Факторы гуморальной регуляции сосудистого тонуса. Нервная регуляция сосудистого тонуса(вазоконстрикторы и вазодилятаторы) Гуморальные механизмы регуляции сосудистого тонуса. Механизмы регуляции сердца

27.08.2020

Эта регуляция обеспечивается сложным механизмом, включающим чувствительное (афферентное) , центральное и эфферентное звенья.

5.2.1. Чувствительное звено. Рецепторы сосудов - ангиоцепторы - по своей функции подразделяются на барорецепторы (прессорецепторы), реагирующие на изменение артериального давления, и хеморецепторы , чувствительные к изменению химического состава крови. Их наибольшие скопления нахо­дятся в главных рефлексогенных зонах: аортальной, синокаротидной, в сосудах легочного круга кровообращения.

Раздражителем барорецепторов является не давление как таковое, а скорость и степень растяжения стенки сосуда пульсовыми или нарастающими колебаниями кровяного давления.

Хеморецепторы реагируют на изменение концентрации в крови О 2 , СО 2 , Н + , некоторых неорганических и органических веществ.

Рефлексы, возникающие с рецептивных зон сердечно-сосудистой системы и определяющие регуляцию взаимоотношений в пределах именно этой системы, носят название собственных (системных) рефлексов кровообращения. При увеличении силы раздражения в ответную реакцию помимо сердечно-сосудистой системы вовлекается дыхание . Это будет уже сопряженный рефлекс. Существование сопряженный рефлексов дает возможность системе кровообращения быстро и адекватно приспосабливаться к меняющимся условиям внутренней среды организма.

5.2.2. Центральное звено принято называть сосудодвигательным (вазомоторным) центром. Струк­туры, относящиеся к вазомоторному центру, локализуются в спинном, продол­говатом мозгу, гипоталамусе, коре больших полушарий.

Спинальный уровень регуляции. Нервные клетки, аксоны которых образуют сосудосуживающие волокна, располагаются в боковых рогах грудных и первых поясничных сегментов спинного мозга и являются ядрами симпатической и парасимпатической системы.

Бульбарный уровень регуляции. Сосудодвигательный центр продолговатого мозга является основным центром поддержания тонуса сосудов и рефлекторной регуляции кровяного давления.

Сосудодвигательный центр подразделяется на депрессорную, прессорную и кардиоингибирующую зоны. Это деление довольно условно, так как из-за взаимного перекрытия зон определить границы невозможно.

Депрессорная зона способствует снижению артери­ального давления путем уменьшения активности симпатических сосудосужива­ющих волокон, вызывая тем самым расширение сосудов и падение периферичес­кого сопротивления, а также путем ослабления симпатической стимуляции сердца, т. е. уменьшения сердечного выброса.



Прессорная зона оказывает прямо противоположное действие, повышая артериальное давление через увеличение периферического сопротивления сосу­дов и сердечного выброса. Взаимодействие децрессорных и прессорных струк­тур сосудодвигательного центра носит сложный синерго-антагонистический характер.

Кардиоингибирующее действие третьей зоны опосредуется волокнами блуж­дающего нерва, идущими к сердцу. Его активность приводит к уменьшению сердечного выброса и тем самым объединяется с активностью депрессорной зоны в снижении артериального давления.

Состояние тонического возбуждения сосудодвигательного центра и, соответственно, уровень общего артериального давления регулируются импульсами, идущими от сосудистых рефлексогенных зон. Кроме того, этот центр входит в состав ретикулярной формации продолговатого мозга, откуда также получает многочисленные коллатеральные возбуждения от всех специфически проводящих путей.

Гипоталамический уровень регуляции играет важную роль в осуществлении адаптивных реакций кровообращения. Интегративные центры гипоталамуса оказывают нисходящее влияние на сердечно-сосудистый центр продолговатого мозга, обеспечивая его контроль. В гипоталамусе, так же как в бульварном сосудодвигательном центре, раз­личают депрессорные и прессорные зоны.

Корковый уровень регуляции н аиболее подробно изучен с помощью методов условных рефлексов. Так, сравнительно легко удается выра­ботать сосудистую реакцию на ранее индифферентный раздражитель, вызывая при этом ощущение жары, холода, боли и т. д.

Определенные зоны коры головного мозга, как и гипоталамус, оказывают нисходящее влияние на основной центр продолговатого мозга. Эти влияния формируются в результате сопоставления информации, которая поступила в высшие отделы нервной системы от различных рецептивных зон, с предшеству­ющим опытом организма. Они обеспечивают реализацию сердечно-сосудистого компонента эмоций, мотиваций, поведенческих реакций.



5.2.3. Эфферентное звено. Эфферентная регуляция кровообращения реализуется через гладкомышечные элементы стенки кровеносного сосуда, которые постоянно находятся в состоянии умеренного напряжения – сосудистого тонуса. Существует три механизма регуляции сосудистого тонуса:

1. ауторегуляция

2. нервная регуляция

3. гуморальная регуляция

Ауторегуляция обеспечивает изменение тонуса гладкомышечных клеток под влиянием местного возбуждения. Миогенная регуляция связана с изменением состояния гладкомышечных клеток сосудов в зависимости от степени их растяжения – эффект Остроумова-Бейлиса. Гладкомышечные клетки стенки сосудов отвечают сокращением на растяжение и расслаблением – на понижение давления в сосудах. Значение: поддержание на постоянном уровне объема крови, поступающей к органу (наиболее выражен механизм в почках, печени, легких, головном мозге).

Нервная регуляция сосудистого тонуса осуществляется вегетативной нервной системой, которая оказывает сосудосуживающее и сосудорасширяющее действие.

Симпатические нервы являются вазоконстрикторами (сужают сосуды) для сосудов кожи, слизистых оболочек, желудочно-кишечного тракта и вазодилататорами (расширяют сосуды) для сосудов головного мозга, легких, сердца и работающих мышц. Парасимпатический отдел нервной системы оказывает на сосуды расширяющее действие.

Иннервации подлежат практически все сосуды, за исключением капилляров. Иннервация вен соответствует иннервации артерий, хотя в целом плотность иннервации вен значительно меньше.

Гуморальная регуляция осуществляется веществами системного и местного действия. К веществам системного действия относятся ионы кальция, калия, натрия, гормоны:

Ионы кальция вызывают сужение сосудов, ионы калия оказывают расширяющее действие.

Способностью расширять сосуды обладают биологически активные вещества и местные гормоны, такие как гистамин , серотонин , брадикинин , простагландины .

Вазопрессин – повышает тонус гладкомышечных клеток артериол, вызывая сужение сосудов;

Адреналин на артерии и артериолы кожи, органов пищеварения, почек и легких он оказывает сосудосуживающее влияние ; на сосуды скелетных мышц, гладкой» мускулатуры бронхов - расши­ряющее , содействуя тем самым перераспределению крови в организме. При физическом напряжении, эмоциональном возбуждении он способствует увели­чению кровотока через скелетные мышцы, мозг, сердце. Влияние адреналина и норадреналина на сосудистую стенку определяется существованием разных типов адренорецепторов - α и β, представляющих собой участки гладкомышечных клеток с особой химической чувствительностью. В сосудах обычно имеются оба типа рецепторов. Взаимодействие медиаторов с α-адренорецептором ведет к сокращению стенки сосуда, с β-рецептором - к расслаблению.

Предсердный натрийуретический пептид - м ощный вазодилятатор (расширяет кровеносные сосуды, снижая артериальное давление). Снижает реабсорбцию (обратное всасывание) натрия и воды в почках (снижает объем воды в сосудистом русле). Выделяется эндокринными клетками предсердий при их чрезмерном растяжении.

Тироксин – стимулирует энергетические процессы и вызывает сужение кровеносных сосудов;

Альдостерон вырабатывается в корковом слое надпочечников. Альдостерон обладает необычайно высокой способностью усиливать обратное всасывание натрия в почках, слюнных железах, пищеварительной системе, изменяя таким образом чувствительность стенок сосудов к влиянию адреналина и норадреналина.

Вазопрессин вызывает сужение артерий и артериол органов брюшной полости и легких. Однако, как и под влиянием адреналина, сосуды мозга и сердца реагируют на этот гормон расширением, что способствует улучшению питания и мозговой ткани, и сердечной мышцы.

Ангиотензин II - это продукт ферментативного расщепления ангиотензиногена или ангиотензина I под влиянием ренина . Он обладает мощным вазоконстрикторным (сосудосуживающим) действием, значительно превосходящим по силе норадреналин, но в отличие от последнего не вызывает выброса крови из депо. Ренин и ангиотензин представляют собой ренин-ангиотензиновую систему.

В нервной и эндокринной регуляции различают гемодинамические меха­низмы кратковременного действия, промежуточные и длительного действия. К механизмам кратковременного действия относят циркуляторные реак­ции нервного происхождения - барорецепторные, хеморецепторные, рефлекс на ишемию ЦНС. Их развитие происходит в течение нескольких секунд. Про­межуточные (по времени) механизмы охватывают изменения транскапилляр­ного обмена, расслабление напряженной стенки сосуда, реакцию ренин-ангиотензиновой системы. Для включения этих механизмов требуются минуты, а для максимального развития - часы. Регуляторные механизмы длительного действия влияют на соотношение между внутрисосудистым объемом крови я емкостью сосудов. Это осуществляется посредством транскапиллярного обмена жидкости. В этом процессе участвуют почечная регуляция объема жидкости, вазопрессин и альдостерон.

РЕГИОНАРНОЕ КРОВООБРАЩЕНИЕ

В связи с неоднородностью строения разных органов, различиями протекающих в них обменных процессов, а также разными функциями принято различать регионарное (локальное) кровообращение в отдельных органах и тканях: коронарное, мозговое, легочное и т. д.

Кровообращение в сердце

У млекопитающих миокард получает кровь по двум венечным (коронарным) артериям - правой и левой, устья которых располагаются в луковице аорты. Капиллярная сеть миокарда очень густая: число капилляров приближается к числу мышечных волокон.

Условия циркуляции крови в сердечных сосудах значительно отличаются от условий циркуляции в сосудах других органов тела. Ритмические колебания давления в полостях сердца и изменение его формы и размеров в течение сердечного цикла оказывают существенное влияние на кровоток. Так, в момент систолического напряжения желудочков сердечная мышца сдавливает находящиеся в ней сосуды, поэтому кровоток ослабевает , доставка кислорода к тканям снижается. Сразу же после конца систолы кровоснабжение сердца увеличивается . Тахикардия может представлять собой проблему для коронарной перфузии, потому что большинство течения происходит во время диастолического периода, который становится короче, когда ЧСС увеличивается.

Мозговое кровообращение

Кровообращение головного мозга более интенсивно, чем других органов. Мозг требует постоянной подачи O 2 и приток крови к мозгу относительно независим от МОК и деятельности вегетативной нервной
системы. Клетки высших отделов ЦНС при недостаточном снабжении кислородом перестают функционировать раньше, чем клетки других органов. Прекращение притока крови к мозгу кошки на 20 с вызывает уже полное исчезновение электрических процессов в коре больших полушарий, а прекращение кровотока на 5 мин приводит к необратимому повреждению мозговых клеток.

Около 15% крови каждого сердечного выброса в большой круг кровообращения поступает в сосуды мозга. При интенсивной умственной работе мозговое кровоснабжение увеличивается до 25%, у детей - до 40%. Мозговые артерии являются сосудами мышечного типа с обильной адренергической иннервацией, что позволяет им менять просвет в широких пределах. Количество капилляров тем больше, чем интенсивнее метаболизм ткани. В сером веществе капилляры расположены значительно гуще, чем в белом.

Оттекающая от мозга кровь поступает в вены, образующие синусы в твердой оболочке головного мозга. В отличие от других частей тела венозная система мозга не выполняет емкостной функции, емкость вен мозга не изменяется, поэтому возможные значительные перепады венозного давления .

Эффекторами регулирования мозгового кровотока являются внутримозговые артерии и артерии мягкой мозговой оболочки, которые характеризуются специфическими функциональными особенностями . При изменении общего артериального давления в определенных пределах интенсивность мозгового кровообращения остается постоянной. Осуществляется это благодаря изменению сопротивления в артериях мозга, которые сужаются при повышении общего артериального давления и расширяются при его понижении. Кроме такой ауторегуляции кровотока, предохранение головного мозга от высокого кровяного давления и избыточности пульсации происходит главным образом благодаря особенностям строения сосудистой системы этой области. Особенности эти заключаются в том, что по ходу сосудистого русла имеются многочисленные изгибы («сифоны»). Изгибы сглаживают перепады давления и пульсирующий характер кровотока.

Мозговой кровоток также определяется миогенной ауторегуляцией , в которой поток крови является относительно постоянным в широком диапазоне MAP, от примерно 60 мм ртутного столба до 130 мм рт.ст.

Мозговой кровоток реагирует также на изменения местного метаболизма . Увеличение активности нейронов и усиленное потребление O 2 вызывает местное расширение сосудов.

Газы крови также сильно влияют на мозговой кровоток. Например, головокружение при гипервентиляции вызывается сужением сосудов головного мозга в результате увеличения вывода из крови CO 2 и снижение PaCO 2 . При этом поступление питательных веществ уменьшается, нарушается эффективность работы мозга. С другой стороны, увеличение PaCO 2 является причиной церебральной вазодилатации. Вариации PaO 2 имеют небольшой эффект, но при тяжелой гипоксии (низком PaO 2) происходит выраженная церебральная вазодилатация.

Легочное кровообращение

Кровоснабжение легких осуществляется легочными и бронхиальными сосудами. Легочные сосуды составляют малый круг кровообращения и выполняют главным образом функцию газообмена между кровью и воздухом. Бронхиальные сосуды обеспечивают питание тканей легкого и принадлежат к большому кругу кровообращения..

Особенностью малого круга кровообращения являются относительно небольшая длина его сосудов, меньшее (примерно в 10 раз по сравнению с большим кругом) сопротивление, оказываемое току крови, тонкость стенок артериальных сосудов и почти непосредственное соприкосновение капилляров с воздухом легочных альвеол. Из-за меньшего сопротивления кровяное давление в артериях малого круга в 5-6 раз меньше давления в аорте. Эритроциты проходят через легкие примерно за 6 с, находясь в обменных капиллярах 0,7 с.

Кровообращение в печени

Печень получает одновременно артериальную и венозную кровь . Артериальная кровь поступает по печеночной артерии, венозная - из воротной вены от пищеварительного тракта, поджелудочной железы и селезенки. Общий отток крови из печени в полую вену осуществляется по печеночным венам. Следовательно, венозная кровь от пищеварительного тракта, поджелудочной железы и селезенки возвращается к сердцу только пройдя еще дополнительно через печень. Такая особенность кровоснабжения печени, получившая название портального кровообращения , связана с пищеварением и выполнением барьерной функции. Кровь в портальной системе проходит через две сети капилляров. Первая сеть расположена в стенках органов пищеварения, поджелудочной железы, селезенки, она обеспечивает всасывательную, выделительную и двигательную функции этих органов. Вторая сеть капилляров находится непосредственно в паренхиме печени. Она обеспечивает ее обменную и экскреторную функции, предотвращение интоксикации организма продуктами, образующимися в пищеварительном тракте.

Исследования русского хирурга и физиолога Н. В. Экка показали, что если кровь из воротной вены направить непосредственно в полую вену, т. е. минуя печень, произойдет отравление организма со смертельным исходом.

Особенностью микроциркуляции в печени является тесная связь между разветвлениями воротной вены и собственно печеночной артерии с образованием в дольках печени синусоидных капилляров , к мембранам которых непосредственно прилежат гепатоциты . Большая поверхность соприкосновения крови с гепатоцитами и медленный кровоток в синусоидных капиллярах создают оптимальные условия для обменных и синтетических процессов.

Почечное кровообращение

Через каждую почку человека в течение 1 мин проходит около 750 мл крови, что в 2,5 раза превышает массу органа и в 20 раз превосходит кровоснабжение многих других органов. За сутки через почки суммарно проходит около 1000 л крови. Следовательно, при таком объеме кровоснабжения все количество имеющейся в теле человека крови в течение 5-10 мин проходит через почки.

Кровь поступает к почкам по почечным артериям. Они разветвляются к мозговому и корковому веществу, последние - на клубочковые (приносящие) и юкстагломерулярные . Приносящие артериолы коркового вещества разветвляются на капилляры, которые образуют сосудистые клубочки почечных телец корковых нефронов. Капилляры клубочков собираются в выносящие клубочковые артериолы. Приносящие и выносящие артерии различаются по диаметру примерно в 2 раза (выносящие меньше). В результате такого соотношения в капиллярах клубочков корковых нефронов возникает необычайно высокое кровяное давление - до 70-90 мм рт. ст., что служит основой возникновения первой фазы мочеобразования, носящей характер фильтрации вещества из плазмы крови в канальцевую систему почек.

Выносящие артериолы, пройдя короткий путь, вновь распадаются на капилляры. Капилляры оплетают канальцы нефрона, образуя перитубуллярную капиллярную сеть. Это «вторичные» капилляры . В отличие от «первичных» давление крови в них относительно низкое - 10-12 мм рт. ст. Такое низкое давление способствует возникновению второй фазы мочеобразования, которая носит характер процесса обратного всасывания жидкости и растворенных в ней веществ канальцев в кровь. Обе артериолы - приносящий и выносящий сосуды - могут изменять свой просвет в результате сокращения или расслабления имеющихся в их стенках гладких мышечных волокон.

В отличие от общего периферического кровотока, приток крови к почкам не контролируется метаболическими факторами. Почечный кровоток наиболее сильно подвержен влияниям ауторегуляции и симпатического тонуса. В большинстве случаев, почечный кровоток является относительно постоянным, потому что миогенная ауторегуляция работает в диапазоне от 60 мм рт.ст. до 160 мм рт.ст. Повышение тонуса симпатической нервной системы происходит во время физических упражнений или если барорецепторного рефлекса, что стимулирует снижение АД в результате почечной вазоконстрикции.

Кровообращение в селезенке

Селезенка - важный кроветворный и защитный орган, сильно варьирующий в объеме и массе в зависимости от количества депонированной в ней крови и активности процессов кроветворения. Селезенка принимает участие в элиминации отживающих или поврежденных эритроцитов и нейтрализации экзо- и эндогенных антигенов, которые не были задержаны лимфатическими узлами и проникли в кровоток.

Сосудистая система селезенки благодаря своеобразной структуре играет существенную роль в функции данного органа. Особенность кровообращения в селезенке обусловлена нетипичным строением ее капилляров . Концевые ветви капилляров имеют кисточки, заканчивающиеся слепыми расширениями с отверстиями. Через эти отверстия кровь переходит в пульпу, а оттуда в синусы, имеющие отверстия в стенках. Вследствие этой особенности строения селезенка, как губка, может депонировать большое количество крови .

В этой части речь идет о нервной и гуморальной регуляции тонуса сосудов: об эфферентной иннервации сосудов, о краткой характеристике сосудодвигательных центров, о рефлекторной регуляции тонуса сосудов, о гуморальной регуляции тонуса сосудов.

Нервная и гуморальная регуляция тонуса сосудов.

От величины просвета сосудов, от их тонуса и количества выбрасываемой в них сердцем крови зависит кровоснабжение органов. Поэтому при рассмотрении регуляции функции сосудов прежде всего должна идти речь о механизмах поддержания сосудистого тонуса и о взаимодействии сердца и сосудов.

Эфферентная иннервация сосудов.

Просвет сосудов в основном регулируется симпатической нервной системой. Ее нервы самостоятельно или в составе смешанных двигательных нервов подходят ко всем артериям и артериолам и оказывают сосудосуживающее влияние. Яркой демонстрацией этого влияния являются опыты Клода Бернара, проведенные на сосудах уха кролика. В этих опытах на шее кролика с одной стороны перерезали симпатический нерв, после чего наблюдали покраснение уха оперированной стороны и небольшое повышение его температуры вследствие расширения сосудов и увеличения кровоснабжения уха. Раздражение периферического конца перерезанного симпатического нерва вызывало суждение сосудов и побледнение уха.

Симпатические нервы, иннервирующие большинство сосудов брюшной полости, подходят к ним в составе чревного нерва. К сосудам конечностей симпатические волокна идут вместе с двигательными нервами.

Под влиянием симпатической нервной системы мышцы сосудов находятся в состоянии сокращения - тонического напряжения.

В естественных условиях жизнедеятельности организма изменение просвета большинства сосудов (их суждение и расширение) происходит за счет изменения количества импульсов, идущих по симпатическим нервам. Частота этих импульсов невелика - приблизительно один импульс в секунду. Под влиянием рефлекторных воздействий их количество может быть увеличено или уменьшено. При увеличении количества импульсов тонус сосудов повышается - происходит их сужение. Если количество импульсов уменьшается, то сосуды расширяются.

Парасимпатическая нервная система оказывает сосудорасширяющее влияние лишь на сосуды некоторых органов. В частности, он расширяет сосуды языка, слюнных желез и половых органов. Только эти три органа имеют двойную иннервацию: симпатическую (сосудосуживающую) и парасимпатическую (сосудорасширяющую).

Краткая характеристика сосудодвигательных центров.

Нейроны симпатической нервной системы, по отросткам которых идут импульсы к сосудам, расположены в боковых рогах серого вещества спинного мозга. Уровень активности этих нейронов зависит от влияний вышележащих отделов центральной нервной системы.

В 1871 году Ф.В.Овсянников показал, что в продолговатом мозге находятся нейроны, под влиянием которых происходит сужение сосудов. Этот центр получил название сосудодвигательного. Его нейроны сосредоточены в продолговатом мозге на дне IV желудочка вблизи ядра блуждающего нерва.

В сосудодвигательном центре различают два отдела: прессорный, или сосудосуживающий, и депрессорный, или сосудорасширяющий. При раздражении нейронов прессорного центра наступает сужение сосудов и повышение кровяного давления, а при раздражении депрессорного - расширение сосудов и уменьшение кровяного давления. Нейроны депрессорного центра в момент их возбуждения вызывают понижение тонуса прессорного центра, в результате чего уменьшается количество тонизирующих импульсов, идущих к сосудам, и наступает их расширение.

Импульсы от сосудосуживающего центра головного мозга поступают к боковым рогам серого вещества спинного мозга, где располагаются нейроны симпатической нервной системы, образующие сосудосуживающий центр спинного мозга. От него по волокнам симпатической нервной системы импульсы идут к мышцам сосудов и вызывают их сокращение, вследствие чего наступает сужение сосудов.

Рефлекторная регуляция тонусов сосудов.

Различают собственные сердечно-сосудистые рефлексы и сопряженные.

Сопряженные сердечно-сосудистые рефлексы делят на две группы: экстерорецептивные (возникающие при раздражении рецепторов лежащих на поверхности тела) и интерорецептивные (возникающие при раздражении рецепторов внутренних органов).

Любое действие на организм, приходящее от экстерорецепторов, прежде всего повышает тонус сосудодвигательного центра и вызывает прессорную реакцию. Так, при механическом или болевом раздражении кожи сильном раздражении зрительного и других рецепторов наступает рефлекторное сужение сосудов.

С сосудистыми реакциями связано перераспределение крови в организме и кровоснабжение работающих органов.

Особенно большое значение в перераспределении крови в организме имеют реакции, возникающие при раздражении интерорецепторов и рецепторов с работающих мышц. Обеспечение работающих мышц кислородом и питательными веществами происходит за счет расширения сосудов и увеличения кровоснабжения работающих мышц. Расширение сосудов происходит при раздражении хеморецепторов продуктами обмена -АТФ, молочной, угольной и другими кислотами, которые вызывают уменьшение тонуса и расширение сосудов. В расширенные сосуды поступает больше крови и тем улучшается питание работающих мышц. Но при этом рефлекторно происходит перераспределение крови. Под влиянием эфферентных импульсов из сосудодвигательного центра происходит сужение сосудов неработающих органов. Расширенные сосуды работающих органов оказываются нечувствительными к этим сосудосуживающим импульсам.

Гуморальная регуляция тонуса сосудов.

Химические вещества, влияющие на просвет сосудов, делятся на сосудосуживающие и сосудорасширяющие.

Наиболее мощным сосудосуживающим действием обладают адреналин и норадреналин. Они вызывают сужение артерий и артериол кожи, легких и органов брюшной полости. Одновременно они вызывают расширение сосудов сердца и мозга.

Адреналин - биологически очень активный препарат и действует в очень малых концентрациях. Достаточно 0,0002 мг адреналина на 1 кг массы тела, чтобы вызывать сужение сосудов и повышение кровяного давления. Сосудосуживающее действие адреналина осуществляется разными путями. Он действует непосредственно на стенку сосудов и уменьшает мембранный потенциал ее мышечных волокон, повышая возбудимость и создавая условия для быстрого возникновения возбуждения. Адреналин влияет на гипоталамус и приводит к усилению потока сосудосуживающих импульсов и увеличению количества выделяемого вазопрессина.

Косвенное влияние на изменение просвета сосудов и поддержание постоянства кровяного давления имеет образующийся в почках ренин. Его образование увеличивается при уменьшении количества натрия в крови и снижения кровяного давления. Взаимодействуя с белком плазмы гипертензиногеном, он образует биологически активное вещество гипертензин, вызывающий сужение сосудов и повышение давления крови.

К сосудосуживающим факторам относится серотонин, который, суживая поврежденный сосуд, способствует уменьшению кровотечения.

Сосудорасширяющим действием обладают ацетилхолин, противогипертензиноген, медулин, брадикинин, простогландины, гистамин и др.

Ацетилхолин вызывает расширение мелких артерий и уменьшение кровяного давления. Его действие кратковременно, так как в крови он быстро разрушается.

Противогипертензиноген постоянно находится в крови наряду с гипертензиногеном, уравновешивая его действие. Колебания его количества в крови направлены на поддержание постоянства кровяного давления.

В почках образуется медулин, вызывающий расширение сосудов.

Брадикинин образуется в тканях поджелудочной и подчелюстной желез, в легких, коже и др. Он понижает тонус гладкой мускулатуры артериол, способствуя понижению давления крови.

Гистамин образуется в процессе обмена веществ в скелетной мускулатуре, в коже, в стенках желудка и кишечника и др. Под влиянием гистамина расширяются артериолы и увеличивается кровенаполнение капилляров, в связи с чем в них задерживается большое количество крови. Поэтому уменьшается приток крови к сердцу, что приводит к падению кровяного давления в артериях.

Сердце находится под постоянным действием нервной системы и гуморальных факторов. Организм находится в разных условиях существования. Результатом работы сердца - нагнетание крови в большой и малый круги кровообращения.

Оценивается минутным объемом крови. В нормальном состоянии за 1 минуту - 5л крови выталкивают оба желудочка. Таким образом мы можем оценить работу сердцу.

Систолический объем крови и частота сердечных сокращений - минутный объем крови.

Для сопоставления у разных людей - введен сердечный индекс - какое количество крови в минуту приходится на 1 квадратный метр тела.

Для того чтобы изменять величину объема - нужна менять данные показатели, это происходит за счет механизмов регуляции сердца.

Минутный объем крови(МОК)=5л/мин

Сердечный индекс=МОК/Sм2=2,8-3,6л/мин/м2

МОК=систолический объем*частота/мин

Механизмы регуляции сердца

  1. Внутрисердечные(интракардиальные)
  2. Внесердечные(Экстракардиальные)

К внутрисердечным механизмам относятся наличие плотных контактов между клетками рабочего миокарда, проводящая система сердца координирует отдельную работу камер, внутрисердечные нервные элементы, гидродинамическое взаимодействие между отдельными камерами.

Внесердечные - нервный и гуморальный механизм , который изменяют работу сердца и приспосабливают работу сердца к запросам организма.

Нервная регуляция сердце осуществляется автономной нервной системой . Сердце получает иннервацию и от парасимпатического (блуждающий) и симпатических (боковые рога спинного мозга T1-T5) нервов.

Ганглии парасимпатической системы лежат внутри сердца и там преганглионарное волокна переключаются на постганглионарные. Ядра преганглионарных - продолговатый мозг.

Симпатические - прерываются в звездчатом ганглии, где уже будут располагаться постганглионары, которые идут к сердцу.

Правый блуждающий нерв - иннервирует сино-атриальный узел, правое предсердие,

Левый блуждающий нерв к атрио-вентрикулярному узлу и правому предсердию

Правый симпатический нерв - к синусному узлу, правому предсердию и желудочку

Левый симпатический нерв - к атриовентрикулярному узлы и к левой половине сердца.

В ганглиях ацетилхолин действует на N - холинорецепторы

Симпатические выделяют норадреналин, который действует на адренорецепторы(B1)

Парасимпатические - ацетилхолин на М-холино рецепторы(мускарино)

Влияние на работу сердца.

  1. Хронотропное влияние (на частоту сердечных сокращений)
  2. Инотропное (на силу сердечных сокращений)
  3. Батмотропное влияние (на возбудимость)
  4. Дромотропное (на проводимость)

1845 - братья Веберы - открыли влияние блуждающего нерва . Они перерезали нерв на шее. При раздражении правого блуждающего нерва - уряжалась частота сокращений, а могла и остановиться - отрицательный хронотропный эффект (подавление автоматии синусного узла). Если раздражался левый блуждающий нерв - ухудшалась проводимость. Атриовентрикулярный нерв отвечает за задержку возбуждения.

Блуждающие нервы понижают возбудимость миокарда и понижают частоту сокращений.

Под действием блуждающего нерва - замедление диастолической деполяризации p - клеток, водителей ритма. Увеличивается выход калия. Хотя блуждающий нерв вызывает остановку сердца, полностью этого сделать нельзя. Происходит возобновление сокращения сердца - ускользание из под влияния блуждающего нерва и возобновление работы сердца связано с тем, что автоматия от синусного узла переходит к атриовентрикулярному узлу, который и возвращает работу сердца с частотой в 2 раза реже.

Симпатические влияния - изучили братья Ционы - 1867 год. При раздражении симпатических нервов Ционы обнаружили что симпатические нервы дают положительный хронотропный эффект . Дальше изучал Павлов. В 1887 году он опубликовал свою работу по влиянию нервов на работу сердца. В своих исследованиях о обнаружил, что отдельные веточки не меняя частоты увеличивают силу сокращений - положительный инотропный эффект . Дальше были открыты бамотропный и дромотропный эффект.

Положительные влияния на работу сердца идет за счет влияния норадреналин на бета 1 адрено рецепторы, который активируют аденилатциклазу, способствуют образованию циклического АМФ, повышается ионная проницаемость мембраны. Диастолическая деполяризация происходит с большей скоростью и это вызывает более частый ритм. Симпатические нервы увеличивают распад гликогена, АТФ, тем самым они предоставляют миокарду энергетические ресурсы, повышается возбудимость сердца. Минимальная продолжительность потенциала действия в синусном узле установлена 120 мс, т.е. теоретически сердце могло бы дать нам число сокращений - 400 в минуту, но атривентрикулярный узел не способен провести более 220. Желудочки максимально сокращаются с частотой 200-220. Участи медиаторов в передаче возбуждения на сердца - установил Отто Леви в 1921. Он использовал 2 изолированных сердца лягушки, причем эти сердце питались из 1ой канюли. В одном сердце сохранялись нервные проводники. При раздражении одного сердца он наблюдал что происходило в другом. При раздражении блуждающего нерва выделялся ацетилхолин - через жидкость он оказывал влияние на работу другого сердца.

Выделение норадреналина усиливает работу сердца. Открытие этого медиаторного возбуждения принесло Леви нобелевскую премию.

Нервы сердца находятся в состоянии постоянного возбуждения - тонуса. В состоянии покоя особенно хорошо выражен тонус блуждающего нерва. При перерезке блуждающего нерва наблюдается учащение работы сердца в 2 раза. Блуждающие нервы постоянно угнетают автоматию синусного узла. Нормальная частота - 60-100 сокращений. Выключение блуждающих нервов(перерезка, блокаторы холино-рецепторов(атропин)) вызывают учащение работы сердца. Тонус блуждающих нервов определяется тонусом его ядер. Возбуждение ядер поддерживается рефлекторно за счет импульсов, которые приходят с барорецепторов кровеносных сосудов в продолговатый мозг от дуги аорты и каротидного синуса. На тонус блуждающих нервов влияет и дыхание. В связи с дыханием - дыхательная аритмия, когда на выдохе происходит уряжение работы сердца.

Тонус симпатических нервов сердца в состоянии покоя выражен слабо. Если перерезать симпатические нервы - частота сокращений уменьшается на 6-10 ударов в минуту. Этот тонус увеличивается при физической нагрузке, увеличивается при различных заболеваниях. Тонус хорошо выражен у детей, у новорожденных(129-140 ударов в минуту)

Сердце еще подвержено действию гуморального фактора - гормоны(надпочечеников - адреналин, норадареналин, щитовидной железы - тироксин и медиатор ацетилхолин)

Гормоны оказывают + влияние на все 4 свойства сердца. На сердце влияет электролитный состав плазмы и изменяется работа сердца при изменении концентрации калия и кальция. Гиперкалимия - повышенное содержания калия в крови - очень опасное состояние, это может приводить к остановке сердца в диастолу. Гипокалими я - мене опасное состояние на кардиограмме изменение расстояния PQ, извращение зубца T. Сердце останавливается в систолу. На сердце оказывает влияние и температура тела - повышение температуры тела на 1 градус - увеличение работы сердца - на 8-10 ударов в минуту.

Систолический объем

  1. Преднагрузка(степень растяжения кардиомиоцитов перед их сокращением. Степень растяжения будет определяться тем объемом крови, что будет находится в желудочках.)
  2. Сократимость(Растяжение кардиомиоцитов, где меняется длина саркомера. Обычно толщина 2 мкм. Максимальная сила сокращения кардиомиоцитов до 2,2 мкм. Это оптимальное соотношение между мостиками миозина и актиновых нитей, когда их взаимодействие максимально. Это определяет силу сокращения дальнейшее растяжение до 2,4 уменьшает сократимость. Это приспосабливает сердце к притоку крови, при его увеличение - большая сила сокращения. Сила сокращения миокарда может меняться без изменения количества крови, за счет гормонов адреналина и норадреналина, ионов кальция и пр. - увеличивается сила сокращениямиокарда)
  3. Постнагрузка(Постнагрузка это то напряжение миокарда, которое должно возникнуть в систолу для открытия полулунных клапанов. Величина постнагрузки определяется величиной систолического давления в аорте и легочном стволе)

Закон Лапласа

Степень напряжения стенки желудочка = Внутрижелудочное давление * радиус / толщина стенки. Чем больше внутрижелудочковое давление и чем больше радиус(величина просвета желудочка), тем напряжение стенки желудочка больше. Увеличение толщины - влияет обратнопропорционално. T=P*r/W

Величина кровотока зависит не только от минутного объема, но и она определяется величиной периферического сопротивления, возникающего в сосудах.

Кровеносные сосуды оказывают мощное влияние на кровоток. Все кровеносные сосуды выстланы эндотелием. Дальше эластический каркас, а в мышечных еще и гладко мышечные клетки и коллагеновые волокна. Стенка сосудов подчиняется закону Лапласа. Если внутри сосуда имеется внутрисосудистое давление и давление вызывает растяжение в стенке сосуда, то в стенке - состояние напряжения. Также влияет радиус сосудов. Напряжение будет определяться произведением давления на радиус. В сосудах мы можем различить базальный тонус сосудов. Тонус сосудов который определяется степенью сокращения.

Базальный тонус - определяется степенью растяжения

Нейрогуморальный тонус - влияние нервных и гуморальных факторов на тонус сосудов.

Увеличенный радиус дает больше напряжения в стенки сосудов чем в баллончике, где радиус меньше. Для того, чтобы осуществлялся нормальный кровоток и обеспечивалось адекватное кровоснабжение существуют механизмы регуляции сосудов.

Они представлены 3мя группами

  1. Местная регуляция кровотока в ткани
  2. Нервная регуляция
  3. Гуморальная регуляция

Тканевой кровоток обеспечивает

Доставку кислорода клеткам

Доставку питательных веществ(глюкоза, аминокислоты, жирные кислоты и др.)

Удаление CO2

Удаление протонов H+

Регуляция кровотока - краткосрочная(несколько секунд или минут в результате локальных изменений в тканях) и долгосрочная(происходит в течении часов, дней и даже недель. Эта регуляция связана с образование в тканях новых сосудов)

Образование новых сосудов связано с увеличением объема ткани, увеличение интенсивности обмена веществ в ткани.

Ангеогенез - образование сосудов. Это идет под действием факторов роста - сосудистый эндотелиальный фактор роста. Фактор роста фибробласта и ангиогенин

Гуморальная регуляция сосудов

  1. 1. Вазоактивные метаболиты

а. Расширение сосудов обеспечивают - уменьшение pO2, Увеличение - CO2, t, K+ молочной кислоты, аденозина, гистамина

б.сужение сосудов вызывают - увеличение серотонина и уменьшение температуры.

2. Влияние эндотелия

Эндотелины(1,2,3). - сужение

Оксид азота NO - расширение

Образование оксида азота(NO)

  1. Освобождение Ach, брадикинина
  2. Открытие Ca+ каналов в эндотелии
  3. Связывание Ca+ с кальмодулином и его активация
  4. Активация фермента (синтетазы оксида азота)
  5. Превращение L фргинина в NO

Механизм действия NO

NO - активирует гуанилциклазу ГТФ - цГМФ- открытие К каналов - выход K+ - гиперполяризация - снижение проницаемости кальция-расширение гладких мышц и расширение сосудов.

Обладает цитотоксическим действием на бактерии и клетки опухоли при выделение из лейкоцитов

Является медиатором передачи возбуждеия в некотоырх нейронах головного мозга

Медиатор парасимпатических постганглионарных волокон для сосудов полового члена

Возможно принимает участие в механизмах памяти и мышления

А.Брадикинин

Б.Каллидин

Кининоген с ВМВ - брадикинин(при Плазменный калликреине)

Кининоген с YVD - каллидин(при тканевом калликреине)

Кинины образуются при активной деятельности потовых желез, слюнных желез и поджелудочной железы.

Степень напряжения гладких мышц сосудистой стенки называется тонусом. При его повышении увеличивается сопротивление течению крови, возрастает артериальное давление, при низком тонусе просвет артерий становится больше и давление падает. На этот процесс влияют нервные механизмы – симпатическая и парасимпатическая иннервация, сосудодвигательный центр головного мозга, а также значительное количество гормонов и биологически активных соединений.

Нарушение нормального тонуса приводит к гипертонии или гипотонии.

📌 Читайте в этой статье

Зачем нужен сосудистый тонус

При помощи тонуса сосудов организм регулирует один из основных параметров – давление крови. Нормальный его уровень обеспечивает адекватное питание внутренних органов, в том числе миокарда, головного мозга. От того, как реагирует сосудистая стенка на изменение параметров внутренней и внешней среды, зависит самочувствие человека при перепадах атмосферного давления, повышении физической активности, действии стрессовых факторов.

У здоровых людей, особенно при хорошей тренированности сердечно-сосудистой системы, происходит быстрое расширение и сужение артерий в ответ на нагрузки, а затем также быстро тонус сосудов возвращается к норме. При этом все органы и ткани получают достаточное количество крови, а значит, кислорода и питательных веществ, активизируются обменные процессы, и легко переносится дополнительное напряжение.

При заболеваниях, у пожилых людей в ответ на раздражитель отмечается замедленная реакция, ее бывает недостаточно для покрытия повышенной потребности в питании, может также происходить парадоксальное сужение сосудов вместо их расширения, и наоборот.

Исходный тонус сосудов поддерживается работой гладкой мускулатуры. При этом венечные артерии, сосуды скелетных мышц и почек обладают высоким, а кожа и слизистые оболочки питаются артериями с низким тонусом. При действии интенсивного раздражителя высокий тонус понижается, а низкий возрастает.

Механизмы регуляции

Контроль и поддержание нужных параметров просвета сосуда осуществляется тремя механизмами – местный (автономная регуляция), нервный и гуморальный (через кровь, тканевую жидкость).

Нервная

Непосредственное влияние на тонус сосудистой стенки оказывают импульсы, которые поступают из сосудодвигательного центра головного мозга. Он передает сигнал о сужении просвета артерий через симпатические волокна, а о расширении путем парасимпатических сигналов.

Вторым уровнем (рефлекторным) являются структуры каротидного синуса, аорты и легочной артерии. В них расположены рецепторы, которые воспринимают давление крови, ее щелочную реакцию, содержание кислорода и углекислого газа. Через нервные волокна информация приходит в центры спинного мозга. За счет этого звена контроля перераспределяется кровоток в условиях стресса – преимущество в питании получают жизненно важные органы, даже в ущерб остальным.

Более тонкая регуляция осуществляется гипоталамусом. Он изменяет активность одних частей вегетативных волокон, тормозя сигналы от других. Это происходит за счет таких механизмов:

  • Симпатические нервы уменьшают диаметр сосудов кожи, слизистых и пищеварительной системы, расширяют коронарные и церебральные артерии, легочных и скелетных мышц.
  • Парасимпатические расширяют сосуды языка, желез ротовой полости, сосудистой оболочки мозга и половых органов.
  • Аксон-рефлексы оказывают местное сосудорасширяющее действие. Примером является покраснение кожи при раздражении ее рецепторов.

Гуморальная

На местном уровне регулируют тонус сосудов электролиты крови – кальций и натрий сужают сосуды и повышают давление, а калий и магний оказывают противоположное действие. К автономным регуляторам также относятся:

  • продукты обмена веществ (углекислый газ, органические кислоты, ионы водорода) ускоряют передачу импульсов в головной мозг, сужают сосуды;
  • гистамин, брадикинин и простагландины понижают тонус;
  • серотонин, ферменты эндотелия (внутренней оболочки) оказывают сосудосуживающее действие.

Системная регуляция сосудистого тонуса осуществляется гормонами, которые выделяют эндокринные железы:

  • адреналин и норадреналин сужают все артерии, кроме мозговых, почечных и скелетных мышц;
  • вазопрессин уменьшает просвет вен, а ангиотензин 2 артерий и артериол;
  • кортикостероиды надпочечников и тироксин постепенно повышают тонус сосудов за счет симпатических импульсов.

Местная

Это реакция сосуда на два основных параметра – давление и скорость потока крови. При высоком давлении растягиваются гладкие мышечные волокна, что вызывает их рефлекторное сокращение и повышение сопротивления . При понижении давления в артериях стенка расслабляется и не мешает продвижению крови. Эти процессы не требуют участия головного мозга.

Нарушение местной регуляции может возникнуть при недостатке кислорода, потере крови, обезвоживании, низкой двигательной активности.


Закупорка сосуда

Что влияет на сосудистый тонус

Любое изменение внутренней или внешней среды влияет на деятельность сердечно-сосудистой системы. Самыми частыми причинами существенных колебаний тонуса сосудов бывают:

  • понижение или повышение атмосферного давления, смена климата;
  • генетические особенности реакции нервной системы;
  • стрессовые ситуации;
  • инфекционные болезни;
  • отравления химическими соединениями, медикаментами, алкоголем или никотином;
  • травмы черепа;
  • сахарный диабет;
  • болезни щитовидной железы;
  • дисбаланс половых гормонов;
  • ожирение;
  • низкая физическая активность.

О чем расскажут нарушения (снижение, повышение)

Колебания тонуса сосудов бывают нормальной реакций на изменения внутренней и внешней среды. Болезненные состояния возникают только при стойком повышении или понижении.

Низкий тонус — гипотония

Происходит снижение давления крови ниже 100/60 мм рт. ст. При этом общий слабый тонус не может быть компенсирован локальным повышением сопротивления артериол или капилляров.

Характерными клиническими проявлениями бывают:

  • общая слабость,
  • быстрая утомляемость,
  • головные боли,
  • головокружение,
  • обморочные состояния,
  • боли в сердце.

Причинами устойчивой гипотонии может быть врожденная астения, низкая активность надпочечников, щитовидной железы, гипофиза . Понижение давления отмечается при истощении, длительной инфекции, интоксикации. Самые тяжелые состояния возникают при шоке или , которые сопровождают травмы, ожоги, анафилактические реакции, острую сердечную недостаточность.

Смотрите на видео о гипотонии, ее причинах и лечении:

Гипертония

Механизм высокого сопротивления стенки артерий в пожилом возрасте чаще всего связан со склеротическими изменениями, потерей эластичности сосудов. В более молодом возрасте главную роль играет сосудистый спазм. Он возникает при нарушенной регуляции со стороны центральной нервной системы либо гуморального звена. Чаще всего присутствуют изменения деятельности сосудодвигательного центра.

Под влиянием длительных стрессовых факторов происходит перенапряжение головного мозга, возникает стойкая зона возбуждения, которая посылает к артериям постоянный поток сосудосуживающих импульсов. Реакция сосудов на раздражение увеличивается, а иногда и извращается.

Вторичное повышение сосудистого тонуса возникает при таких болезнях:

  • гломеруло- и пиелонефрит,
  • сдавление сосудов почек,
  • нарушение работы эндокринных желез,
  • полиомиелит,
  • опухоли и кровоизлияния в головном мозге.

Как повысить или понизить тонус сосудов

Для нормализации сосудистого тонуса нужно соблюдать следующие рекомендации:

  • регулярно заниматься физическими упражнениями, особенно полезны кардионагрузки – ходьба, бег, плавание;
  • достаточно времени отводить на сон;
  • проводить контрастные водные процедуры;
  • придерживаться режима питания и здорового рациона.

При наличии заболеваний, при которых нарушается тонус сосудов, нужно проводить их лечение у специалиста, самолечение в таких случаях может привести к фатальным последствиям.

Сосудистый тонус отражает состояние регуляторных механизмов со стороны нервной системы и эндокринных органов . На его уровень влияют все изменения внутренней и внешней среды. У здорового человека повышение и понижение происходят в физиологических пределах. Быстрота возвращения к исходным параметрам показывает уровень тренированности сердечно-сосудистой системы.

При патологических состояниях тонус повышен (гипертония) или снижен (гипотония). Нормализация сосудистого сопротивления проводится в виде терапии основной болезни.

Читайте также

Применяется Мексидол для сосудов головного мозга с целью улучшения кровообращения, снятия негативных проявлений ВСД и прочего. Изначально выписывают уколы, затем переходят на таблетки. Лекарственный препарат поможет при спазме, для сердца. Сужает или расширяет он сосуды?

  • При необходимости изучить тонус проводится реоэнцефалография сосудов. Показаниями могут стать подозрения на атеросклероз, гипо- и гипертонию, дистонию и прочие. Проведение РЭГ может быть с функциональными пробами для детального обследования кровоснабжения головного мозга.
  • Возникают обмороки при сосудистой дистонии в тяжелых случаях. При ВСД можно предотвратить их, зная несложные правила поведения. Также важно понимать, как оказать помощь при обмороках от вегето-сосудистой дистонии.
  • Возникает ангиоспазм сосудов из-за механических проблем или засоренности русла. Он может быть церебральный, периферический, функциональный, возникать в артериях головного мозга или конечностях. Симптомы у ребенка и взрослого - боль. Лечение вазоспазма индивидуально подбирается.
  • Важную функцию играет коронарное кровообращение. Его особенности, схему движения по малому кругу, сосуды, физиологию и регуляцию изучают кардиологи при подозрении на проблемы.


  • Гуморальная регуляция осуществляется за счёт веществ местного и системного действия. Как утверждалось ранее к веществам местного действия относятся: ионы Са, К, Nа, биологически активные вещества (гистамин, серотонин), медиаторы симпатической и парасимпатической системы, кинины (брадикинин, калидин), простагландины. Многие высокоактивные эндогенные биологически активные вещества переносятся кровью к орагнам-мишеням и оказывают прямое или опосредованное (путём изменения функциональной активности органа) влияние на регионарные артериальные и венозные сосуды, а так же на сердце. Все эти вещества считаются факторами гуморальной регуляции кровообращения.

    К гуморальным сосудорасширяющим фактора (вазодилататорам) относят атриопептиды, кинины, а к гуморальным вазоконстрикторам - вазопрессин, катехоламины и ангиотензин II. Адреналин способен оказывать на сосуды и расширяющее и суживающее действие.

    Кинины. Два сосудорасширяющих пептида (брадикинин и каллидин) образуются из белков-предшественников - кининогенов под действием протеаз, называемых калликреинами. Кинины вызывают увеличение проницаемости капилляров, увеличение кровотока в потовых и слюнных железах и экзокринной части поджелудочной железы.

    Предсердный натрийуретический пептид является высокоактивным циркулирующим в крови веществом, выделяемым миоэндокринными клетками предсердий. Среди физиологических эффектов атриопептидов наиболее значительны способность расширять сосуды и вызывать гипотонию, усиливать диурез и натрийурез, угнетать активность симпатической нервной системы и ингибировать выброс альдостерона и вазопрессина. Под влиянием атриопептидов происходит возрастание скорости гломерулярной фильтрации за счёт сужения отводящих артериол и расширения приводящих артериол почечных клубочков. На основании полученных результатов делается предположение о снижении у больных гипертонией чувствительности клеток предсердий к действию нормальных физиологических стимулов, вызывающих выброс предсердного натрийуретического пептида.

    Норадреналин является основным медиатором периферического отдела симпатической нервной системы. В плазме крови он появляется вследствие диффузии из окончаний симпатических нервов, находящихся в стенках кровеносных сосудов. Доля норадреналина надпочечникого происхождения у человека в состоянии покоя незначительна. Согласно проведённым исследованиям те количества норадреналина, которые обнаруживаются в плазме крови, прежде всего, являются интегральным отражением уровня активности симпатических нервов и сами по себе не обладают влиянием на тонус артериальных сосудов. Более высокая концентрация норадреналина в венозной крови позволяет предполагать, что если он и оказывает влияние на тонус сосудов, то этими сосудами могут быть вены. [там же] Главной функцией норадреналина принято считать его участие в нейрогенной регуляции сосудистого тонуса, участие в реакциях перераспределения сердечного выброса.

    Адреналин. Главным источником его в крови являются хромафинные клетки мозгового слоя надпочечников. Симпатическая активация надпочечников, сопровождаемая выбросом в кровь больших количеств адреналина и ряда других веществ, является компонентом ответной реакции на стресс-стимулы. При стрессах разного генеза резкое увеличение в крови концентрации адреналина приводит к двум важным гемодинамическим последствиям. Во-первых, за счёт стимуляции?-адренорецепторов миокарда реализуется положительное ино- и хронотропное действие адреналина, при этом увеличиваются ударный и минутный объёмы сердца, повышается АД. Во-вторых, распределение адренорецепторов обоего типа в сосудистом русле и их чувствительность к адреналину таковы, что происходит перераспределение кровотока в пользу лучшего кровоснабжения сердца, печени и скелетных мышц за счёт других органов (почка, кожа, желудочно-кишечный тракт), в которых в большей мере проявляется?-констрикторный эффект адреналина либо в меньшей степени - ?-дилататорное его действие. Адреналин, выбрасываемый при стрессе из надпочечников, вызывает, прежде всего, развитие гипергликемии, в больших концентрациях может вызывать расширение сосудов мозга и сердца, повышать тонус вен. Важная физиологическая роль адреналина заключается так же в его способности существенно влиять на обменные процессы в печени, мышцах, жировой клетчатке (в частности усиливать гликогенолиз).

    Ангиотензин II - пептид, образующийся в крови и тканях из предшественника - ангиотензина I с помощью ангиотензинпревращающего фермента (АПФ). Он является наиболее мощным из всех известных биологически активных веществ констрикторного действия. В отличие от вазопрессина ангиотензин II оказывает влияние исключительно на артериальную часть сосудистого русла. Наибольшие концентрации АПФ определяются на поверхности эндотелиальных клеток сосудов лёгких, вследствие чего большая часть ангиотензина II образуется в малом круге при проходе крови через лёгкие. Доказано, что, кроме способности прямого воздействия на тонус сосудов и модуляции выброса медиатора на периферии, ангиотензин II способен проникать в мозг в областях со слабо развитым гематоэнцефалическим барьером, что сопровождается центральной активацией симпатической системы и угнетением сердечного компонента барорецептивного рефлекса. Кроме прямого вазоконстрикторного действия, ангиотензин усиливает констрикторный эффект активации симпатических нервов, повышает чувствительность адренорецепторов к катехоламинам, увеличивает выброс адреналина (а так же альдостерона) из надпочечников. В состоянии физиологического покоя в организме концентрация ангиотензина в плазме крови не достигает уровня, способного прямо влиять на сосудистый тонус, однако, достаточна, чтобы стимулировать секрецию альдостерона, который способствует задержке в организме натрия и воды, а водно-солевое равновесие может существенно влиять на сократительную активность сосудистых гладких мышц.

    Вазопрессин относится к группе пептидов, которые обладают как периферическим, так и центральным действием. Он является антидиуретическим гормоном задней доли гипофиза и обладает выраженным и стойким прессорным действием, из-за чего и произошло название этого гормона. Специфической особенностью вазопрессина является его способность проникать в мозг (в области с плохо развитым гематоэнцефалическим барьером) и повышать чувствительность сердечного и сосудистого компонентов барорецептивного рефлекса. Увеличение концентрации вазопрессина в крови возникает при стрессовых ситуациях, сопровождающихся возбуждением симпатоадреналовой системы. В этих случаях концентрация эндогенного вазопрессина достигает вазоконстрикторных доз, как, например, при гемморрагической гипотонии. Катехоламины повышают чувствительность сосудов к вазопрессину, потенцируют его вазоконстрикторное действие. Характерной особенностью вазопрессина является его выраженное констрикторное влияние на венозные сосуды. Наибольшей чувствительностью к гормону обладают сосуды кожи (этим объясняют длительную бледность кожи при обмороках), а так же сердца и слизистых, меньшей - сосуды лёгких.



    Таким образом, на сосудистый тонус оказывает влияние механизм гуморальной регуляции, который включает не только прямое взаимодействие с рецепторами элементов сосудистой стенки, но так же модуляцию выхода медиатора из симпатических окончаний и влияние на центральные механизмы регуляции гемодинамики. В целом организме местные химические факторы регуляции сосудистого тонуса взаимодействуют с миогенными для обеспечения интересов конкретного органа, и результат этого взаимодействия моделируется (часто определяется) центральными нейрогуморальными влияниями.



    © dagexpo.ru, 2024
    Стоматологический сайт