Физические свойства жиров. Свойства животных жиров Биологическая роль липидов

17.07.2019

Жиры нерастворимы в воде (гидрофобны), хорошо растворимы в органических растворителях.

Важным физическим показателем жира является его температура плавления и застывания. Чем больше в жире низкомолекулярных непредельных кислот, тем ниже температура его плавления. Наличие ОН-групп в молекуле жира повышает температуру его плавления. Температура застывания жира на несколько градусов ниже, чем плавления, что имеет очень важное физиологическое значение. Например, температура плавления говяжьего жира 51ºС, бараньего – 55ºС, свиного – 48ºС и попадая в организм с пищей, они остаются там в расплавленном состоянии, так как температура их застывания ниже 36ºС,что способствует лучшему их перевариванию. Важнейшим физическим показателем жира является его вязкость, которая увеличивается в жирах по мере развития процессов окисления и полимеризации.

Химические свойства жиров:

1. Гидролиз жиров протекает с выделением глицерина и жирных кислот.

Реакция гидролиза называется реакцией омыления, используется в промышленности для производства мыла. Гидролитический распад жиров, зерна муки, крупы и др. является одной из причин ухудшения их качества и, в конечном счете, – порчи. Скорость и глубину гидролиза жира характеризует кислотное число – количество миллиграммов едкого калия, необходимое для нейтрализации свободных жирных кислот, содержащихся в 1 г масла или жира. Кислотное число для ряда жиросодержащих пищевых продуктов нормируется стандартами, характеризует их качество.

2. Гидрогенизация жиров – присоединение водорода. Задача гидрогенизации – целенаправленное изменение жирно-кислотного состава исходного жира в результате частичного или полного присоединения кислорода к ненасыщенным остаткам жирных кислот. Реакция проводится при температуре 180-240ºC в присутствии никелевых или медно-никелевых катализаторов при давлении, близком к атмосферному.

3. Окисление жиров – реакция взаимодействия с кислородом воздуха. Жиры, особенно содержащие радикалы ненасыщенных кислот, окисляются кислородом воздуха. В основе механизма окисления лежит теория Баха-Энглера и Н.Н.Семенова. Согласно которой существенную роль на начальных стадиях цепных реакций играют свободные радикалы, образующиеся в жирах под влиянием света. При этом молекула жира поглощает квант света (hν), и переходит в возбужденное состояние. Образующиеся радикалы очень активны, опять образуют перекисные радикалы, которые, вступая в реакцию, образуют цепные гидроперекиси (первичные продукты окисления) и новые радикалы.

Образовавшиеся гидроперикиси неустойчивы и в результате сложных превращений образуются вторичные продукты окисления – окси-эпоксисоединения, спирты, альдегиды, кетоны, кислоты.

Направление и глубина окисления масел и жиров зависит от их жирнокислотного состава: с увеличением степени непредельности жирных кислот, скорость их окисления возрастает. Триглицериды, в состав которых входят насыщенные жирные кислоты кислородом воздуха при обычных условиях практически не окисляются. На скорость окисления, кроме того, влияет присутствие влаги, металлов переменной валентности. Большое влияние на скорость окисления оказывают антиокислители (ингибиторы) – вещества, добавление которых приводит к обрыву цепей окисления. Среди антиоксидантов большое значение имеют вещества фенольной природы, из природных антиокислителей большое значение принадлежит токоферолам.

К основным физико-химическим показателям жиров относятся:

– йодное число, характеризующее степень ненасыщенности жиров, выражается в гр J 2 , присоединяющегося к 100 г жира;

– кислотное число – характеризует количество свободных жирных кислот в жире;

– число омыления – характеризует общее содержание жирных кислот в жире, выражается в г КОН, необходимого для нейтрализации всех жирных кислот, выделившихся при гидролизе 1 г жира;

– ацетильное число – характеризует количество свободных гидроксильных групп в жире, выражается в мг КОН, необходимых для нейтрализации уксусной кислоты, выделившейся при омылении 1г предварительного ацетилированного жира;

– перикисное число – характеризует содержание в жире перекисей, выражается в г йода, присоединяющегося к 100 г продукта;

– коэффициент преломлении и вязкость могут также характеризовать степень окисления жира, так как между этими показателями установлена математическая зависимость.

3. Физико-химические изменения жиров при варке продуктов: плавление, эмульгирование, гидролиз

При хранении жиры изменяют свои свойства, особенно при неправильном хранении. Основная роль при этом принадлежит окислению. Особенно легко прогоркают жиры, содержащие ненасыщенные жирные кислоты, при совместном действии света и воздуха. Чтобы увеличить срок хранения жира необходимо соблюдать следующие условия:

– жиры хранят в охлаждаемых помещениях не дольше установленного срока;

– тара должна надежно защищать их доступа света и воздуха;

– нежелательно хранение жиров в жестяной таре, так как из нее переходит в жир железо, ускоряющее окисление;

– нельзя смешивать масла различных партий и наливать масло в немытую тару, где уже хранилось масло.

При свободном доступе воздуха происходит окисление жиров, которое ускоряется с повышением их температуры. При температурах 2-25ºС происходит автоокисление, при температурах жарки (140-200ºС) – термическое окисление. Автоокисление обычно сопровождает, а нередко опережает термическое окисление, поэтому эти два процесса взаимосвязаны. Продукты, полученные при авто- и термическом окислении делятся на три группы:

– продукты окислительной деструкции жирных кислот, в результате которой образуются вещества с укороченной цепью;

– продукты изомеризации, а также окислительные триглицериды, которые содержат в углеводородных частях молекулы новые функциональные группы, содержащие кислород;

– продукты окисления, содержащие полимеризованные или конденсированные жирные кислоты.

Помимо окислительных превращений при любом способе тепловой обработки протекают гидролитические процессы при воздействии на жир воды и высокой температуры. Преобладание того или иного процесса зависит от интенсивности воздействия на него кислорода воздуха и воды, а также продолжительности нагревания и присутствия веществ, ускоряющих или замедляющих эти процессы.

Изменения жиров при варке и припускании

Жир плавится, переходит в бульон. Количество жира, перешедшего в бульон, зависит от его содержания и характера отложения в продукте. Рыба тощая теряет при варке до50% жира, среднежирная – до 14%; из мяса извлекается до 40%, а из костей 25-40%, содержащегося в них жира.

Основная масса извлеченного жира распределяется по поверхности бульона (90-95), а небольшая часть (3,5-10%) эмульгирует, то есть распределяется по всему объему бульона в виде мельчайших шариков, придавая бульону мутность. Интенсивность кипения при варке увеличивает количество эмульгировавшего жира.

В результате эмульгирования поверхность соприкосновения жира с водой увеличивается, что способствует дальнейшему гидролизу жира, о чем свидетельствует возрастание кислотного числа. Гидролиз жира протекает под воздействием высокой температуры и воды в три стадии: 1) от молекулы триглицерида отщепляется одна молекула жирной кислоты с образованием диглицерида; 2) затем от диглецирида отщепляется вторая молекула жирной кислоты с образованием моноглицерида; 3)в результате отделения от моноглицерида последней молекулы жирной кислоты образуется свободный глицерин. Таким образом, при полном расщеплении молекулы триглицерида образуется молекула глицерина и три молекулы свободных жирных кислот.

Поваренная соль и органические кислоты ускоряют гидролиз жира. Однако полного расщепления жиров при варке не происходит. Накапливающиеся жирные кислоты придают бульону салистый привкус. Поскольку эмульгированный жир находится в водной среде и его контакт с воздухом затруднен, то можно заключить, что при варке преимущественно протекают гидролитические процессы, нежели окислительные.

На основании вышеизложенного можно заключить, что в процессе варки бульонов для снижения гидролитических процессов необходимо не допускать бурного кипения, снимать излишки жира с поверхности, солить бульон в конце варки.

Лекция № 6,7

Тема «Физико-химические изменения липидов при жарке:

пиролиз, дымообразование. Физико-химические изменения липидов при фритюрной жарке»

План

1.Физико-химические изменения липидов при жарке: пиролиз, дымообразование.

2. Фритюрная жарка: химические изменения жира, типы реакций.

3. Факторы, влияющие на скорость химических изменений фритюрного жира.

4. Изменения органолептических показателей жира в процессе его фритюрной жарки.

5. Методы увеличения срока службы фритюрного жира.

6. Адсорбция и впитывание жира при жарке. Влияние жарки на пищевую ценность жира.

1. Физико-химические изменения липидов при жарке: пиролиз,

Дымообразование

Наиболее распространенными являются фритюрная жарка (периодическая или непрерывная) и жарка продуктов основным способом.

При основном способе жарки продолжительность нагрева составляет 3-10 мин, что зависит от вида и размеров продукта. При этом глубоких окислительных изменений не происходит, ввиду небольшой продолжительности нагрева и отсутствия повторного использования жира. Однако в случае перегрева жира при жарке может произойти его пиролиз – термическое разложение дыма с выделением дыма. Температура, при которой начинается выделение дыма, называется температурой дымообразования и является показателем термостойкости жира. Температура (или точка) дымообразования различная для разных видов жиров (ºС): у свиного жира – 221, хлопкового масла – 223, пищевого саломаса – 230. На температуру дымообразования жира влияют следующие факторы: содержание свободных жирных кислот (снижает температуру дымообразования), отношение нагреваемой поверхности жира к его объему (так, при нагревании одного и того же количества жира на сковородах диаметром 18 и 20 см температура дымообразования оказалась 185 и 169ºС соответственно), материал посуды.

На крупных пищевых предприятиях, осуществляющих фритюрную жарку чипсов, крекеров, рыбных полуфабрикатов и др., применяют аппараты непрерывной фритюрной жарки (соотношение жира и продукта 20:1), что позволяет ускорить процесс жарки, поддерживать более низкие температуры фритюра, следовательно, снижать скорость его термического окисления. При непрерывной жарки жир постоянной удаляется из жарочной ванны с готовым продуктом, а его количество автоматически пополняется путем долива свежего жира. Поэтому при непрерывной фритюрной жарке жир подвергается незначительным окислительным изменениям.

При периодической фритюрной жарке протекают более глубокие изменения, поскольку жир может длительно нагреваться без продукта и периодически использоваться для жарки различных продуктов при низком коэффициенте его сменяемости.

Коэффициент сменяемости жира определяется по формуле

где П – количество жира, поглощаемого и адсорбируемого обжариваемым продуктом за 24 часа, кг;

М – средняя масса жира в жарочном аппарате, кг.

Кроме того, при периодической фритюрной жарке жир могут охлаждать, затем вновь нагревать и при таком циклическом нагреве вероятность окисления жиров максимальна.

При фритюрной жарке очень важным является соблюдение соотношения жира и продукта, в противном случае при загрузке продукта температура жира значительно снизиться, процесс жарки замедлится, что в свою очередь приведет к чрезмерной ужарке и ухудшению внешнего вида готовых изделий. Немаловажна начальная температура жира, если он нагрет слишком сильно, то румяная корочка образуется быстрее, чем продукт успеет дойти до готовности внутри. Оптимальные температуры и продолжительность жарки некоторых полуфабрикатов:

– котлеты по-киевски – 160-170ºС, 3-4 мин;

– рыба в тесте – 60-170ºС, 2-3 мин;

– картофель брусочками – 175-180ºС, 5-6 мин;

– картофель соломкой – 175-180ºС, 3-4 мин;

– пирожки, пончики, чебуреки – 180-190ºС, 4-6 мин;

При этом начальная температура фритюра может составлять 160-190ºС. Фритюр с меньшей температурой используют для жарки продуктов с большим содержанием влаги (тельное, котлеты фаршированные из кур и др.).

2. Фритюрная жарка: химические изменения жира, типы реакций

Химические изменения жира при фритюрной жарке

1. Термическое окисление. В процессе фритюрной жарки происходит термическое окисление жира: быстрое образование и распад перекисей, о чем свидетельствует скачкообразное изменение перикисного числа жира. Циклические перикиси распадаются с образованием двух соединений с укороченной цепью (альдегид и альдогидрокислота), которые при дальнейшем окислении образуют одноосновную и двухосновную кислоты:

Циклические перикиси могут превращаться и в другие долее стабильные продукты вторичного окисления с образованием диоксикислот, дикарбонильных соединений.

2. Гидролиз жира. Вода, попадающая в жир из обжариваемого продукта, способствует его гидролизу, происходит накопление свободных жирных кислот и увеличивается кислотное число жира как за счет гидролиза, так и за счет образования низкомолекулярных кислот при расщеплении перикисей.

3. Снижение температуры дымообразования , усиление выделения дыма по мере увеличения продолжительности нагревания. Кроме того, в результате появления оксикислот, моно- и диглицеридов происходит увеличение ацетильного числа.

4. Реакция полимеризации и поликонденсации . Образующиеся дикарбонильные вещества и соединения с сопряженными двойными связями способны к реакциям полимеризации и поликонденсации, о чем свидетельствует увеличение вязкости фритюрного жира. При этом соединение между мономерами может осуществляться как посредством прямой связи меду атомами углерода, или через кислородный мостик, причем в одной молекуле могут присутствовать оба типа связей.

Типы реакций, протекающих при фритюрной жарке

Реакция автоокисления протекает при хранении жира между циклами, скорость реакции медленная, образуются СО 2 , СО, Н 2 О, альдегидокислоты, спирты и альдегиды, кетоны, прочие компоненты. Автоокисление протекает при холостом нагреве жира между циклами жарки и в процессе самой жарки, в этом случае скорость реакции достаточно быстрая.

Реакция пиролиза, изомеризации, полимеризации протекает как при холостом нагреве, так и при непосредственной жарке.

Реакция гидролиза , причем с достаточно большой скоростью протекает при непосредственной жарке продуктов.

Химические свойства жиров про­являются в реакциях гидролиза , окисления игидрогенизации . Ускорение или замедление этих реакций обусловлено влиянием находящихся в природных жирах сопутствующих веществ, кото­рые иногда оказывают специфическое воздействие на характер протекающего процесса и сами претерпевают различные превра­щения.

Жидкие растительные жиры с помощью катализаторов могут превращаться в твердые путем насыщения водородом непредельных жирных кислот . Процесс этот носит название гидрогенизации . Гидрогенизированные жиры называют саломасами и используют в пищевой промышленности при изготовлении маргаринов и кулинарных жиров. По месту двойных связей к жирным кислотам могут присоединяться кислород, бром, йод, некоторые другие простые и сложные вещества.

В процессе гидролиза жиры расщепляются на глицерин и свободные кислоты:

Важное значение при гидролизе жиров имеет присутствие воды , так как она принимает непосредственное участие в реакциях. Гидролиз жиров ускоряется под действием содержащихся в них щелочей, кислот, ферментов липаз, а также ферментов микроорганизмов и сопутствующих жирам веществ – белков, липоидов, слизей и др. Реакция гидролиза жиров усиливается при повышении температуры.

Реакция гидролиза триглицеридов протекает чаще всего бимолекулярно, т. е. на одну молекулу триглицерида действует од­на молекула воды, при этом образуется диглицерид, который затем расщепляется до моноглицерида, в дальнейшем обра­зуется глицерин и жирные кислоты.

Нагрев до 200 °С и повыше­ние давления, присутствие катализаторов (СаО, МgО, Zn), при­сутствие небольших количеств кислот, наличие щелочей ускоря­ют гидролиз (кислоты катализируют гидролиз водородными, а щелочи –гидроксильными ионами).

Неферментативный гидролиз протекает за счет растворенной в жире воды, т. е. происходит в жировой фазе, где растворен­ная вода вступает в реакцию. Ничтожно малая растворимость воды в жирах при комнатной температуре обеспечивает незна­чительную степень гидролиза жиров и масел. Сопутствующие вещества в жирах ускоряют их гидролиз как специфичностью воздействия, так и большей способностью связывать влагу. Жи­ры и масла с такими веществами могут иметь воду выше пре­дела ее растворимости в жире. Высокие температуры катали­зируют гидролиз за счет тепловой активации, а также повыше­ния растворимости воды в жире. При кулинарной обработке, в частности при длительном кипячении, триглицериды могут гидролизоваться, полученные жирные кислоты образуют эмульсию и придают бульонам мутность. Чтобы бульон не приобретал не­приятного вкуса и запаха, необходимо своевременно удалять жир с его поверхности.

Гидролиз жиров, происходящий под действием ферментов во время хранения или при усвоении их организмом, называется ферментативным . Ферментативный гидролиз происходит исклю­чительно на поверхности соприкосновения жира и воды, поэто­му чем выше степень дисперсности эмульсии, тем выше скорость гидролиза, так как больше поверхность жира. Усвояемость жи­ра, таким образом, зависит не только от температуры плавле­ния (чем ближе температура плавления жира к температуре организма человека, тем выше его усвояемость), но и от сте­пени дисперсности жировой эмульсии. Жир молока, сливок, сметаны, мороженого, коровьего масла, кисломолочных продуктов, маргарина находится в виде хорошо диспергированной эмуль­сии и поэтому сравнительно хорошо и легко усваивается. Для повышения усвояемости жиров в кулинарии приготовляют жи­ровые эмульсии – соусы майонез и голландский, различные за­правки и т. д.

Гидролиз жиров используется в жироперерабатывающей промышленности при получении мыла, глицерина и некоторых других продуктов.

Едкие щелочи (NaОН и КОН) также вызывают гидролиз жиров. Этот процесс называют омылением , так как в результате воздействия NaОН и КОН образуются натриевые и калиевые соли жирных кислот, называемые мылами .

Окисление жиров представляет собой реакцию непредельных жирных кислот с кислородом. Эта реакция активизируется под действием света, кислорода, тепла и некоторых веществ , содержащихся в жирах. Масло, хорошо очищенное от сопутствующих веществ, изолированное от кислорода воздуха, в темноте сохраняется в течение длительного времени. Присутствие в жирах таких металлов, как кобальт, марганец, медь, железо и некоторых других, ускоряет процесс окисления. Металлы в реакциях окисления играют роль катализаторов .

В процессе окисления жиры прогоргают и претерпевают изменения, которые резко ухудшают их пищевое достоинство. Они часто становятся непригодными для употребления в пищу из-за неприятного жгучего или горького вкуса и резкого запаха. Быстрее прогоркают жиры, содержащие непредельные жирные кислоты, особенно олеиновую, линолевую и линоленовую.

Предельные жирные кислоты реакциям самоокисления не подвергаются.

На основании большого количества исследований сделаны выводы, что прогоркание жиров вызывается исключительно окислительными процессами. Согласно этой теории непредельные жирные кислоты или жиры при самоокислении присоединяют по месту двойной связи кислород и превращаются в перекись, переходящую с отщеплением атома кислорода в оксид.

непредельная перекись оксид активный

кислота кислород.

В дальнейшем оксиды могут перейти в кетокислоты, пероксиды и оксикислоты. Под действием озона, находящегося в воздухе, возможно также образование из непредельных жирных кислот альдегидов и кетонов. Следовательно, в процессе самоокисления в прогорклых жирах накапливаются разнообразные продукты распада.

Многие пищевые продукты, содержащие значительное количество жира, способны прогоркать во время хранения, например, пшено, кукурузная мука, орехи, семена подсолнечника, растительные и коровье масла.

Прогоркание сливочного и топленого коровьего масла и маргарина под действием света сопровождается явлением осаливания , которое состоит в том, что масло белеет на поверхности и приобретает свойственные салу вкус и запах. Осаливание масла – результат перехода под действием света непредельных жирных кислот в оксистеариновые кислоты , имеющие белый цвет.

В природных жирах часто присутствуют или добавляются специально вещества, препятствующие окислению; они тормозят окислительные процессы и тем самым замедляют порчу жиров. Такие вещества называют антиоксидантами . Роль естественных антиоксидантов в растительных жирах играют токоферолы (витамин Е), фенольные соединения, витамин С .

Для длительного хранения пригодны только хорошо очищенные жиры, свободные от остатков тканей, белковых слизистых веществ и с минимальным количеством воды. Хранить жиры необходимо хорошо упакованными для предохранения от действия воздуха и света, при пониженных температурах, в чистых помещениях.

Тема – 44: Жиры и их свойства. Физические и химические свойства, строение жиров.

Студент должен:

Знать:

· Строение, свойства, получение и применение сложных эфиров.

· Превращение жиров пищи в организме

Уметь:

· Называть сложные эфиры по систематической номенклатуре.

· Составлять уравнения реакции, характеризующих химические свойства жиров.

Жиры в природе. Физические свойства.

Жиры широко рас­пространены в природе. Наряду с углеводами и белками они входят в состав всех растительных и животных организмов и составляют одну из основных частей нашей пищи.

Животные жиры, как правило, твердые вещества. Раститель­ные жиры чаще бывают жидкими, их называют еще маслами.

Все жиры легче воды. В воде они нерастворимы, но хорошо растворяются во многих органических растворителях (дихлорэтане, бензине).

Строение жиров.

Строение жиров было установлено благодаря трудам французских химиков М. Шевреля и М. Бертло. Нагревая жиры с водой (в присутствии щелочи). М. Шеврель еще в начале XIX в. установил, что, присоединяя воду, они раз­лагаются на глицерин и карбоновые кислоты стеариновую, олеиновую и др. М. Бертло (1854 г.) осуществил обратную реак­цию. Он нагревал смесь глицерина с кислотами и получил при этом вещества, аналогичные жирам. Очевидна, М. Шеврель про­вел реакцию гидролиза сложного эфира, а М. Бертло осущест­вил реакцию этерификации, т. е. синтез сложного эфира. На основании этих данных легко прийти к выводу о строении жиров.

· Жиры - это сложные эфиры трехатомного спирта глице­рина и карбоновых кислот.

Такие эфиры чаще всего образуются не с одной какой-либо кислотой, а с разными кислотами, что можно выразить следую­щим уравнением:

В большинстве случаев жиры образованы высшими предель­ными и непредельными карбоновыми кислотами главным образом пальмитиновой С15Н31-СООН, стеариновой С17Н35-СООН, олеиновой C17H33 -СООН, линолевой C17H31 - СООН и некото­рыми другими. В меньшей степени в образовании жиров участ­вуют низшие кислоты. Встречаются, например, масляная кис­лота С3Н7-СООН (в сливочном масле), капроновая кислота С5Н11-СООН и др.

Жиры, образованные преимущественно предельными кисло­тами, твердые (говяжий жир, бараний жир). С повышением содержания непредельных кислот температура плавления жиров понижается, они становятся более легкоплавкими (свиное сало, сливочное масло). Жидкие жиры образованы главным обра­зом непредельными кислотами (льняное, подсолнечное и другие масла).

Химические свойства.

Химические свойства жиров опреде­ляются принадлежностью их к классу сложных эфиров. Поэтому наиболее характерная для них реакция - гидролиз.

Реакция гидролиза жиров, как и других сложных эфиром, обратима. Выразим это упрощенным уравнением:

Жиры как питательные вещества.

Жиры являются важной составной частью нашей пищи. При их окислении в организме выделяется в два раза больше теплоты, чем при окислении таких же количеств белков и углеводов.

Как вещества нерастворимые в воде, жиры не могут непосред­ственно всасываться в организм из органов пищеварения. Под влиянием фермента поджелудочного и кишечного сока они пред­варительно расщепляются в тонких кишках на глицерин и кар­боновые кислоты. Продукты гидролиза всасываются ворсинками кишечника и снова образуют жир, свойственный уже данному организму. Синтезированный жир по лимфатической системе поступает в кровь и переносится ею в жировую ткань. Отсюда жиры поступают в другие органы и ткани организма, где в про­цессе постоянного обмена веществ в клетках снова подвергаются гидролизу и затем постепенному окислению. В конечном счете они окисляются до оксида углерода (IV) и воды. Эти экзотерми­ческие реакции дают организму энергию, необходимую для жиз­недеятельности. Расход жиров восполняется в процессе питания организма.

Гидролиз жиров в технике. Реакция гидролиза используется в технике для получения из жиров глицерина, карбоновых кис­лот, мыла.

Глицерин и кислоты образуются при нагревании жира с водой в автоклавах.

Для получения мыла кислоты нагревают с раствором карбо­ната натрия (составьте уравнение происходящей при этом ре­акции). Чтобы выделить мыло, в раствор добавляют хлорид нат­рия, при этом мыло всплывает наверх в виде плотного слоя - ядра. Из этой массы готовят так называемое ядровое мыло - обычные сорта хозяйственного мыла.

Гидрирование жиров. Для получения мыла и других веществ требуются преимущественно твердые жиры. Между тем они являются весьма ценным продуктом питания. Поэтому давно возник­ла мысль превращать более дешевые растительные масла в твер­дые жиры, которые затем можно было бы подвергать той или иной технической переработке.

Вспомним, что жидкие жиры отличаются от твердых непредельностью своего состава - наличием двойных связей в углево­дородных радикалах. Значит, подобно тому как жидкие непре­дельные кислоты могут быть превращены в твердые путем при­соединения к ним водорода , таким же путем можно превратить жидкие жиры в твердые.


Сущность способа заключается в том, что через нагретую смесь масла с тонко измельченным катализатором (никелевым или медно-никелевым) пропускают водород под давлением (см. цвет. табл. II). Водород присоединяется по месту двойных связей в углеводородных радикалах, и масло превращается в твердый жир, например:

В промышленности процесс гидрирования осуществляют в ряде последовательно соединенных автоклавов по непрерывному методу. Проходя через систему автоклавов, жир подвергается все большему гидрированию; в результате получается масса, похожая по своей консистенции на сало. Поэтому гидрирован­ное масло называют еще саломасом. От катализатора саломас отделяется при помощи фильтрования.

Гидрированный жир - полноценный продукт для производст­ва мыла, а при использовании определенных сортов масел - и для употребления в пищу, например в составе маргарина.

Синтетические моющие вещества.

Производство мыла требует большого расхода жиров. Между тем жиры - ценнейший про­дукт питания. Чтобы сберечь их для народного потребления, мыло следует получать из непищевого сырья. Органическая хи­мия предоставляет такие возможности.

Вспомним, что в состав мыла входят соли карбоновых кислот. Сейчас такие кислоты получают в промышленности окислением углеводородов, входящих в состав парафина. Процесс ведут в аппаратах колонного типа, продувая через расплавленную смесь углеводородов воздух при температуре около 120°С в присутствии соединений марганца в качестве катализатора (рис. 45). При этом происходит разрыв, как бы крекинг, молекул углеводо­родов и окисление образующихся концевых групп в карбоксиль­ные, например:

В результате образуется смесь различных кислот и других кислородсодержащих соединений, которую подвергают разделе­нию. Нейтрализацией кислот получают соли. Эти соли (в смеси с наполнителем) идут на производство туалетного и хозяйствен­ного мыла.

Мыла, получаемые из синтетических кислот, будучи аналогич­ны по своей химической природе обычным мылам, обладают и их недостатками. Например, они плохо моют в жесткой воде. Поэтому сейчас развивается производство моющих средств дру­гого типа.

Один из видов синтетических моющих средств представляет собой соль кислых сложных эфиров высших спиртов и серной кислоты. Схему получения его в общем виде можно представить так:

По строению такие соли сходны с солями, составляющими обычное мыло: они также состоят из нерастворимой в воде длинной углеводородной цепи и рас­творимой функциональной группы атомов. Поэтому они, как и мыла, поверх­ностно-активны и обладают хорошим моющим действием. В отличие от обыч­ного мыла, такие вещества не утрачивают моющих свойств в жесткой воде, так как образующиеся при этом кальциевые и магниевые соли оказываются раство­римыми и, следовательно, поверхностно-активное вещество остается в воде, а не выпадает в осадок.

Производство синтетических моющих средств - одно из особенно быстро развивающихся направлений современной промыш­ленности органической химии .

Моющие средства в процессе их использования не подверга­ются разрушению; поступая со сточными водами в водоемы , они могут загрязнять окружающую среду. Поэтому, создавая новые препараты, стремятся обеспечить не только высокие моющие свойства, но и биоразлагаемость этих веществ - последующее уничтожение в природе некоторыми видами микроорганизмов в процессе их жизнедеятельности. Биологическое разрушение в природных условиях - обязательное требование к выпускаемым в нашей стране синтетическим моющим веществам.


«Химия везде, химия во всем:

Во всем, чем мы дышим,

Во всем, что мы пьем,

Во всем, что едим».

Во всем, что мы носим,






Люди давно научились выделять жир из натуральных объектов и использовать его в повседневной жизни. Жир сгорал в примитивных светильниках, освещая пещеры первобытных людей, жиром смазывали полозья, по которым спускали на воду суда. Жиры – основной источник нашего питания. Но неправильное питание, малоподвижный образ жизни приводит к избыточному весу. Животные пустынь запасают жир как источник энергии и воды. Толстый жировой слой тюленей и китов помогает им плавать в холодных водах Северного Ледовитого океана.

Жиры широко распространены в природе. Наряду с углеводами и белками они входят в состав всех животных и растительных организмов и составляют одну из основных частей нашей пищи. Источниками жиров являются живые организмы. Среди животных это коровы, свиньи, овцы, куры, тюлени, киты, гуси, рыбы (акулы, тресковые, сельди). Из печени трески и акулы получают рыбий жир – лекарственное средство, из сельди – жиры, используемые для подкормки сельскохозяйственных животных. Растительные жиры чаще всего бывают жидкими, их называют маслами. Применяются жиры таких растений, как хлопок, лен, соя, арахис, кунжут, рапс, подсолнечник, горчица, кукуруза, мак, конопля, кокос, облепиха, шиповник, масличная пальма и многих других.

Жиры выполняют различные функции: строительную, энергетическую (1 г жира дает 9 ккал энергии), защитную, запасающую. Жиры обеспечивают 50% энергии, требуемой человеку, поэтому человеку необходимо потреблять 70–80 г жиров в день. Жиры составляют 10–20% от массы тела здорового человека. Жиры являются незаменимым источником жирных кислот. Некоторые жиры содержат витамины А, D, Е, К, гормоны.

Многие животные и человек используют жир в качестве теплоизолирующей оболочки, например, у некоторых морских животных толщина жирового слоя достигает метра. Кроме того, в организме жиры являются растворителями вкусовых веществ и красителей. Многие витамины, например витамин А, растворяются только в жирах.

Некоторые животные (чаще водоплавающие птицы) используют жиры для смазки своих собственных мышечных волокон.

Жиры повышают эффект насыщения пищевыми продуктами, т. к. они перевариваются очень медленно и задерживают наступление чувства голода .

История открытия жиров

Еще в 17 в. немецкий ученый, один из первых химиков-аналитиков Отто Тахений (1652–1699) впервые высказал предположение, что жиры содержат «скрытую кислоту».

В 1741 французский химик Клод Жозеф Жоффруа (1685–1752) обнаружил, что при разложении кислотой мыла (которое готовили варкой жира со щелочью) образуется жирная на ощупь масса.

То, что в состав жиров и масел входит глицерин, впервые выяснил в 1779 знаменитый шведский химик Карл Вильгельм Шееле.

Впервые химический состав жиров определил в начале прошлого века французский химик Мишель Эжен Шеврёль , основоположник химии жиров, автор многочисленных исследований их природы, обобщенных в шеститомной монографии " Химические исследования тел животного происхождения" .

1813 г Э. Шеврёль установил строение жиров, благодаря реакции гидролиза жиров в щелочной среде. Он показал, что жиры состоят из глицерина и жирных кислот, причем это не просто их смесь, а соединение, которое, присоединяя воду, распадается на глицерин и кислоты.


Общая формула жиров (триглицеридов)



Жиры
– сложные эфиры глицерина и высших карбоновых кислот. Общее название таких соединений – триглицериды.


Классификация жиров


Животные жиры содержат главным образом глицериды предельных кислот и являются твердыми веществами. Растительные жиры, часто называемые маслами, содержат глицериды непредельных карбоновых кислот. Это, например, жидкие подсолнечное, конопляное и льняное масла.

Природные жиры содержат следующие жирные кислоты

Насыщенные:

стеариновая (C 17 H 35 COOH)

пальмитиновая (C 15 H 31 COOH)

Масляная (C 3 H 7 COOH)

В СОСТАВЕ

ЖИВОТНЫХ

ЖИРОВ

Ненасыщенные :

олеиновая (C 17 H 33 COOH, 1 двойная связь)

линолевая (C 17 H 31 COOH, 2 двойные связи)

линоленовая (C 17 H 29 COOH, 3 двойные связи)

арахидоновая (C 19 H 31 COOH, 4 двойные связи, реже встречается)

В СОСТАВЕ

РАСТИТЕЛЬНЫХ

ЖИРОВ

Жиры содержатся во всех растениях и животных. Они представляют собой смеси полных сложных эфиров глицерина и не имеют чётко выраженной температуры плавления.

  • Животные жиры (бараний, свиной, говяжий и т.п.), как правило, являются твердыми веществами с невысокой температурой плавления (исключение – рыбий жир). В твёрдых жирах преобладают остатки насыщенных кислот.
  • Растительные жиры – масла (подсолнечное, соевое, хлопковое и др.) – жидкости (исключение – кокосовое масло, масло какао-бобов). Масла содержат в основном остатки ненасыщенных (непредельных) кислот.

Химические свойства жиров

1. Гидролиз, или омыление , жиров происходит под действием воды, с участием ферментов или кислотных катализаторов (обратимо) , при этом образуются спирт - глицерин и смесь карбоновых кислот:

или щелочей (необратимо) . При щелочном гидролизе образуются соли высших жирных кислот, называемые мылами. Мыла получаются при гидролизе жиров в присутствии щелочей:

Мыла - это калиевые и натриевые соли высших карбоновых кислот.

2. Гидрирование жиров – превращение жидких растительных масел в твердые жиры – имеет большое значение для пищевых целей. Продукт гидрогенизации масел – твердый жир (искусственное сало, саломас ). Маргарин – пищевой жир, состоит из смеси гидрогенизированных масел (подсолнечного, кукурузного, хлопкого и др.), животных жиров, молока и вкусовых добавок (соли, сахара, витаминов и др.).

Так в промышленности получают маргарин:

В условиях процесса гидрогенизации масел (высокая температура, металлический катализатор) происходит изомеризация части кислотных остатков, содержащих цис-связи С=С, в более устойчивые транс-изомеры. Повышенное содержание в маргарине (особенно, в дешевых сортах) остатков транс-ненасыщенных кислот увеличивает опасность атеросклероза, сердечно-сосудистых и других заболеваний.


Реакция получения жиров (этерификация)


Применение жиров


    1. Пищевая промышленность
    1. Фармацевтика
    1. Производство мыла и косметических изделий
    1. Производство смазочных материалов

Жиры - продукт питания. Биологическая роль жиров.


Животные жиры и растительные масла, наряду с белками и углеводами – одна из главных составляющих нормального питания человека. Они являются основным источником энергии: 1 г жира при полном окислении (оно идет в клетках с участием кислорода) дает 9,5 ккал (около 40 кДж) энергии, что почти вдвое больше, чем можно получить из белков или углеводов. Кроме того, жировые запасы в организме практически не содержат воду, тогда как молекулы белков и углеводов всегда окружены молекулами воды. В результате один грамм жира дает почти в 6 раз больше энергии, чем один грамм животного крахмала – гликогена. Таким образом, жир по праву следует считать высококалорийным «топливом». В основном оно расходуется для поддержания нормальной температуры человеческого тела, а также на работу различных мышц, поэтому даже когда человек ничего не делает (например, спит), ему каждый час требуется на покрытие энергетических расходов около 350 кДж энергии, примерно такую мощность имеет электрическая 100-ваттная лампочка .

Для обеспечения организма энергией в неблагоприятных условиях в нем создаются жировые запасы, которые откладываются в подкожной клетчатке, в жировой складке брюшины – так называемом сальнике. Подкожный жир предохраняет организм от переохлаждения (особенно эта функция жиров важна для морских животных). В течение тысячелетий люди выполняли тяжелую физическую работу, которая требовала больших затрат энергии и соответственно усиленного питания. Для покрытия минимальной суточной потребности человека в энергии достаточно всего 50 г жира. Однако при умеренной физической нагрузке взрослый человек должен получать с продуктами питания несколько больше жиров, но их количество не должно превышать 100 г (это дает треть калорийности при диете, составляющей около 3000 ккал). Следует отметить, что половина из этих 100 г содержится в продуктах питания в виде так называемого скрытого жира. Жиры содержатся почти во всех пищевых продуктах: в небольшом количестве они есть даже в картофеле (там их 0,4%), в хлебе (1–2%), в овсяной крупе (6%). В молоке обычно содержится 2–3% жира (но есть и специальные сорта обезжиренного молока). Довольно много скрытого жира в постном мясе – от 2 до 33%. Скрытый жир присутствует в продукте в виде отдельных мельчайших частиц. Жиры почти в чистом виде – это сало и растительное масло; в сливочном масле около 80% жира, в топленом – 98%. Конечно, все приведенные рекомендации по потреблению жиров – усредненные, они зависят от пола и возраста, физической нагрузки и климатических условий. При неумеренном потреблении жиров человек быстро набирает вес, однако не следует забывать, что жиры в организме могут синтезироваться и из других продуктов. «Отрабатывать» лишние калории путем физической нагрузки не так-то просто. Например, пробежав трусцой 7 км, человек тратит примерно столько же энергии, сколько он получает, съев всего лишь одну стограммовую плитку шоколада (35% жира, 55% углеводов) .Физиологи установили, что при физической нагрузке, которая в 10 раз превышала привычную, человек, получавший жировую диету, полностью выдыхался через 1,5 часа. При углеводной же диете человек выдерживал такую же нагрузку в течение 4 часов. Объясняется этот на первый взгляд парадоксальный результат особенностями биохимических процессов. Несмотря на высокую «энергоемкость» жиров, получение из них энергии в организме – процесс медленный. Это связано с малой реакционной способностью жиров, особенно их углеводородных цепей. Углеводы, хотя и дают меньше энергии, чем жиры, «выделяют» ее намного быстрее. Поэтому перед физической нагрузкой предпочтительнее съесть сладкое, а не жирное.Избыток в пище жиров, особенно животных, увеличивает и риск развития таких заболеваний как атеросклероз, сердечная недостаточность и др. В животных жирах много холестерина (но не следует забывать, что две трети холестерина синтезируется в организме из нежировых продуктов – углеводов и белков).

Известно, что значительную долю потребляемого жира должны составлять растительные масла, которые содержат очень важные для организма соединения – полиненасыщенные жирные кислоты с несколькими двойными связями. Эти кислоты получили название «незаменимых». Как и витамины, они должны поступать в организм в готовом виде. Из них наибольшей активностью обладает арахидоновая кислота (она синтезируется в организме из линолевой), наименьшей – линоленовая (в 10 раз ниже линолевой). По разным оценкам суточная потребность человека в линолевой кислоте составляет от 4 до 10 г. Больше всего линолевой кислоты (до 84%) в сафлоровом масле, выжимаемом из семян сафлора – однолетнего растения с ярко-оранжевыми цветками. Много этой кислоты также в подсолнечном и ореховом масле.

По мнению диетологов, в сбалансированном рационе должно быть 10% полиненасыщенных кислот, 60% мононенасыщенных (в основном это олеиновая кислота) и 30% насыщенных. Именно такое соотношение обеспечивается, если треть жиров человек получает в виде жидких растительных масел – в количестве 30–35 г в сутки. Эти масла входят также в состав маргарина, который содержит от 15 до 22% насыщенных жирных кислот, от 27 до 49% ненасыщенных и от 30 до 54% полиненасыщенных. Для сравнения: в сливочном масле содержится 45–50% насыщенных жирных кислот, 22–27% ненасыщенных и менее 1% полиненасыщенных. В этом отношении высококачественный маргарин полезнее сливочного масла.

Необходимо помнить

Насыщенные жирные кислоты отрицательно влияют на жировой обмен, работу печени и способствуют развитию атеросклероза. Ненасыщенные (особенно линолевая и арахидоновая кислоты) регулируют жировой обмен и участвуют в выведении холестерина из организма. Чем выше содержание ненасыщенных жирных кислот, тем ниже температура плавления жира. Калорийность твердых животных и жидких растительных жиров примерно одинакова, однако физиологическая ценность растительных жиров намного выше. Более ценными качествами обладает жир молока. Он содержит одну треть ненасыщенных жирных кислот и, сохраняясь в виде эмульсии, легко усваивается организмом. Несмотря на эти положительные качества, нельзя употреблять только молочный жир, так как никакой жир не содержит идеального состава жирных кислот. Лучше всего употреблять жиры как животного, так и растительного происхождения. Соотношение их должно быть 1:2,3 (70% животного и 30% растительного) для молодых людей и лиц среднего возраста. В рационе питания пожилых людей должны преобладать растительные жиры.

Жиры не только участвуют в обменных процессах, но и откладываются про запас (преимущественно в брюшной стенке и вокруг почек). Запасы жира обеспечивают обменные процессы, сохраняя для жизни белки. Этот жир обеспечивает энергию при физической нагрузке, если с пищей жира поступило мало, а также при тяжелых заболеваниях, когда из-за пониженного аппетита его недостаточно поступает с пищей.

Обильное потребление с пищей жира вредно для здоровья: он в большом количестве откладывается про запас, что увеличивает массу тела, приводя порой к обезображиванию фигуры. Увеличивается его концентрация в крови, что, как фактор риска, способствует развитию атеросклероза, ишемической болезни сердца, гипертонической болезни и др.

Вступление

Жиры - органические соединения, полные сложные эфиры глицерина (триглицериды) и одноосновных жирных кислот; входят в класс липидов. Наряду с углеводами и белками, жиры -- один из главных компонентов клеток животных, растений и микроорганизмов. Все известные природные жиры содержат в своём составе три различных кислотных радикала, имеющих неразветвленную структуру и, как правило, чётное число атомов углерода. Из насыщенных жирных кислот в молекуле жира чаще всего встречаются стеариновая и пальмитиновая кислоты, ненасыщенные жирные кислоты представлены в основном олеиновой, линолевой и линоленовой кислотами.

жир консистенция гидрирование мыло

Строение, физические, химические свойства жиров

Строение:

Строение жиров отвечает общей формуле:

Жиры состоят почти исключительно из триглицеридов жирных кислот, то есть это сложные эфиры глицерина и высокомолекулярных жирных кислот. В природных жирах обнаружено более 200 различных жирных кислот. Этим объясняется разнообразие и химическая специфичность природных жиров. Жиры являются смесью триглицеридов, и характерно, что в природе не обнаружено жира, состоящего только из одного триглицерида. Преобладающими являются жирные кислоты с четным числом углеродных атомов от 8 до 24. 75% жиров составляют триглицериды всего трех кислот - пальмитиновой (CH 3 (CH 2) 14 COOH), олеиновой (СН 3 -(СН 2) 7 -СН=СН-(СН 2) 7 -СООН) и линолевой (СН 3 (СН 2) 3 -(СН 2 -СН=СН) 2 -(СН 2) 7 -СООН). Встречающиеся в природе жирные кислоты можно разделить на три группы : насыщенные, мононенасыщенные (с одной двойной связью- моноевые), полиненасыщенные (с двумя или более двойными связями).

Физические свойства жиров:

При комнатной температуре жиры- это твердые, мазеобразные или жидкие вещества. Как любая смесь веществ, они не имеют четкой температуры плавления (т.е. плавятся в некотором диапазоне температур). Определенной температурой плавления характеризуются лишь индивидуальные триглицериды.

Консистенция жиров зависит от их состава:

В твердых жирах преобладают триглицериды с остатками насыщенных кислот, имеющие относительно высокие температуры плавления.

Для жидких жиров (масел), напротив, характерно высокое содержание триглицеридов ненасыщенных кислот с низкими температурами плавления.

Жиры практически не растворимы в воде, но при добавлении мыла или других поверхностно-активных веществ (эмульгаторов), они способны образовывать стойкие водные эмульсии. Так же жиры ограниченно растворимы в спирте и хорошо растворимы во многих неполярных и малополярных растворителях - эфире, бензоле, хлороформе, бензине.

Химические свойства

1. Гидролиз жиров. Жиры гидролизуются с образованием глицерина и карбоновых кислот:

2. Гидрирование масел . Жидкие растительные масла превращаются в твёрдые


3. Получение мыла . Мыла - соли щелочных металлов высших карбоновых кислот.



© dagexpo.ru, 2024
Стоматологический сайт