосенсибилизацией и изъязвлением открытых участков кожи.

Порфириногены не окрашены и не флуоресцируют, а порфирины проявляют интенсивную красную флуоресценцию в ультрафиолетовых лучах. Избыток порфиринов который выводиться с мочой, придает ей темный цвет («порфирин» в переводе с греч. означает пурпурный).

Иногда при лёгких формах наследственных порфирии заболевание может протекать бессимптомно, но приём лекарств, являющихся индукторами синтеза аминолевулинатсинтазы, может вызвать обострение болезни. В некоторых случаях симптомы болезни не проявляются до периода полового созревания, когда повышение образования β-стероидов вызывает индукцию синтеза аминолевулинатсинтазы. Порфирии наблюдают и при отравлениях солями свинца, так как свинец ингибирует аминолевулинатдегидратазу и феррохелатазу. Некоторые галогенсодержащие гербициды и инсектициды являются индукторами синтеза аминолевулинатсинтазы, поэтому попадание их в организм сопровождается симптомами порфирии.

Виды порфирий

Острая перемежающая порфирия (ОПП) – причина – дефект гена, кодирующего ПБГ – дезаминазу. Наследуется по аутосомно-доминатному типу. Происходит накопление ранних предшественников синтеза гема: 5- АЛК (5-ALA) и порфобилиногена (ПБГ).

Бесцветный ПБГ на свету превращается в порфибилин и порфирин, они предают моче темный цвет. АЛК оказывает нейротоксическое действие, приводя к вялому параличу конечностей и парезу дыхательной мускулатуры. Последнее вызывает острую дыхательную недостаточность. Заболевание проявляется в среднем возрасте, провоцируется приемом анальгетиков, сульфаниломидных препаратов, так как они увеличивают синтез АЛК – синтазы.

Клинической симптоматикой являются острые боли в животе, рвота, запор, сердечно-сосудистые нарушения, нервно-психические расстройства. Не наблюдается повышенной чувствительности к свету, так как метаболическое нарушение проходит на стадии, предшествующей образованию уропорфириногена.

Для лечения применяют препарат нормосанг – аргинат гема. Действие основано на том, что гем, по механизму отрицательной обратной связи блокирует трансляцию АЛК – синтазы, а, следовательно, падает синтез АЛК и ПБГ, чем и достигается купирование симптоматики.

Врожденная эритропоэтическая порфирия -это еще более редкое врожденное заболевание, наследуе­мое по аутосомно-рецессивному типу. Молекуляр­ная природа этой болезни точно неизвестна; уста­новлено, однако, что для нее характерен определен­ный дисбаланс относительных активностей уропорфириноген-Ш-косинтазы и уропорфириноген-1-синтазы. Образование уропорфириногена Iв коли­чественном отношении значительно превосходит синтез уропорфириногенаIII-нормального изоме­ра на пути синтеза гема. Хотя генетическое наруше­ние распространяется на все клетки, проявляется оно по неизвестной причине преимущественно в эритропоэтической ткани. Пациенты с врожденной эритропоэтической порфирией экскретируют большие ко­личества изомеров типа I уропорфириногена и копропорфириногена; в моче оба этих соединения само­произвольно окисляются в уропорфирин Iи копропорфиринI-красные флуоресцирующие пигменты. Сообщалось о случае, когда наблюдалось неболь­шое повышение концентрации уропорфиринаIII, но отношение изомеров типа Iи IIIсоставляло пример­но 100:1.Циркулирующие эритроциты содержат бо­льшое количество уропорфирина 1,однако, наивыс­шая концентрация этого порфирина отмечена в клет­ках костного мозга (но не в гепатоцитах).

Отмечается светочувствительность кожи, обусловленная характером спектра поглощения порфириновых соединений, которые образуются в боль­ших количествах. У пациентов отмечаются трещины на коже, часто наблюдаются гемолитические явле­ния.

Наследственная копропорфирия -аутосомно-доминантное нарушение, обусловленное дефицитомкопропорфнрнногеноксидазы -митохондриального фермента, ответственного за превращение копропорфириногена IIIв протопорфириноген IX.Копропорфириноген IIIв больших количествах удаляется из организма в составе фекалий, а также вследствие его растворимости в воде экскретируется в большом количестве с мочой. Как и уропорфириноген, копропорфириноген на свету и воздухе быстро окисляется, превращаясь в красный пигмент копропорфирин.

Ограниченная при этом заболевании способность к синтезу гема (особенно в стрессовых условиях) приводит к дерепрессии АЛК-сиитазы. В результате наблюдается избыточное образование АЛК и порфобилиногена, а также других интермедиатов на пу­ти синтеза тема, образующихся на стадиях, предше­ствующих наследственно заблокированному этапу. Соответственно у пациентов с наследственной копропорфирией обнаруживаются все признаки и симптомы, связанные с избытком АЛК и порфобилиногена, которые характерны для перемежающейся острой порфирии, но помимо этого у них имеется повышенная светочувствительность, обусловленная присутствием избыточных количеств копропорфириногенов и уропорфириногенов. При этом заболе­вании введение гематина также может вызвать по крайней мере частичную репрессию АЛК-синтазы и смягчение симптомов, обусловленных перепрои­зводством интермедиатов биосинтеза гема.

Мозаичная порфирия , или наследственная фоторопорфирия, является аутосомно-доминантным нарушением, при котором происходит частичное блокирование ферментативного превращения протопорфириногена в гем. В норме это превращение осуществляется двумя ферментами, протопорфириногеноксидазой и феррохелатазой, локализованны­ми в митохондриях. Судя по данным, полученным на культуре фибробластов кожи, у больных мозаичной порфирией содержание протопорфириногеноксидазы составляет лишь половину нормального количе­ства. У пациентов с мозаичной порфирией наблю­дается относительная недостаточность содержания гема в стрессовых условиях, а также дерепрессированное состояние печеночной АЛК-синтазы. Как от­мечалось выше, повышенная активность АЛК-синтазы ведет к перепроизводству всех интермедиа­тов синтеза гема на участках перед заблокированной стадией. Таким образом, пациенты с мозаичной пор­фирией экскретируют с мочой избыточные количе­ства АЛК, порфобилиногена, уропорфирина и копропорфирина, а с фекалиями выделяют уропорфирин, копропорфирин и протопорфирин. Моча боль­ных пигментирована и флуоресцирует, а кожа чувствительна к свету так же, как и у больных позд­ней кожной порфирией (см. ниже).

Поздняя кожная порфирия , вероятно, является наиболее распространенной формой порфирии. Обычно она связана с теми или иными поражениями печени, особенно при избыточном потреблении ал­коголя или перегрузке ионами железа. Природа ме­таболического нарушения точно не установлена, но вероятной причиной является частичная недоста­точность уропорфириноген-декарбоксилазы. Наруше­ние, по-видимому, передается как аутосомно-доминантный признак, но генетическая пенетрантность различна и в большинстве случаев зависит от наличия нарушений функций печени. В соответствии с предсказаниями моча содержит повышенные коли­чества уропорфиринов типа Iи III;в то же время экскреция с мочой АЛК и порфобилиногена наблю­дается сравнительно редко. Иногда моча содержит весьма значительное количество порфиринов, при­дающих ей розоватый оттенок; при подкислении она чаще всего дает в ультрафиолетовой области розо­вую флуоресценцию.

Печень содержит большие количества порфири­нов и поэтому сильно флуоресцирует, тогда как у эритроцитов и клеток костного мозга флуоресцен­ция отсутствует. Главным клиническим проявле­нием при поздней кожной порфирии является повы­шенная светочувствительность кожи. У больных не наблюдается ни повышенной активности АЛК-синтазы, ни соответственно избыточного содержа­ния в моче порфобилиногена и АЛК; это коррели­рует с отсутствием острых приступов, характерных для перемежающейся острой порфирии.

Протопорфирия , или эритропоэтическая протопорфирия, по-видимому, обусловлена доминантно наследуемой недостаточной активностью феррохелатазы в митохондриях всех тканей; клинически эта болезнь проявляется как острая крапивница, вызы­ваемая воздействием солнечных лучей. Эритроциты, плазма и фекалии содержат повышенные количества протопорфирина IX,а ретикулоциты (незрелые эри­троциты) и кожа (при исследовании с помощью биопсии) часто флуоресцируют красным светом. Печень, вероятно, тоже вносит вклад в повыше­ние образования протопорфирина IX,однако экскре­ции с мочой порфиринов и их предшественников не наблюдается.

Синтез гемоглобина

Синтезированный в митохондриях гем индуцируется синтез цепей глобина на полирибосомах. Гены цепей глобина расположены в 11 и 16 хромосоме.

Цепи глобина формируют глобулы и соединяются с гемом. 4 глобулы нековалентно соединяются в гемоглобин.

Гемоглобин начинает синтезироваться на стадии базофильного эритробласта, а заканчивается у ретикулоцитов. В ретикулоцитах также идет синтез пуринов, пиримидинов, фосфатидов, липида. Чувствительным биохимическим индикатором для отличия ретикулоцитов от зрелых клеток является утрата последними глутаминазы. Глутамин в ретикулоцитах - источник углерода для синтеза порфирина и азота для синтеза пурина.

Строение гемоглобина

Гемоглобин - тетрамерный хромопротеин, имеет массу 64500Да, состоит из 4 гемов и 4 глобинов. Глобины представлены полипептидными цепями различных типов,,,и т.д.-цепь содержит 141 АК, а- цепь – 146 АК. Отдельные участки полипептидных цепей образуют правозакрученные-спирали, особое расположение в пространстве которых формирует глобулы. Глобула -субъединицы содержит 8-спиралей, а-субъединицы –7. Гем располагается в щелях между Е иFспиралями глобина, прикрепляясь через гистидинF 8 к спиралиFс помощью 5 координационной связи железа. Гидрофобные остатки аминокислот окружающие гем, препятствуют окислению железа водой. 4 глобулы с участием гидрофобных, ионных и водородных связей формируют шарообразный тетрамер гемоглобина. Максимально прочные связи, в основном за счет гидрофобных связей, образуются между- и-глобулами. В результате образуются 2 димера 1  1 и 2  2 . Димеры соединяются между собой в основном полярными (ионными и водородными) связями, поэтому взаимодействие димеров зависит от рН. Димеры легко перемещаются друг относительно друга. В центре тетрамера глобулы прилегают друг к другу неплотно, образуя полость.

Функции гемоглобина

    Обеспечивают перенос кислорода от легких к тканям. В сутки около 600 литров;

    Участвует в переносе углекислого газа и протонов от тканей к легким;

    Регулирует КОС крови.

Болезни связанные с нарушением синтеза гема и зачастую проявляющиеся анемией, кожной сенсибилзацией и различными неврологическими расстройствами. Один из первых случаев описан Schultz в 19-м веке - 1874 г..

Идентифицированы различные типы порфирии , каждый из которых связан с дефектом одного из восьми ферментов, участвующих в синтезе гема (кроме 5-аминолевулинатсинтетазы). Определены гены, кодирующие эти ферменты, и их хромосомная локализация. Во многом известны молекулярные повреждения, лежащие в основе различных типов заболевания.

Схема биосинтеза гема
АЛК - 5-аминолевулиновая кислота, ПБГ - порфобилиноген, УПГ - уропорфириноген, КПГ - копропорфириноген, ППГ - протопорфириноген

Биосинтетический блок , возникающий вследствие ферментативных дефектов, наиболее сильно проявляется в печени и костном мозге - органах, в которых синтезируется основное количество гема. Для каждого типа порфирии характерны клинические и патоморфологические особенности, отражающие дефект определенного фермента и тип наследования.

В целом для порфирии характерны два основных клинических синдрома: кожная фотосенсибилизация и синдром неврологических расстройств. Фотосенсибилизация кожи - результат реакции откладывающихся в коже порфиринов на солнечное облучение. Неврологические расстройства обусловлены повышенной продукцией и экскрецией порфириновых предшественников АЛК и порфобилиногена. При дефектах двух и более ферментов, участвующих в синтезе гема, диагностируется двойная порфирия.

Генетические и метаболические нарушения при порфириях
Примечание. 1) * - процент от значения нормальной активности фермента; 2) основной метаболит и путь экскреции выделены жирным шрифтом; 3) сокращения: АЛК - 5-аминолевулиновая кислота, ПБГ - порфобилиноген, УПГ - уропорфириноген, КПГ - копропорфириноген, ППГ - протопорфириноген.

Классификация порфирий

I. Порфирии с кожной фотосенсибилизацией :
- Врожденная эритропоэтическая порфирия
- Поздняя кожная порфирия
- Протопорфирия

II. Острые или индуцированные порфирии :
- Порфирии с неврологическими проявлениями
- Острая перемежающаяся порфирия
- АЛК-Д порфирия
- Порфирии с неврологическими и кожными проявлениями
- Вариегатная порфирия
- Копропорфирия

III. Двойные порфирии



© dagexpo.ru, 2024
Стоматологический сайт